
 TOPS-20 User's Guide

 AA-FP69B-TM

 June 1988

 This document introduces users to the
 TOPS-20 operating system. It describes
 how to use the system, obtain system
 information and run programs.

 This document supersedes the document of
| the same name, order number, AA-FP69A-TM
| and also the document Getting Started
| with TOPS-20, order number AA-4187D-TM.

 Change bars in margins indicate material
 that has been added or changed since the
 previous printing of this manual.
 Bullets indicate that material has been
 deleted.

 Operating System: TOPS-20 (KL Model B) Version 7.0

 Software: TOPS-20 EXEC Version 7.0

 First Printing, September 1985
 Revised, June 1988

 c Digital Equipment Corporation 1985, 1988. All Rights Reserved.

 The information in this document is subject to change without notice
 and should not be construed as a commitment by Digital Equipment
 Corporation. Digital Equipment Corporation assumes no responsibility
 for any errors that may appear in this document.

 The software described in this document is furnished under a license
 and may only be used or copied in accordance with the terms of such
 license.

 No responsibility is assumed for the use or reliability of software on
 equipment that is not supplied by DIGITAL or its affiliated companies.

 The following are trademarks of Digital Equipment Corporation:

 digital
 DEC MASSBUS RSX
 DECmate PDP RT
 DECsystem-10 P/OS UNIBUS
 DECSYSTEM-20 Professional VAX
 DECUS Q-BUS VMS
 DECwriter Rainbow VT
 DIBOL RSTS Work Processor

 The postage-prepaid READER'S COMMENTS form on the last page of this
 document requests the user's critical evaluation to assist us in
 preparing future documentation.

 CONTENTS

 PREFACE

 CHAPTER 1 GETTING ON AND OFF THE SYSTEM

 1.1 RECOGNIZING KEYBOARD SYMBOLS 1-1
 1.2 DIALING IN . 1-3
 1.3 GETTING THE ATTENTION OF THE SYSTEM 1-4
 1.4 GETTING INFORMATION ABOUT YOUR TERMINAL 1-5
 1.5 DECLARING THE TERMINAL TYPE 1-6
 1.5.1 Controlling Terminal Output 1-8
 1.5.2 Setting the Terminal Speed 1-10
 1.6 STARTING A JOB WITH LOGIN 1-11
 1.6.1 User Names 1-14
 1.6.2 Passwords 1-14
 1.6.2.1 Selecting Secure Passwords 1-14
 1.6.2.2 Keeping Your Password a Secret 1-15
 1.6.3 Accounts 1-15
 1.6.4 Session-Remark 1-16
 1.7 EXECUTING COMMANDS AUTOMATICALLY DURING LOGIN . 1-16
 1.8 ENDING A JOB WITH LOGOUT 1-18
 1.9 SETTING ADDITIONAL TERMINAL PARAMETERS 1-19
 1.9.1 Setting the Terminal Page Length 1-19
 1.9.2 Setting the Terminal Line Width 1-19
 1.9.3 Using Formfeeds 1-19

 CHAPTER 2 COMMUNICATING WITH THE SYSTEM

 2.1 USING TOPS-20 COMMANDS 2-1
 2.2 OBTAINING A LIST OF TOPS-20 COMMANDS 2-5
 2.3 OBTAINING INFORMATION ABOUT THE PARTS OF A COMMAND 2-6
 2.4 TYPING COMMANDS 2-7
 2.4.1 Full Input 2-8
 2.4.2 Recognition Input 2-8
 2.4.3 Abbreviated Input 2-9
 2.4.4 Combined Recognition and Abbreviated Input . . 2-11
 2.4.5 What Are Defaults 2-12
 2.5 CONTINUING COMMANDS 2-12
 2.6 ADDING COMMENTS TO COMMAND LINES 2-12
 2.7 CORRECTING INPUT ERRORS 2-13
 2.7.1 DELETE - Erasing a Character 2-14
 2.7.2 CTRL/U - Erasing an Entire Line 2-14
 2.7.3 CTRL/W - Erasing a Word 2-14
 2.7.4 CTRL/R - Reprinting a Command Line 2-14
 2.7.5 CTRL/H - Reprinting Part of an Erroneous
 Command Line 2-14
 2.8 SETTING ALERTS 2-15

 iii

 2.9 OPERATING SYSTEM STOPPAGE 2-16

 CHAPTER 3 COMMUNICATING WITH OTHER USERS

 3.1 GETTING A LIST OF USERS ON THE SYSTEM 3-1
 3.2 LINKING WITH OTHER TERMINALS 3-3
 3.3 READING MAIL 3-4
 3.3.1 System Mail 3-5
 3.3.2 User Mail 3-5
 3.4 SENDING MAIL 3-7
 3.5 SENDING QUICK MESSAGES 3-8
 3.6 COMMUNICATING WITH THE OPERATOR 3-9
 3.7 CONTROLLING MESSAGES AND TERMINAL LINKS 3-10
 3.7.1 System Messages 3-10
 3.7.2 User Messages 3-11
 3.7.3 Terminal Links 3-11
 3.7.4 Inhibiting All Non-Job Output 3-12
 3.7.5 Mail Messages 3-13
 3.7.6 Alerts . 3-14

 CHAPTER 4 FILE SPECIFICATIONS

 4.1 TOPS-20 FILE SYSTEM ORGANIZATION 4-1
 4.2 COMPLETE FORM OF A FILE SPECIFICATION 4-1
 4.2.1 Device Names - dev: 4-2
 4.2.2 Directory Names - <DIR> 4-3
 4.2.3 Project-Programmer Numbers - [PPN] 4-4
 4.2.4 Filenames - name 4-5
 4.2.5 File Types - .typ 4-6
 4.2.6 Generation Numbers - .gen 4-6
 4.2.7 File Attributes - ;A, ;P, ;T 4-8
 4.3 USING WILDCARDS TO SPECIFY FILES 4-9
 4.4 SPECIFYING SPECIAL CHARACTERS - CTRL/V 4-10
 4.5 TYPING FILE SPECIFICATIONS 4-11
 4.6 USING LOGICAL NAMES 4-13
 4.6.1 The Device DSK: 4-15
 4.6.2 The Device POBOX: 4-16

 CHAPTER 5 CREATING AND EDITING FILES

 5.1 SELECTING AN EDITOR 5-1
 5.1.1 EDIT . 5-1
 5.1.2 TV . 5-3
 5.2 DEFINING THE LOGICAL NAME EDITOR 5-4
 5.3 CORRECTING TYPING ERRORS 5-4

 iv

 CHAPTER 6 USING DISK FILES

 6.1 USING FILE STRUCTURES 6-2
 6.2 PROTECTING DIRECTORIES AND FILES 6-4
 6.2.1 Directory Protection Numbers 6-4
 6.2.2 File Protection Numbers 6-5
 6.2.3 Checking Protection Numbers 6-6
 6.2.4 Changing a Directory Protection Number 6-8
 6.2.5 Changing a File Protection Number 6-8
 6.3 CONNECTING TO DIRECTORIES 6-8
 6.4 ACCESSING DIRECTORIES 6-11
 6.5 COPYING FILES 6-13
 6.6 RENAMING FILES 6-14
 6.7 APPENDING FILES 6-14
 6.8 LISTING FILES 6-15
 6.9 PRINTING FILES 6-15
 6.9.1 Modifying a PRINT Request 6-18
 6.9.2 Canceling a PRINT Request 6-18
 6.9.3 Setting Defaults for the PRINT Command 6-19
 6.10 DELETING AND RESTORING FILES 6-20
 6.11 CREATING TEMPORARY FILES 6-21
 6.12 REGULATING DISK FILE STORAGE 6-22
 6.13 LONG TERM OFF-LINE FILE STORAGE 6-25
 6.13.1 Archiving Files 6-25
 6.13.2 Getting Information about Archive Status of
 Files . 6-25
 6.13.3 Canceling an Archive Request 6-26
 6.13.4 Retrieving an Archived File 6-26
 6.13.5 Deleting an Archived File 6-27
 6.13.6 Archiving Expired Files Automatically 6-27
 6.14 VISIBLE AND INVISIBLE FILES 6-29

 CHAPTER 7 USING MAGNETIC TAPE

 7.1 USING MAGNETIC TAPE STORAGE 7-1
 7.2 USING UNLABELLED TAPES 7-1
 7.2.1 Using Unlabelled Tapes with Tape Allocation
 Enabled . 7-2
 7.2.2 Using Unlabeled Tapes with Tape Allocation
 Disabled . 7-2
 7.2.3 Setting Tape Parameters 7-3
 7.2.4 Positioning the Tape 7-4
 7.3 USING LABELLED TAPES 7-4

 CHAPTER 8 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 8.1 RUNNING SYSTEM PROGRAMS 8-1
 8.2 GIVING COMMANDS TO SYSTEM PROGRAMS 8-2
 8.2.1 Example: Using a System Program 8-3
 8.3 GETTING INFORMATION ABOUT SYSTEM FEATURES 8-5

 v

 8.4 RUNNING USER PROGRAMS 8-6
 8.5 CONTROLLING PROGRAMS 8-7
 8.5.1 Typing CTRL/C to Halt Execution 8-7
 8.5.2 Typing CTRL/O to Stop Output to Your Terminal . 8-8
 8.5.3 Typing CTRL/T to Print the Run Status 8-9
 8.6 RUNNING PROGRAMS WITHOUT DESTROYING MEMORY . . . 8-12
 8.7 RUNNING MULTIPLE PROGRAMS 8-13
 8.7.1 Saving Forks 8-15
 8.7.2 Changing the Current Fork 8-16
 8.7.3 Creating Background Forks 8-16
 8.7.4 Deleting Forks 8-17

 CHAPTER 9 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 9.1 PRODUCING A SIMPLE PROGRAM 9-1
 9.1.1 The Source Program 9-1
 9.1.2 Executing the Program 9-2
 9.1.3 Debugging the Program 9-3
 9.1.4 Saving the Program for Future Use 9-4
 9.2 PREPARING A MULTI-MODULE PROGRAM 9-5
 9.2.1 Writing and Entering Modules into Files 9-5
 9.2.2 Executing the Program 9-6
 9.2.3 Producing a Cross-Reference Listing 9-6
 9.2.4 Using Subroutine Libraries 9-8
 9.2.4.1 Entering the Subroutines into Files 9-9
 9.2.4.2 Compiling the Subroutines 9-9
 9.2.4.3 Creating the Library File 9-10
 9.2.4.4 Using the Library File 9-11
 9.2.4.5 Changing a Subroutine in the Library 9-12
 9.2.5 Loading and Saving the Program for Future Use 9-13
 9.2.6 Saving Arguments in Indirect Files 9-14
 9.2.7 Comparing Changes in Files 9-14
 9.3 USING THE LOAD-CLASS COMMANDS 9-15
 9.3.1 Object (Relocatable) and Executable Programs . 9-16
 9.3.1.1 Using Relocatable Object Programs 9-18
 9.3.2 Selecting a File and Recognizing the
 Programming Language 9-18
 9.3.2.1 Using Nonstandard File Types 9-20
 9.3.2.2 Setting a Default Compiler 9-20
 9.3.2.3 Using the File Type .REL 9-20
 9.3.2.4 Examples 9-21
 9.3.3 Compiling Only Out-of-Date Object Programs . . 9-21
 9.3.4 Remembering Arguments to LOAD-Class Commands . 9-22
 9.3.5 Concatenating Files to Produce One Source
 Program 9-23
 9.3.6 Specifying Special Actions with Switches . . . 9-23

 CHAPTER 10 USING BATCH

 10.1 PREPARING A BATCH JOB 10-1

 vi

 10.1.1 Creating a Control File 10-3
 10.1.2 Monitoring Your Batch Job 10-3
 10.1.3 Submitting a Control File to Batch 10-3
 10.1.3.1 Setting Defaults for the SUBMIT Command . . 10-4
 10.1.4 Checking a Batch Job 10-4
 10.1.5 Examining the Output from a Batch Job 10-5
 10.2 MODIFYING A BATCH JOB 10-6
 10.3 CANCELING A BATCH JOB 10-7

 APPENDIX A TOPS-20 COMMANDS

 A.1 SYSTEM ACCESS COMMANDS A-1
 A.2 FILE SYSTEM COMMANDS A-2
 A.3 DEVICE HANDLING COMMANDS A-3
 A.4 PROGRAM CONTROL COMMANDS A-4
 A.5 INFORMATION COMMANDS A-5
 A.6 TERMINAL COMMANDS A-6
 A.7 BATCH COMMAND A-7

 APPENDIX B STANDARD FILE TYPES

 APPENDIX C CHANGING YOUR PROGRAM USING EDIT

 C.1 ENTERING YOUR FORTRAN PROGRAM C-1
 C.2 EDITING YOUR FORTRAN PROGRAM C-2
 C.2.1 Starting EDIT C-2
 C.2.2 Printing a Line C-3
 C.2.3 Inserting a Line C-4
 C.2.4 Deleting a Line C-5
 C.2.5 Replacing a Line C-6
 C.2.6 Changing a Line Without Completely Retyping It . C-6
 C.2.7 Saving a File C-7
 C.3 RERUNNING A FORTRAN PROGRAM C-7
 C.3.1 Typing Out Your Program C-8

 APPENDIX D USING BASIC

 D.1 STARTING BASIC D-1
 D.2 ENTERING YOUR PROGRAM D-1
 D.3 SAVING YOUR PROGRAM D-2
 D.4 RUNNING YOUR PROGRAM D-3
 D.5 EDITING YOUR PROGRAM D-3
 D.6 RENAMING YOUR PROGRAM D-3
 D.7 RERUNNING YOUR PROGRAM D-4
 D.8 LISTING YOUR PROGRAM D-4
 D.9 RUNNING AN EXISTING PROGRAM D-5
 D.10 LEAVING BASIC D-5

 vii

 INDEX

 FIGURES

 2-1 Fields of a Command 2-4
 8-1 Methods of Running Multiple Programs 8-14
 9-1 Source, Object, and Executable Programs 9-17

 TABLES

 1-1 Special Function Keys 1-2
 2-1 Special Command Abbreviations 2-10
 4-1 System Device Names 4-3
 4-2 Special System Programs 4-4
 4-3 Symbolic Generation Numbers 4-7
 6-1 Directory Protection Digits 6-5
 6-2 File Protection Digits 6-6
 8-1 CTRL/T Status Messages 8-10
 8-2 Unexpected Process Termination Messages 8-11
 9-1 LOAD-Class Command Standard File Types 9-19
 10-1 Illegal Commands in Batch Jobs 10-2
 B-1 Standard File Types B-1

 viii

 PREFACE

 The TOPS-20 User's Guide describes the functions that you can perform
| with the TOPS-20 operating system. This manual is the first document
| of two TOPS-20 user-oriented manuals. The audience for the TOPS-20
 User's Guide ranges from the entry level first-time user to the
 experienced higher level language programmer.

| Descriptions of how to use the system, obtain system information,
| enter programs, run programs, and modify programs have been excerpted
| from Getting Started with TOPS-20 and incorporated into the TOPS-20
| User's Guide. This information is not designated with change bars in
| the TOPS-20 User's Guide. Only new TOPS-20 operating system features
| are highlighted with change bars.

| Once you learn about the functions described in the TOPS-20 User's
| Guide, you can refer to the second and more advanced manual, the
 TOPS-20 Commands Reference Manual, for complete descriptions of all of
 the TOPS-20 commands and how to use them.

 The following suggests a list of chapters to read according to the
 level of information you need to do your job.

 o If you are a first time user, such as a librarian, clerk, or
 data entry person, read Chapters 1, 2, 3, 8, 10.

 o If you are a system administrator, or a new operator, read
 Chapters 4, 5, 6, 7.

 o If you are a programmer, read Chapter 9.

 ix

 Following is a list of manuals referenced in this manual:

 o TOPS-20 Commands Reference Manual

 o TOPS-20 User Utilities Guide

 o TOPS-20 Tape Processing Manual

 o TOPS-20 System Manager's Guide

 o EDIT User's Guide

 o EDIT Reference Manual

 o TV Editor Manual

 o EDT-20 Primer

 o TOPS-10/TOPS-20 Batch Reference Manual

 o TOPS-10/TOPS-20 DECmail/MS Manual

 Conventions Used in This Manual

 Underlined text indicates what the user types in command
 examples.

 ^letter means press the keys labeled CTRL and the
 specified letter simultaneously, for example
 ^C.

 Ellipsis ... means that items in a command line can be
 optionally repeated.

 <RET> is implied in command examples.

 <ESC> indicates when you should press the ESCape
 (or ALTmode) key.

 x

 CHAPTER 1

 GETTING ON AND OFF THE SYSTEM

 This chapter describes:

 o Recognizing keyboard symbols (Section 1.1)

 o Dialing In (Section 1.2)

 o Getting the attention of the system (Section 1.3)

 o Getting information about your terminal (Section 1.4)

 o Declaring the terminal type (Section 1.5)

 o Controlling terminal output (Section 1.5.1)

 o Setting the terminal speed (Section 1.5.2)

 o Starting a job with LOGIN (Section 1.6)

 o Executing commands automatically during LOGIN (Section 1.7)

 o Ending a job with LOGOUT (Section 1.8)

 o Setting additional terminal parameters (Section 1.9)

 1.1 RECOGNIZING KEYBOARD SYMBOLS

 You use a terminal to communicate with the system. Although many
 different types and models of terminals exist, they all have similar
 keyboards, which resemble typewriter keyboards.

 Before you begin using the system, become familiar with the keyboard
 on the terminal. In addition to the standard characters (letters,
 numbers, and punctuation) and the space bar, there are keys that
 perform special functions. Table 1-1 describes these keys and their
 functions.

 1-1

 GETTING ON AND OFF THE SYSTEM

 Table 1-1: Special Function Keys

 __

 Key Function
 __

 CTRL The CTRL (or control) key initiates a number of system
 (Control) functions when it is used in conjunction with another
 character.

 To type a control character, hold down the CTRL key,
 and at the same time press the character you want.
 For example: to type a CTRL/C, hold down the CTRL key
 and at the same time press the letter C. In most
 cases this prints (echoes) on your terminal as ^C.

 DELETE The DELETE key erases characters. On some terminals
 this key is labeled DEL, RUBOUT, RUB CHAR OUT, or with
 a special symbol.

 ESC The ESC (or escape) key initiates a variety of
 (Escape) different functions.

 o Completes an abbreviated command and prompts you
 with a guideword

 o Completes an abbreviated argument

 o Ends input to some system programs

 o Causes special functions to be performed by some
 programs

 At TOPS-20 command level, the ESC key

 o Does not echo on your terminal

 o Displays an error message if you have made an
 error

 o Rings the terminal bell when you try to use it to
 complete a command and you have not typed
 sufficient information

 At system program level, depending upon the program
 you are running, the ESC key sometimes echoes on the
 terminal as a dollar sign.

 On some terminals this key is labeled ESCAPE, ALT, or
 ALTMODE.

 1-2

 GETTING ON AND OFF THE SYSTEM

 If there is no escape key on your terminal, use CTRL/[
 (press the CTRL and the left square bracket keys at
 the same time) to duplicate the function of the escape
 key.

 RETURN The RETURN key confirms to the system that you have
 completed a line and causes the terminal's cursor or
 printing head to go to the beginning of the next line.

 Unless you are told otherwise, terminate all command
 lines by pressing the RETURN key.

 On some terminals this key is labeled CR or RET.

 SP Creates a blank space by moving the terminal printing
 (Space Bar) head one space to the right.

 TAB The TAB key causes the cursor or printing head to move
 to the right to the next tab stop. Tab stops are
 normally every eight spaces. This is useful for
 aligning columns of data and for formatting programs.

 If there is no TAB key on your terminal, use CTRL/I to
 duplicate the function of the TAB Key.
 __

 1.2 DIALING IN

 Some terminals are connected to the computer by telephone. If you are
 using such a terminal, find out the computer phone number and use the
 following procedure:

 1. Turn on the terminal.

 2. Check the speed setting. (Refer to Section 1.5.2, for
 information on setting your terminal speed.)

 3. Dial the computer telephone number.

 4. Wait for a steady tone or a high-pitched beep, which
 indicates that the telephone connection to the computer has
 been made.

 5. Place the telephone receiver in the slots in either the
 terminal or the acoustic coupler. (An acoustic coupler is a
 device to connect the telephone with a terminal if the
 terminal does not have a built-in telephone receptacle.)

 6. Wait for the carrier detect light to come on.

 1-3

 GETTING ON AND OFF THE SYSTEM

 Your terminal is now connected to the computer. The system prints a
 system identification message similar to the following:

 KL2102, TOPS-20 Development Sys., TOPS-20 Monitor 7(7)
 @

 The @ character, which is the TOPS-20 prompt, indicates that TOPS-20
 is ready to accept a command.

 1.3 GETTING THE ATTENTION OF THE SYSTEM

 Press any key on the keyboard to signal the system that you want to
 log in. After you press a key, a system identification message and
 the TOPS-20 prompt, @, are printed on the terminal.

 If you do not receive the system identification message, one of the
 following conditions exists:

 o The system is down

 o Your terminal is set at the wrong speed for the line you are
 connected to (refer to Section 1.5.2 for information on
 setting the terminal speed)

 o The system is not available for your use

 o The system is full

 o Your terminal is not connected to the system

 If the system is not available for your use, you receive a message
 similar to the following:

 ?LOGGING IN ON LOCAL TERMINALS IS CURRENTLY NOT ALLOWED

 This message means that the operator has set the system to prevent
 timesharing. The system notifies you when it resumes its timesharing
 operation by printing a message similar to the following:

 SYSTEM RESTARTING, WAIT...

 and after a pause,

 [FROM OPERATOR: SYSTEM IN OPERATION]

 If the system is full, you receive the following message:

 ?FULL reason

 1-4

 GETTING ON AND OFF THE SYSTEM

 Wait a few minutes; then press a key. Repeat this until you receive
 the system identification message. The explanation that follows ?FULL
 is meaningful to the system manager and to system programmers. If you
 must wait an excessive length of time before successfully logging in,
 you might want to bring the error message to the attention of one of
 these people.

 1.4 GETTING INFORMATION ABOUT YOUR TERMINAL

 Terminals have different characteristics for printing information,
 depending on their type and speed. Because you have not yet told the
 system the kind of terminal you are using, the system automatically
 sets defaults for the terminal. These defaults are based on the most
 common type of terminal at your site. The defaults set parameters
 such as the terminal page length at 66 lines and the line width at 72
 characters, in addition to setting lowercase and tabs. The
 INFORMATION TERMINAL command displays the settings of these parameters
 or values, along with other characteristics of your terminal.

 After the system prints the system identification message and the
 TOPS-20 prompt (@), you are at TOPS-20 command level and you can give
 commands to the system. Type the TOPS-20 command INFORMATION
 TERMINAL-MODE and press RETURN. The system prints the information
 about your terminal.

 @INFORMATION (ABOUT) TERMINAL-MODE (FOR TERMINAL)
 TERMINAL SYSTEM-DEFAULT
 TERMINAL SPEED 9600
 TERMINAL NO INHIBIT (NON-JOB OUTPUT)
 RECEIVE LINKS
 REFUSE ADVICE
 RECEIVE SYSTEM-MESSAGES
 RECEIVE USER-MESSAGES
 TERMINAL PAUSE (ON) COMMAND
 TERMINAL NO PAUSE (ON) END-OF-PAGE
 TERMINAL LENGTH 66
 TERMINAL WIDTH 72
 TERMINAL LOWERCASE
 TERMINAL RAISE
 TERMINAL NO FLAG
 TERMINAL INDICATE
 TERMINAL NO FORMFEED
 TERMINAL NO TABS
 TERMINAL NO IMMEDIATE
 TERMINAL FULLDUPLEX

 1-5

 GETTING ON AND OFF THE SYSTEM

 Note that you can specify a terminal line number after the (FOR
 TERMINAL) guidewords. This allows you to obtain information about
 another user's terminal. The system uses your terminal line number as
 the default when you do not specify one. The SYSTAT command
 (discussed in Section 3.1) shows the line numbers for all users on the
 system.

 1.5 DECLARING THE TERMINAL TYPE

 Once you are at TOPS-20 command level, you can inform the system of
 the type of terminal you are using.

 Terminal Types
 Recognized by the System

 HARD COPY VIDEO

 MODEL 33 H19
 MODEL 35 TERMINET
 MODEL 37 TI
 EXECUPORT (TI) VT05
 LA30 VT50
 LA36 VT52
 LA38 VT100
 LA120 VT102
 VT105
 VT200-SERIES
| VT300-SERIES

 NOTE

 Installations can add other terminals to their
 individual systems.

 To declare the terminal type, give the TERMINAL command, and type in
 the type of your terminal. In this example, the terminal type is a
 VT100.

 @TERMINAL (FEATURE OR TYPE) VT100

 1-6

 GETTING ON AND OFF THE SYSTEM

 After you identify the terminal type to the system, all subsequent
 output conforms to preset terminal parameters for that type. The
 terminal type specifies the proper values for:

 Formfeed
 Tab
 Outputting lowercase characters
 Line width
 Page length

 If you do not set the proper parameters for the terminal, you may find
 the output format undesirable for your work.

 After you identify the terminal type, you can again give the
 INFORMATION TERMINAL-MODE command to see the parameters that were set
 as a result of your TERMINAL command.

 Tell the system you are using a VT100 by giving the TERMINAL command;
 then give the INFORMATION TERMINAL-MODE command.

 @TERMINAL (FEATURE OR TYPE) VT100
 @INFORMATION (ABOUT) TERMINAL-MODE (FOR TERMINAL)
 TERMINAL VT100
 TERMINAL SPEED 9600
 TERMINAL NO INHIBIT (NON-JOB OUTPUT)
 RECEIVE LINKS
 REFUSE ADVICE
 RECEIVE SYSTEM-MESSAGES
 RECEIVE USER-MESSAGES
 TERMINAL PAUSE (ON) COMMAND
 TERMINAL NO PAUSE (ON) END-OF-PAGE
 TERMINAL LENGTH 24
 TERMINAL WIDTH 80
 TERMINAL LOWERCASE
 TERMINAL NO RAISE
 TERMINAL NO FLAG
 TERMINAL INDICATE
 TERMINAL NO FORMFEED
 TERMINAL TABS
 TERMINAL NO IMMEDIATE
 TERMINAL FULLDUPLEX

 Setting the terminal type changes only the following parameters:
 terminal type, length, width, lowercase, formfeed, and tab.
 Therefore, when you identify the terminal as a VT100, the output
 conforms to the parameters for that type of terminal, that is, a page
 length of 24 lines, a line width of 80 characters, lowercase letters,
 no mechanical formfeed, and no mechanical tabs.

 Identifying the terminal type for a video terminal additionally allows
 more effective use of the DELETE key. The system erases the last
 character you typed on the screen rather than print the character
 followed by a backslash, as it does on a hard-copy terminal.

 1-7

 GETTING ON AND OFF THE SYSTEM

 1.5.1 Controlling Terminal Output

 The following commands control output to terminals:

 TERMINAL PAUSE (ON) COMMAND

 TERMINAL PAUSE (ON) END-OF-PAGE

 TERMINAL PAUSE (ON) CHARACTER x (AND UNPAUSE ON) y

 TERMINAL NO PAUSE (ON) END-OF-PAGE

 The TERMINAL PAUSE COMMAND allows you to stop output to the terminal
 at any time by typing CTRL/S, and continue output by typing CTRL/Q.
 This command is the default for all terminal types. You can define
 your own characters to stop and continue output with the TERMINAL
 PAUSE CHARACTER command discussed below.

 TERMINAL PAUSE END-OF-PAGE automatically stops output to the terminal
 when the output is equal to the current page length set for the
 terminal. When the system stops the output, it rings the terminal
 bell and waits for you to type CTRL/Q. The CTRL/Q resumes the output.
 This prevents the output from rolling off a video terminal screen so
 rapidly that you cannot read it. However, if you want to stop the
 output before the end of the page, type CTRL/S. This command is the
 default if you declare your terminal to be a video terminal, for
 example a VT100.

 TERMINAL NO PAUSE END-OF-PAGE prevents the output from stopping at the
 end of the page. This command is the default if you declare your
 terminal to be a hard-copy terminal, for example an LA36.

 If TERMINAL PAUSE END-OF-PAGE is not set, and you need the terminal
 output to stop at the end of a page, give the following command:

 @TERMINAL PAUSE (ON) END-OF-PAGE

 If TERMINAL PAUSE END-OF-PAGE is set, and you do not want the terminal
 to stop output at the end of the page, give the following command:

 @TERMINAL NO PAUSE (ON) END-OF-PAGE

 TERMINAL PAUSE CHARACTER x y allows you to choose your own pause and
 continue characters. These characters are alternatives to the CTRL/S
 and CTRL/Q default characters. (To specify your own pause and
 continue characters, TERMINAL PAUSE END-OF-PAGE and TERMINAL PAUSE
 COMMAND must be in effect.)

 1-8

 GETTING ON AND OFF THE SYSTEM

 You can specify the pause and continue characters in several ways.
 Some of the more common forms are:

 o an ASCII code in octal

 o a character within double quotation marks (" ")

 o the word SPACE to specify the space bar

 Octal ASCII codes for the keyboard characters are listed in several
 TOPS-20 manuals. The TOPS-10/TOPS-20 Batch Reference Manual, for
 example, lists these codes.

 To specify the space bar as both the pause and continue character,
 give the following command:

 @TERMINAL PAUSE (ON) CHARACTER SPACE (AND UNPAUSE ON) SPACE

 To see the characters that you may have specified in the TERMINAL
 PAUSE CHARACTER command, give the INFORMATION TERMINAL-MODE command:

 @INFORMATION (ABOUT) TERMINAL-MODE (FOR TERMINAL)
 TERMINAL VT100
 .
 .
 .
 TERMINAL PAUSE (ON) COMMAND
 TERMINAL PAUSE (ON) END-OF-PAGE
 TERMINAL PAUSE (ON) CHARACTER SPACE
 .
 .
 .

 In this example, the continuation character is not displayed, because
 it is the same as the pause character (SPACE). Also, if you specify
 the TERMINAL NO PAUSE COMMAND or the TERMINAL NO PAUSE END-OF-PAGE
 command, or if the system default characters, CTRL/S and CTRL/Q, are
 in effect, the TERMINAL PAUSE CHARACTER line does not appear in the
 information display.

 NOTES

 Several terminal types require that you change the
 pause and continue characters to something other than
 CTRL/S and CTRL/Q. For example, the VT125 and the
 VT100 with the printer port option do not recognize
 these characters.

 When you use the SET HOST command to log in to a
 remote system, CTRL/S and CTRL/Q are reserved by your
 host system; they are not passed to the remote system.
 CTRL/A is the default character for pausing and
 continuing output coming from a remote system.

 1-9

 GETTING ON AND OFF THE SYSTEM

 1.5.2 Setting the Terminal Speed

 Terminals can transmit and receive data at various speeds. This rate
 of speed is called a baud rate. Baud rates range from 10 to 960
 characters per second: 10 characters per second is 110 baud; 960
 characters per second is 9600 baud.

 There are actually two different speeds: terminal speed and line
 speed. The terminal speed is the speed at which your terminal
 receives characters from and transmits characters to the system. This
 speed is set by switches or keys that are physically located on your
 terminal. The line speed is the speed at which the system receives
 characters from and transmits characters to your terminal. The line
 speed is set with the TERMINAL SPEED command. The terminal speed and
 the line speed must match for your terminal to communicate with the
 system.

 Your system can have two types of terminal lines, those that are set
 to a certain speed and "autobaud" lines. An autobaud line
 automatically sets a line speed that matches the speed of your
 terminal when you initially type any key on the keyboard.

 Your system manager presets line speeds when the type of terminal
 connected to the terminal line is constant. For example, a terminal
 line connected to a VT220 video terminal may be set to 9600 baud while
 a line connected to a slower LA100 hard-copy terminal may be set to
 300 baud. Terminal lines are autobaud when the line can be connected
 to various types of terminals. For example, terminal lines which are
 reserved for telephone connections to the computer are usually
 autobaud.

 NOTE

 If your terminal is connected by telephone to an
 autobaud terminal line, an initial character enables
 the system to determine your terminal's baud rate,
 provided the rate is 300, 1200, 1800, 2400, or 9600.
 If the baud rate is 110 or 150, type a second
 character. If you press a character and fail to get
 the system identification message, press the BREAK key
 twice followed by another character.

 Do not set the line speed to a speed your terminal (or
 modem) does not support. If you should do this by
 mistake, contact the operator for assistance.

 To change your terminal and line speeds, first change your line speed
 with the TERMINAL SPEED command. Then, manually change the speed
 settings on your terminal.

 1-10

 GETTING ON AND OFF THE SYSTEM

 For example, to change the line speed for input and output to 2400
 baud, give the TERMINAL SPEED command:

 @TERMINAL (FEATURE OR TYPE) SPEED (OF INPUT) 2400

 NOTE

 On some hard-copy terminals, the switch to change the
 baud rate is located at the left of the keyboard.

 On some video terminals, the switch to change the baud
 rate is located on the underside or the back of the
 terminal. On others, special keys on the main
 keyboard are used to change the baud rate.

 If you set only the input speed for the line and do not specify the
 output speed, the system assumes that the output speed is the same as
 the input speed.

 If you are using a hard-copy terminal and accidentally set a line
 speed incompatible with your terminal, you cannot correct it. Contact
 the operator, give your terminal line number, and ask him to set your
 line at the speed you want.

 If you are using a video terminal and accidentally set an incorrect
 line speed, you may be able to correct the speed by setting the
 terminal speed to the current line speed and then, resetting the line
 and terminal speeds.

 After you start a job on the system, you may find there are more
 terminal parameters you need to set in addition to those already
 described. Section 1.6 describes starting a work session with LOGIN.
 Section 1.9 explains the additional parameters you can set.

 1.6 STARTING A JOB WITH LOGIN

 Before using TOPS-20 for the first time, you must obtain the following
 from the staff at your installation.

 1. Your user name

 2. Your password

 3. Your account

 Your user name, password, and account identify you so that you can use
 the computer and be charged appropriately.

 1-11

 GETTING ON AND OFF THE SYSTEM

 To start working on the system, you must first identify yourself to
 the system by typing the LOGIN command, which validates you as a user,
 creates your job, and begins charging your account. The LOGIN command
 requires your user name, password, and account. The command also
 allows you to add remarks concerning the work session. This
 identification procedure is called logging in. After you give the
 LOGIN command, the system creates a job and prints a line containing
 the job number, the terminal number, the current date and time and the
 date and time of your last login. The system prints an @ on the next
 line; you are now at TOPS-20 command level.

 TYPING ERRORS

 If, in the process of logging in, you make a typing
 error, type CTRL/U. This tells the system to ignore
 everything you have typed on that line, because you
 have made a mistake and want to start the line over.
 After you type a CTRL/U, the system prints XXX and
 then prints @ on the next line.

 After the @ prompt, do the following:

 1. Type LOGIN, and press the key labeled ESC (for ESCape).

 <ESC>
 |
 @LOGIN (USER)

 2. After you see the guideword (USER), type your user name and
 press the ESC key.

 <ESC> <ESC>
 | |
 @LOGIN (USER) SARTINI (PASSWORD)

 3. After you see the guideword (PASSWORD), type your password,
 and press the ESC key. Because your password is secret, it
 does not print on the terminal. This safeguard prevents
 other people from using your name and account. Even though
 your password is not printed, it is given to the system as
 part of your identification.

 <ESC> <ESC> <ESC>
 | | |
 @LOGIN (USER) SARTINI (PASSWORD) (ACCOUNT)

 NOTE

 On some terminals, the guideword (PASSWORD)
 may be followed by a nonsense word or
 message. If this is the case, when you type
 your password over this word, your password
 is illegible.

 1-12

 GETTING ON AND OFF THE SYSTEM

 4. After you see the guideword (ACCOUNT), type your account and,
 instead of pressing the ESC key, press the key labeled
 RETURN. You use the RETURN key to tell the system you have
 finished typing the lines. TOPS-20 will print a message
 similar to the one below.

 @LOGIN (USER) SARTINI (PASSWORD) (ACCOUNT) 341
 Job 40 on TTY127 6-Feb-88 08:42:47
 @

 This message gives you:

 o Your system assigned job number (40).

 o Your terminal number (127).

 o The current date and time (6-Feb-88).

 o A system message of the day, if any. Installations use the
 message of the day to inform users of new programs or system
 changes.

 NOTE

 Some systems do not require you to enter an account
 when logging in. If you don't have an account, press
 the RETURN key after you type your password. You will
 be logged in.

 The following example shows the entire logging-in process:

 AURORA, Research and Development, TOPS-20 Monitor 7(7)
 @LOGIN (USER) SARTINI (PASSWORD) (ACCOUNT) 341
 Job 57 on TTY127 23-Jul-88 09:48:40, Last Login 22-Jul-88
 09:30:27
 @

 NOTE

 You do not have to use the ESC key when logging in.
 However, the ESC key provides guidewords that prompt
 you for user name, password and account. Spaces
 between arguments are sufficient if you do not need
 the help of guidewords. For example: LOGIN SARTINI
 password 341.

 1-13

 GETTING ON AND OFF THE SYSTEM

 1.6.1 User Names

 Your user name identifies you to the system and to other users. A
 user name may contain up to 39 alphanumeric characters, as well as
 period (.) and hyphen (-). Your user name is also the name of your
 login directory.

 1.6.2 Passwords

 To provide security, you must give a password when logging in.
 Depending on the procedures at your site, you may be assigned a
 password or allowed to select one for your first login. When you type
 your password, it is not displayed on the terminal; this prevents
 others from learning it and logging into your area without your
 authorization.

 1.6.2.1 Selecting Secure Passwords - Use these guidelines in
 selecting a password:
|
| o Use a minimum of six characters. Unless your system manager
| sets a greater minimum password length, a password of at
| least six characters is recommended. Passwords can be up to
 39 characters long and include hyphens.

 o Use a password that cannot easily be guessed. Avoid
 passwords that have a personal association to you such as
 your name or initials, the name of a family member or pet,
 the make of your car, or any name associated with your work,
 such as your company or special project.

 o Avoid words found in the dictionary. By avoiding words
 readily found in the dictionary your password choice is less
 subject to discovery by a program that successively enters
 the words in the dictionary, searching for one that produces
 a successful login. Use a nonsense word or a word from
 another language.

 o Include digits in a password. The content of a password is
 more important than the length. Using digits as well as
 letters provides the most secure passwords. For example, for
 a six-character password using letters only, there are 300
 million combinations, while a six-character password with
 digits has 2 billion combinations.

 1-14

 GETTING ON AND OFF THE SYSTEM

 1.6.2.2 Keeping Your Password a Secret - Often illegal system
 accesses involving the use of a correct password can be traced to
 disclosure of the password by its owner. Do not be unconcerned about
 protecting your password because you do not keep any sensitive
 information on the system. A system breaker could use your password
 to gain more information about the system and break into other areas,
 or a malicious user could destroy your files or steal computer time.

 Use these guidelines to prevent others from learning your password:

 o Never write down your password.

 o Do not include your password in any file, including the body
 of an electronic mail message. (If anyone else reveals their
 password to you in this fashion, be sure to delete the
 information promptly.)

 o Never give your password to other users except under very
 unusual circumstances, and then be sure to change it
 immediately after the need for sharing has passed.

 o Avoid using the same password for your accounts on multiple
 systems. The system breaker's first step after learning a
 password for one system is to try that username and password
 on other systems.

 o Note the date and time of your last login. After you give
 the LOGIN command, the system displays the date and time of
 your last login. Check this message routinely. If you
 observe a login that you did not make, change your password
 immediately and notify your system manager.

 o Change your password frequently. Changing your password
 every 3 to 6 months is sufficiently frequent on most systems
 where there have been no password compromises and no sharing
 of passwords. DIGITAL discourages sharing passwords;
 however, if passwords are shared, the frequency of password
 changes should be every month or two. To change your login
 password use the SET DIRECTORY PASSWORD command:

 @SET DIRECTORY PASSWORD <login-directory-name>

 1.6.3 Accounts

 To log in to the system, you must give a valid account. Your account
 is billed for central processor unit (CPU) usage and for file storage.

 1-15

 GETTING ON AND OFF THE SYSTEM

 Once you log in, all charges are made to the account you give in the
 LOGIN command unless you specify otherwise. If your login directory
 has a default account, you do not have to specify an account when you
 login. If you must change your account during a job, give the SET
 ACCOUNT command or include the ;A attribute in the file specification.
 (Refer to Section 4.2.7, file attributes.) However, you can change it
 only to another valid account.

 1.6.4 Session-Remark

 The LOGIN command allows for an optional argument following your
 account. If you press the ESC key after typing your account, the
 system prints the guidewords (SESSION-REMARK). You can then type one
 line of text to identify a specific work session for accounting
 purposes. This session remark cannot exceed 39 alphanumeric
 characters, including hyphens and spaces. If you need to change the
 SESSION-REMARK during a job, give the SET SESSION-REMARK command.

 You can see the current session-remark for your job when you give the
 INFORMATION JOB-STATUS command.

 1.7 EXECUTING COMMANDS AUTOMATICALLY DURING LOGIN

 You can create a LOGIN.CMD file that contains the TOPS-20 commands you
 want executed when you log in. The system automatically reads this
 command file every time you log in. After executing these commands,
 the system prints any output from the commands followed by the message
 End of LOGIN.CMD and the TOPS-20 prompt (@).

 For example, if you always use a VT100 terminal, you can include a
 TERMINAL VT100 command in a LOGIN.CMD file. Every time you log in,
 the system reads the LOGIN.CMD file and recognizes the terminal as a
 VT100. All output to the terminal conforms to the parameters set for
 a VT100. Below is an example of a typical LOGIN.CMD file. Note that
 comments are preceded by an exclamation mark (!). (Refer to Section
 2.6 for information on adding comments.) The commands in this file are
 discussed in the following chapters.

 TERMINAL VT100 !Set the parameters for a VT100
 TERMINAL PAUSE CHARACTER SPACE SPACE !Set the space bar to stop and
 ! start terminal output
 TERMINAL PAUSE END-OF-PAGE !Stop scrolling output at end
 ! of page

 DEFINE WK: WORK:<LEOPOLD> !Define a logical name for a
 ! directory
 DEFINE EDITOR: SYS:EDT.EXE !Define a logical name for
 ! an editor

 1-16

 GETTING ON AND OFF THE SYSTEM

 DEFINE PB: PS:PHONE.BOOK !Define a logical name for a file
 INFORMATION LOGICAL-NAMES !Display the logical names defined
 ! in the three previous commands
 MOUNT STRUCTURE WORK: /NOWAIT !Mount the structure WORK:
 SET PROGRAM DSR KEEP CONTINUE !Keep program DSR when it's
 ! started
 SET ALERT 16:25 VANPOOL IN 5 MINUTES !Set a daily reminder
 DAYTIME !Display the date and time

 If there is an error with one of the commands, the system processes
 the commands up to the one in error. When the system encounters the
 error, it stops reading the file and prints the following message:

 %Error while reading LOGIN.CMD.1, file aborted.

 followed by the message produced by the command in error.

 You can also create a COMAND.CMD file that contains any TOPS-20
 commands you want executed when you log in. The COMAND.CMD file
 differs from the LOGIN.CMD file because the system automatically reads
 the COMAND.CMD file whenever you give a PUSH command as well as every
 time you log in. (Refer to Section 8.6 for an example using the PUSH
 command.) After executing the commands in the COMAND.CMD file, the
 system prints any output from the commands followed by the message End
 of COMAND.CMD and the TOPS-20 prompt.

 Note that the system reads the LOGIN.CMD file before it reads the
 COMAND.CMD file. If there are conflicting commands in the two files,
 the last command executed (that is, the one in the COMAND.CMD file)
 takes precedence.

 NOTE

 The system processes the LOGIN command line or the
 PUSH command before it reads the LOGIN.CMD file or the
 COMAND.CMD file. Therefore, you are still
 successfully logged into the system or the PUSH
 command is still in effect, even if the command file
 contains an error.

 Your system manager can create system-wide LOGIN.CMD and COMAND.CMD
 files. Like your own command files, the system LOGIN.CMD and
 COMAND.CMD files are executed automatically when you login. Each
 system command file is executed before your own file of the same name:

 1. SYSTEM:LOGIN.CMD

 2. LOGIN.CMD

 3. SYSTEM:COMAND.CMD

 4. COMAND.CMD

 1-17

 GETTING ON AND OFF THE SYSTEM

 If your site has system-wide LOGIN.CMD and COMAND.CMD files, you
 should examine the commands in these files to avoid putting duplicate
 commands in your own command files. To display the system LOGIN.CMD
 file give the command:

 @TYPE SYSTEM:LOGIN.CMD

 Refer to Chapter 5 for information on how to create files.

 1.8 ENDING A JOB WITH LOGOUT

 When you want to leave the system, you should not just turn off your
 terminal and walk away; you should tell the system you are leaving.
 To leave the system, type LOGOUT after the @, and press the RETURN
 key. This terminates your communication with the system. This
 procedure is called logging out.

 @LOGOUT

 After you press the RETURN key, you will see a message similar to:

 Killed Job 57, User SARTINI, Account 341, TTY 127,
 at 23-Mar-88 09:49:36, Used 0:0:14 in 1:25:56

 This message indicates that you have successfully logged off the
 system. Your job number was 57, your user name was SARTINI, your
 account was 341, the terminal you were using was connected to terminal
 line 127. You left the system at 09:49:36 on March 23, 1988. The
 last part of the message indicates how long the system actually worked
 for you (14 seconds) and how long you were logged in (1 hour, 25
 minutes, and 56 seconds).

 If you do not log off the system, your terminal will not be free for
 another user. Also, someone can come along and do work on the system
 under your identification, and you will be charged for the computer
 use.

 If you type a character to get the system's attention and fail to log
 in within 5 minutes, the system automatically logs you off the system
 and prints the LOGOUT message. This message is similar to the
 following:

 Autologout
 Killed Job 8, TTY 26,
 at 23-Mar-88 10:50:35, Used 0:0:0 in 5:15

 If you are on a dial up line, the system hangs up the line.

 1-18

 GETTING ON AND OFF THE SYSTEM

 1.9 SETTING ADDITIONAL TERMINAL PARAMETERS

 After you log in to the system, you may find you need to set
 additional terminal parameters for your work. The following sections
 describe more parameters you can set. For a complete description of
 all parameters you can set with the TERMINAL command, refer to the
 TOPS-20 Commands Reference Manual. If you are reading this manual for
 the first time, you can skip these sections until later.

 1.9.1 Setting the Terminal Page Length

 When you declare the terminal type, the system sets a page length for
 the terminal. The length of the page varies depending on the type of
 terminal. To change the page length, give the TERMINAL LENGTH
 command.

 The system uses the page length to determine where to stop terminal
 output when TERMINAL PAUSE END-OF-PAGE is set. The page length is
 also important when using formfeeds.

 To change the page length to 30, give the following command.

 @TERMINAL (FEATURE OR TYPE) LENGTH (OF PAGE IS) 30

 1.9.2 Setting the Terminal Line Width

 The system sets a line width for the terminal when you identify the
 terminal type. To change the line width, give the TERMINAL WIDTH
 command. The width can be set at a minimum of 8 characters per line
 to a maximum of 255 characters per line. To change the line width to
 50, give the following command.

 @TERMINAL (FEATURE OR TYPE) WIDTH (OF LINE IS) 50

 If a line of input or output on your terminal exceeds the width set
 for the terminal, the system prints the maximum number of characters
 on one line and continues printing on the following lines. This can
 affect the number of lines the system prints when page mode is set.

 1.9.3 Using Formfeeds

 On a hard-copy terminal with a mechanical formfeed, the system
 advances the paper to the top of the next page by outputting a
 formfeed character (CTRL/L). On a hard-copy terminal without a
 formfeed mechanism, the system can simulate a formfeed by outputting
 the proper number of linefeeds. Usually the system prints ^L instead
 of advancing the paper.

 1-19

 GETTING ON AND OFF THE SYSTEM

 To advance the paper to the top of the next page and prevent the ^L
 from printing, give the TERMINAL NO INDICATE command. Use this
 command to print a memo, report, or information that you want to
 appear on individual pages.

 @TERMINAL (FEATURE OR TYPE) NO INDICATE (FORMFEED)

 When you declare the terminal type, the system simulates formfeeds if
 they are required by the terminal. You can also use the TERMINAL NO
 FORMFEED command to force the system to simulate formfeeds regardless
 of the terminal type.

 1-20

 CHAPTER 2

 COMMUNICATING WITH THE SYSTEM

 This chapter describes:

 o Using TOPS-20 commands (Section 2.1)

 o Obtaining a list of TOPS-20 commands (Section 2.2)

 o Obtaining information about the parts of a command (Section
 2.3)

 o Typing commands (Section 2.4)

 o Continuing commands (Section 2.5)

 o Adding comments to command lines (Section 2.6)

 o Correcting input errors (Section 2.7)

 o Setting alerts (Section 2.8)

 o Operating system stoppage (Section 2.9)

 2.1 USING TOPS-20 COMMANDS

 A TOPS-20 command is an instruction that specifies the function you
 want the TOPS-20 operating system to perform. By giving TOPS-20
 commands you accomplish your work through the operating system.

 2-1

 COMMUNICATING WITH THE SYSTEM

 Each TOPS-20 command contains one or more of the following parts:

 1. Command name

 2. Guidewords

 3. Arguments

 4. Switches

 5. Subcommands

 6. Command terminator

 The command name identifies the command and its function. Guidewords
 can assist you in identifying the argument you should type.
 (Guidewords are always printed within parentheses.) An argument is
 the response you enter after a guideword. This argument further
 identifies the information the system needs to process the command.
 Switches and subcommands allow you to select more precise options to a
 given command. Using a switch or a subcommand, you can also override
 default options that are part of the command. Use a carriage return
 to end a command.

 Before doing anything more, try typing a few easy commands. TOPS-20
 recognizes many commands, but this manual discusses only some commonly
 used commands. Appendix A contains a list of TOPS-20 commands, and
 their meanings. The TOPS-20 Commands Reference Manual describes all
 of the commands available to the nonprivileged user of TOPS-20.

 You type a TOPS-20 command directly after the system prints the @
 prompt; you end a TOPS-20 command by pressing the RETURN key. With
 some commands, you must type one or more arguments before you press
 the RETURN key. For example, the LOGIN command described earlier
 requires your user name, your password, and your account as arguments.
 The system tells you that it requires an argument by printing a
 guideword in parentheses after you press the ESC key. Some commands,
 such as DAYTIME, do not require arguments.

 To find out today's date and time, type DAYTIME after you see the @,
 and then press the RETURN key.

 @DAYTIME
 Thursday, May 26, 1988 08:41:21
 @

 The system prints the date in the format:

 day-of-the-week, month day-of-the-month, year

 2-2

 COMMUNICATING WITH THE SYSTEM

 The system prints the time of day in the format:

 hours:minutes:seconds

 The hours are given using a 24-hour clock. The time shown in the
 above example (08:41:21) is 21 seconds after 8:41 in the morning.
 Twelve midnight is displayed as 00:00:00, twelve noon is displayed as
 12:00:00; and seven o'clock in the evening is displayed as 19:00:00.

 Other commands require one or more arguments. Arguments can be
 letters, numbers, or a combination of both. A common argument is a
 file specification. (Refer to Section 4.2 for a description of file
 specifications.) To find out which kind of argument you should type,
 press ESC after you give the command. The system prints the
 guideword, prompting you for the kind of argument to type. If the
 command does not need an argument, when you press ESC, the system
 rings the terminal bell. The following example illustrates the
 DIRECTORY command followed by the guidewords (OF FILES) and the
 filename TEST.FOR as the argument:

 @DIRECTORY (OF FILES) TEST.FOR

 Some commands accept switches while others accept subcommands. With
 switches and subcommands, you can be more specific about what you want
 the command to do.

 A switch is a slash followed by an option. The option may be followed
 by a colon and an argument. Switches specify details about the action
 of the given command. You can give one or more switches to a command
 by typing them on the same line as the command. To include a switch,
 type a slash (/), followed by the option. Some options require that a
 value, preceded by a colon, also be given. The following example
 shows the use of a single switch and its value to print four copies of
 the file TEST.FOR.3:

 @PRINT (FILES) TEST.FOR.3/COPIES:4
 [Job TEST Queued, Request-ID 41, Limit 27]

 A subcommand resembles a switch in its function. The difference
 between switches and subcommands is the syntax. While you enter
 switches on the same line as the command, you enter each subcommand on
 a separate line following the command line.

 2-3

 COMMUNICATING WITH THE SYSTEM

 To include subcommand(s), end the command line by typing a comma, and
 press RETURN. The system prints the subcommand level prompt, @@, to
 indicate that you can now type subcommands. Subcommands, like TOPS-20
 commands, contain subcommand names, guidewords, and arguments of their
 own. You can give several subcommands, but each one must be typed on
 a separate line. To end each subcommand, press RETURN. After you
 type your last subcommand, press RETURN; the system prints @@; press
 RETURN again. The system then processes the command and its
 subcommand(s). When the system prints the single @ you are back at
 TOPS-20 command level. The following example demonstrates the use of
 a single subcommand to the DIRECTORY command:

 @DIRECTORY (OF FILES),
 @@DELETED (FILES ONLY)
 @@

 PS:<PORADA>
 TEST.FOR.2
 .QOR.1
 .REL.3
 Total of 3 files

 Each part of a TOPS-20 command or subcommand is referred to as a field
 and is separated from each adjacent field by a space. Figure 2-1
 shows the fields of the LOGIN command.

 @LOGIN (USER) user name (PASSWORD) password (ACCOUNT) account<RET>
 ^ ^ ^ ^ ^ ^ ^ ^
 | | | | | | | |
 | | | | | | | |
 | | | | | | | terminator
 | | | | | | argument
 | | | | | guideword
 | | | | argument
 | | | guideword
 | | argument
 | guideword
 command name

 Figure 2-1: Fields of a Command

 2-4

 COMMUNICATING WITH THE SYSTEM

 2.2 OBTAINING A LIST OF TOPS-20 COMMANDS

 After the system outputs an @, you can type a question mark (?) to
 print the list of TOPS-20 commands.

 GIDNEY, TOPS-20 Development System, TOPS-20 Monitor (6012)
 @? Command, one of the following:
 ACCESS ADVISE APPEND ARCHIVE ASSIGN
 ATTACH BACKSPACE BLANK BREAK BUILD
 CANCEL CLOSE COMPILE CONNECT CONTINUE
 .
 .
 .
| TAKE TALK TDIRECTORY TERMINAL TRANSLATE
 TYPE UNATTACH UNDECLARE UNDELETE UNKEEP
 UNLOAD VDIRECTORY
 or system program name

 To stop the printing of this list, type two CTRL/Cs, which returns you
 to TOPS-20 command level.

 Appendix A gives a brief description of each command. The TOPS-20
 Commands Reference Manual contains a complete description of all
 TOPS-20 Commands available to the nonprivileged user.

 If you remember that a command begins with a certain letter or
 letters, type the letters that you recall, and then type ?. TOPS-20
 prints the list of commands you could type using those letters. It
 then prints what you have typed so far and waits for you to finish the
 command. In the example below, you remember that the command you want
 begins with the letter A. You type A, followed by a question mark.
 TOPS-20 prints the names of all the commands beginning with the letter
 A and possible filenames from the (SYS:) system directory, and waits
 for you to complete the command or filename.

 @A? Command, one of the following:
 ACCESS ADVISE APPEND ARCHIVE ASSIGN ATTACH
 or system program name
 @ACCESS (TO DIRECTORY) <MORRILL>
 Password:
 @^C

 When typing a question mark, you are not limited to just one letter;
 you may type as many as you need.

 @CON? Command, one of the following:
 CONNECT CONTINUE
 or system program name
 @CONNECT (TO DIRECTORY) <MORRILL>
 Password:
 @

 The CONNECT command joins you to another user's files.

 2-5

 COMMUNICATING WITH THE SYSTEM

 2.3 OBTAINING INFORMATION ABOUT THE PARTS OF A COMMAND

 You can type a question mark following a command or subcommand to
 print a list of possible arguments for the command. For example, type
 the TERMINAL command followed by a question mark. You do not have to
 press the RETURN key. TOPS-20 lists the possible arguments, prints
 the command up to the point at which you typed ?, and waits for you to
 enter a valid argument.

 @TERMINAL (FEATURE OR TYPE) ? one of the following:
 FLAG FORMFEED FULLDUPLEX HALFDUPLEX
 HELP IMMEDIATE INDICATE INHIBIT
 LENGTH LINE-HALFDUPLEX LOWERCASE NO
 PAGE PAUSE RAISE RECEIVE
 SPEED TABS TYPE WIDTH
 or one of the following:
 33 35 37 EXECUPORT
 H19 LA120 LA30 LA36
 LA38 SYSTEM-DEFAULT TERMINET TI
 VK100 VT05 VT100 VT102
| VT125 VT131 VT200-SERIES VT300-SERIES
 VT50 VT52
 @TERMINAL (FEATURE OR TYPE)

 Give the LENGTH argument, and press ESC. The system prints (OF PAGE
 IS):

 @TERMINAL LENGTH (OF PAGE IS)

 Type another question mark to find out which argument the system
 expects you to give. The system prints "Length of page in decimal"
 and reprints the command.

 @TERMINAL LENGTH (OF PAGE IS) ? Length of page in decimal
 @TERMINAL LENGTH (OF PAGE IS)

 Choose a number (the example uses 20); type it in and press RETURN.

 @TERMINAL LENGTH (OF PAGE IS) 20

 Some commands do not require arguments. If you type a command
 followed by a question mark and that command does not require further
 arguments, the system prints the message "Confirm with carriage
 return." This informs you that you are at the end of the command.
 Press RETURN to confirm the command and to have the system perform the
 function you requested.

 @DAYTIME ? Confirm with carriage return
 @DAYTIME

 2-6

 COMMUNICATING WITH THE SYSTEM

 In addition, the question mark can be used to list the subcommands and
 switches of a command. To list the subcommands of a command, type a
 question mark at subcommand level (indicated by @@). The system
 prints the list of subcommands. For example, type the DIRECTORY
 command followed by a comma, and press RETURN. When you receive the
 @@, type a question mark.

 @DIRECTORY (OF FILES) ,
 @@? confirm with carriage return
 or one of the following:
 ACCOUNT ALPHABETICALLY
 ARCHIVE BEFORE
 .
 .
 .
 SMALLER TIMES
 USER
 @@

 To list the switches of a command, type the command; type a slash
 followed by a question mark. The system prints the list of switches
 for that command. Remember that all switches begin with a slash. For
 example, type the PRINT command, followed by a slash and a question
 mark.

 @PRINT (FILES) /? /SPOOLED-OUTPUT
 or Job switch, one of the following:
 /ACCOUNT: /AFTER: /DESTINATION-NODE:
 .
 .
 .
 /REPORT: /SPACING:
 @PRINT (FILES)/

 2.4 TYPING COMMANDS

 You can type TOPS-20 commands to the system by using either full
 input, recognition input, abbreviated input, or a combination of these
 methods.

 The LOGIN command, which identifies you to the system, is used in
 Sections 2.4.1 through 2.4.3 to demonstrate full, recognition, and
 abbreviated input.

 2-7

 COMMUNICATING WITH THE SYSTEM

 2.4.1 Full Input

 To give a command using full input, type the complete command, using a
 space to separate the fields. To log in using full input, type the
 complete LOGIN command line.

 @LOGIN SARTINI ___ 341

 2.4.2 Recognition Input

 To give a command using recognition input, type a portion of the
 command and press ESC. In order for the system to distinguish this
 command from other commands, you must type enough of the command to
 make it unique. The system responds in one of the following ways:
|
| 1. Prints as much of the command as the system can recognize.

 2. Prints the remainder of the command name.

 3. Prints a guideword.

 4. Prints the remainder of the argument.

 5. Rings the terminal bell, indicating that you need to type
 more information.

 6. Prints an error message.

 Continue typing and pressing ESC until the command is complete.
 Recognition input requires less typing than full input, so you are
 less likely to make a mistake.

 To log in using recognition input, type LOG and press ESC; the system
 finishes the LOGIN command by printing IN and the guideword (USER).
 You can also use recognition on your user name. (Here the user name
 is SARTINI.) Type SAR and press ESC; the system finishes the user
 name by printing TINI and the guideword (PASSWORD). Type the complete
 password (it is not printed) and press ESC; the system prints
 (ACCOUNT). Type the account (here it is 341) and press RETURN.

 In the following example, type the underlined portions of the command.
 At the point where the underlining stops, press ESC.

 <ESC> <ESC> <ESC>
 | | |
 @LOGIN (USER) SARTINI (PASSWORD)___(ACCOUNT) 341

 If you use recognition where it is ambiguous, the system rings the
 terminal bell. Type more information, or type a question mark to
 determine what the system wants you to type.

 2-8

 COMMUNICATING WITH THE SYSTEM

 Use recognition with the INFORMATION command. Type INFO and press
 ESC; the system prints RMATION (ABOUT). Type a T and press ESC; the
 system rings the terminal bell because you did not give enough
 information. To find out what information the system needs, type a ?.
 The system prints TAPE-PARAMETERS and TERMINAL-MODE. This tells you
 that the system could not complete the argument beginning with the
 letter T because there are two possibilities to choose from, and you
 did not type enough of the argument to distinguish which one you
 wanted. Type an E and press ESC; this time the system prints
 RMINAL-MODE (FOR TERMINAL). Press RETURN to end the command.

 <ESC> <ESC>
 | |
 @INFORMATION (ABOUT) T? one of the following:
 TAPE-PARAMETERS TERMINAL-MODE

 <ESC>
 |
 @INFORMATION (ABOUT) TERMINAL-MODE (FOR TERMINAL)

 If you use recognition where it is not appropriate (such as at the end
 of a command), the system rings the terminal bell.

 You can use recognition in typing arguments, subcommands, and file
 specifications. When typing file specifications, you can also use
 CTRL/F to complete individual portions of a file specification.
 (Refer to Chapter 4 for more information on using recognition with
 file specifications.)

 Recognition input offers several advantages:

 o You can double-check the accuracy of your typing. When
 TOPS-20 types the completed command, it verifies that it
 correctly interpreted your typing.

 o You can minimize the amount of typing. When typing a
 filename you need to type only enough characters to uniquely
 identify that file.

 o TOPS-20 prompts your next response by printing a guideword.

 2.4.3 Abbreviated Input

 To give a command using abbreviated input, type only enough of the
 command to distinguish it from any other command. Usually, typing the
 first three letters is sufficient to distinguish one command from
 another. Abbreviated input requires the least amount of typing of the
 various methods of input.

 2-9

 COMMUNICATING WITH THE SYSTEM

 To log in using abbreviated input, type LOG and a space; type the full
 user name (here it is SARTINI) and a space; type the password (the
 password is not displayed); type the account (here it is 341) and
 press RETURN.

 @LOG SARTINI ___ 341

 There are a few cases where non-unique abbreviations stand for a
 frequently used command. For example, DIS is the abbreviation for
 DISABLE, even though other commands begin with the letters
 DIS - DISCARD and DISMOUNT.

 Table 2-1: Special Command Abbreviations

 __

 Special
 Abbreviation Command
 __

 C CONTINUE

 D DEPOSIT

 DIS DISABLE

 E EXAMINE

 INFORMATION F INFORMATION FILE-STATUS

 LOG LOGIN (When not logged in)

 LOG LOGOUT (When logged in)
 __

 Some commands can be distinguished by typing only one or two letters.
 For example, several TOPS-20 commands begin with the letter A:
 ACCESS, ADVISE, APPEND, ASSIGN, and ATTACH. You can give any of these
 commands, by typing only the first two letters. To give the APPEND
 command you need only type AP; to give the ACCESS command, you need
 type only AC.

 NOTE

 When using one or two letters to distinguish commands,
 keep in mind that as the system develops, new commands
 will be added and existing abbreviations may require
 more letters to identify a unique command.

 2-10

 COMMUNICATING WITH THE SYSTEM

 The same method of using abbreviated input for TOPS-20 commands
 applies for the arguments and subcommands to those commands. In the
 INFORMATION command, there are two arguments beginning with the letter
 T: TAPE-PARAMETERS and TERMINAL-MODE. To get information about the
 terminal parameters, just type E to complete the abbreviation TE.

 @INFORMATION T? one of the following:
 TAPE-PARAMETERS TERMINAL-MODE

 @INFORMATION (ABOUT) TE

 In the DIRECTORY command, there are four subcommands beginning with
 the letter S: SEPARATE, SINCE, SIZE, and SMALLER. To print a list of
 files in your directory, including the number of pages of each file,
 use the subcommand SIZE. Type DIRECTORY followed by a comma; the
 system prints the subcommand prompt, @@, ; type the abbreviation SIZ.

 @DIRECTORY,
 @@SIZ
 @@

 PUBLIC:<LEOPOLD>
 PGS

 PROG1.PAS 3
 .TXT.14 3
 LOGIN.CMD.2 1
 MAIL.TXT.1 2
 NATTACH.TST.1 1
 VERCBL.BAT.1 2
 .CBL.1 1

 Total of 13 pages in 7 files

 You can type more letters than are required to uniquely identify a
 command. Abbreviated input simply makes the system more convenient to
 use.

 2.4.4 Combined Recognition and Abbreviated Input

 You can mix these two methods of typing commands. Use abbreviated
 input for the parts of the command you know, and use recognition for
 the parts of the command you are uncertain of. You can give the LOGIN
 command using the combination of input methods.

 @LOG SARTINI (ACCOUNT) 341

 To give this command, type LOG and a space; type the user name (here
 it is SARTINI) and a space; type the password and press ESC. After
 the system prints (ACCOUNT), type the account (here it is 341) and
 press RETURN.

 2-11

 COMMUNICATING WITH THE SYSTEM

 2.4.5 What Are Defaults

 A default is the value supplied by the operating system when you do
 not specify one yourself. For instance, if you do not specify the
 number of copies in a PRINT command, the system uses the default value
 of 1. By not explicitly stating the value, the system assumes you
 have chosen the default. TOPS-20 supplies default values in several
 areas. The defaults used with individual commands are specified in
 each command's description in the TOPS-20 Commands Reference Manual.

 2.5 CONTINUING COMMANDS

 Occasionally it is necessary to type a command that is longer than the
 maximum line length allowed by your terminal. You can continue typing
 commands past the end of the line and onto the next line, without
 pressing RETURN. The system accepts fields of a command that are
 split between two lines.

 In the following example, note that the filename, MANUFACTURING, is
 split between two lines:

 @PRINT (FILES) CONCERNS.TXT.1, DESIGN-REVIEWS.MEM.1, MANUFACT
 URING.PLAN.1 /AFTER:18:00

 If you want to avoid splitting a command field, type a space followed
 by the continuation character, a hyphen (-), at the end of the line
 and press RETURN. Then, continue typing the command on the next line.

 @PRINT (FILES) CONCERNS.TXT.1, DESIGN-REVIEWS.MEM.1, -
 MANUFACTURING.PLAN.1 /AFTER:18:00

 Do not use the continuation character to divide a file specification.
 (Refer to Section 4.2, Complete Form of a File Specification, for a
 description of file specifications.)

 2.6 ADDING COMMENTS TO COMMAND LINES

 You can include comments on the command line or on a separate line by
 prefixing the comment with a comment character, either a semicolon or
 an exclamation point. The semicolon causes the remainder of the line
 to be considered as a comment; the exclamation point causes only the
 text up to the next exclamation point or the end of the line to be
 considered as a comment.

 2-12

 COMMUNICATING WITH THE SYSTEM

 The following examples show the valid ways to add comments to the
 TERMINAL command:

 @TERMINAL VT100 ;This comment follows the command

 @!This comment precedes the command! TERMINAL VT100

 @TERMINAL !This comment is within the command! VT100

 @;This entire line is a comment

 If a comment exceeds one line, the same rules applied to continuing
 commands (refer to the previous section) apply to continuing comments.

 The comment character is useful for placing comments in your LOGIN.CMD
 and COMAND.CMD files. (Refer to Section 1.7 for an example of a
 LOGIN.CMD file with comments.)

 The comment character is also useful when conversing with another user
 while linked via the TALK command. (Refer to Section 3.2 for
 information on using the TALK command.)

 2.7 CORRECTING INPUT ERRORS

 Five keys help you correct input mistakes. These keys are DELETE,
 CTRL/R, CTRL/U, CTRL/W, and CTRL/H. Except for CTRL/H, these keys are
 effective only before you press RETURN to end the command. If you
 press the RETURN key before noticing that a command is incorrect, the
 system tries to execute it. Usually the command is invalid and the
 system prints:

 ?Unrecognized command
 @

 This allows you to try again. If you typed a valid command by
 mistake, you can halt its execution by various means:

 1. Stop EDIT by pressing ESC, typing EQ and pressing the RETURN
 key.

 2. Stop printout on your terminal by typing CTRL/O.

 3. Stop system programs (such as FILCOM) by typing CTRL/C.

 4. Stop any program or command by typing two CTRL/C's.

 In each case you are returned to the TOPS-20 operating system. You
 can then give any valid TOPS-20 command.

 2-13

 COMMUNICATING WITH THE SYSTEM

 2.7.1 DELETE - Erasing a Character

 The DELETE key moves the cursor back one character and deletes that
 character. Most video terminals actually move the cursor (an
 underline or block that marks your position) backward and erases the
 character when you press DELETE. Hardcopy terminals print the deleted
 character followed by the backslash character /.

 2.7.2 CTRL/U - Erasing an Entire Line

 To erase the current command line, type CTRL/U. CTRL/U deletes the
 line and performs a RETURN so that you can reenter an entire line.
 Most video terminals erase the line when you press CTRL/U. Hardcopy
 terminals print three Xs at the end of the command.

 2.7.3 CTRL/W - Erasing a Word

 To erase a word, type CTRL/W. Most video terminals actually move the
 cursor backward and erase the last word when you type CTRL/W.
 Hardcopy terminals print an underscore after the word to indicate that
 the word has been deleted.

 2.7.4 CTRL/R - Reprinting a Command Line

 CTRL/R reprints the current command line. You commonly use CTRL/R
 when editing with CTRL/W and DELETE on a hardcopy terminal has made
 the command difficult to read.

 In this example of the TERMINAL command, you mistakenly type WIDHT
 instead of WIDTH and correct the mistake with DELETE. To make the
 command more readable by incorporating the correction, type CTRL/R.

 @TERMINAL (FEATURE OR TYPE) WIDHT\T\HTH^R
 @TERMINAL (FEATURE OR TYPE) WIDTH

 2.7.5 CTRL/H - Reprinting Part of an Erroneous Command Line

 If you make an error in a command line and press RETURN, the system
 prints a question mark (?) followed by an error message. To reprint
 the command line up to the erroneous field, type CTRL/H or the
 BACKSPACE key. The system reprints the command line up to the field
 that is in error, and you can now complete the command correctly.
 (CTRL/H or BACKSPACE must be the very next character pressed after
 pressing RETURN. Also note that both CTRL/H and BACKSPACE print ^H on
 the terminal.)

 2-14

 COMMUNICATING WITH THE SYSTEM

 The following example illustrates the use of CTRL/H or BACKSPACE with
 the TERMINAL command:

 @TERMINAL (FEATURE OR TYPE) LENGTH-WIDTH
 ?Does not match switch or keyword - "LENGTH-WIDTH"
 @^H
 @TERMINAL (FEATURE OR TYPE) LENGTH 66

 To try this example, type TER and press ESC; the system prints MINAL
 (FEATURE or TYPE). Type LENGTH-WIDTH and press RETURN. The system
 prints the error message ?Does not match switch or keyword -
 "LENGTH-WIDTH". (There is no TERMINAL command argument LENGTH-WIDTH.
 The argument is LENGTH or WIDTH but not both.) Type CTRL/H or
 BACKSPACE; the system reprints the command line up to the erroneous
 field. You can finish the command correctly by typing LENGTH 66.

 2.8 SETTING ALERTS

 You can arrange for the system to ring your terminal bell and issue a
 one-line message at any future time. You do this by giving the SET
 ALERT command.

 @SET ALERT (AT TIME) 9:45:00 (MESSAGE) PREPARE FOR 10:00 MEETING

 [09:45:00 alert - PREPARE FOR 10:00 MEETING]

 You can also be notified at a time that is relative to the current
 time. The following example sends an alert 10 minutes from the
 current time:

 @SET ALERT (AT TIME) +00:10:00 (MESSAGE) END OF COFFEE BREAK!

 [10:02:26 alert - END OF COFFEE BREAK!]

 If you wish to be alerted at the same times, include the appropriate
 SET ALERT commands in your LOGIN.CMD file. This file is discussed in
 Section 1.7. Refer to the TOPS-20 Commands Reference Manual for
 complete information on SET ALERT.

 To obtain a listing of all outstanding alert requests, give the
 INFORMATION ALERTS command.

 @INFORMATION (ABOUT) ALERTS (PENDING)
 Next alert at 1-Mar-88 11:25:00 - Project meeting 5 mins
 Other alerts set for:
 1-Mar-88 13:00:00 - Call for ajax specs
 1-Mar-88 16:55:00 - Almost time to go home!
 2-Mar-88 00:09:00 - Submit weekly report by noon
 14-Mar-88 09:00:00 - Going away luncheon for manager today

 Alerts are automatic

 2-15

 COMMUNICATING WITH THE SYSTEM

 The line "Alerts are automatic" indicates that alerts are issued
 whether or not you are running a program. Your issuing of the SET
 AUTOMATIC or the SET NO AUTOMATIC command determines whether or not
 the system interrupts programs to issue you alerts. If SET NO
 AUTOMATIC is in effect, you are notified only when your terminal is at
 TOPS-20 command level.

 Note that when you log out, all pending alerts are cleared. You have
 to reset them when you log in again, unless they are specified in your
 LOGIN.CMD or COMAND.CMD command file.

 2.9 OPERATING SYSTEM STOPPAGE

 The TOPS-20 Operating System may stop unexpectedly because of a
 malfunction. When the operating system stops, the terminal does not
 print or receive any characters you type. This indicates that the
 part of the computer controlling input from and output to the terminal
 is malfunctioning. If the system can recover from this error, it
 prints:

 [DECSYSTEM-20 continued]

 You may lose a few seconds of typing, but after this message prints on
 the terminal, you can continue your work.

 When a fatal error occurs (the entire computer stops working), the
 system outputs the message:

 %DECSYSTEM-20 not running

 When the system resumes operation, it outputs the message:

 System restarting, wait...

 and after a few moments, it prints another message, similar to the
 following:

 [From OPERATOR on line 6: SYSTEM IN OPERATION]

 Once the system restarts after a fatal error, you must log in to the
 system again. If you have changed the speed of your line with the
 TERMINAL SPEED command, you may have to reset the speed, depending
 upon the default speed set by the system manager.

 After a fatal error, some of your files may be missing or incomplete.
 Contact the operator to have these files restored from the system
 backup tapes.

 2-16

 CHAPTER 3

 COMMUNICATING WITH OTHER USERS

 This chapter describes:

 o Getting a list of users on the system (Section 3.1)

 o Linking with other terminals (Section 3.2)

 o Reading mail (Section 3.3)

 o Sending mail (Section 3.4)

 o Communicating with the operator (Section 3.6)

 o Controlling messages and terminal links (Section 3.7)

 3.1 GETTING A LIST OF USERS ON THE SYSTEM

 To get a list of users currently on the system, type the command
 SYSTAT, and press the RETURN key. The SYSTAT command reports on the
 status of the system:

 @SYSTAT
 Mon 26-May-88 15:25:55 Up 6:09:39
 12+5 Jobs Load av 0.13 0.10 0.06

 Job Line Program User
 9 120 EMACS TAMBUR
 11 251 MACRO GUNN
 12 131 FILDDT MARTIN
 13 176 EXEC GREEN
 14 140 MS SULLIVAN
 26 63 SYSDPY DEUFEL
 27 173 EXEC BERRY
 33 DET EXEC MORIL
 34 65 EMACS WORLEY
 45 142 EXEC HARAMUND

 3-1

 COMMUNICATING WITH OTHER USERS

 50* 210 SYSTAT MORIL
 51 105 EXEC BRANNON

 1 232 PTYCON OPERATOR
 2 233 JNPGPD OPERATOR
 3 234 EXEC OPERATOR
 4 235 NMLT20 OPERATOR
 5 236 MCBNRT OPERATOR

 The first line of output gives the day of the week, date, time, and
 the length of time since the system was last started. In the above
 example, the date is Monday, May 26, 1988 at 3:25:55 PM. The system
 has been up just over six hours.

 The second line gives the number of user jobs plus the number of
 operator jobs. There are 12 timesharing jobs, plus the operator of
 the system who is running 5 programs. The last three numbers on this
 line indicate the load average on the system over a one, five, and
 fifteen minute period. The load average is a measure of system
 demand.

 The third line contains the column headings for the job number, the
 line number, the program, the user, and the user's originating system.
 The number of the job attached to your own terminal (in this case you
 are job 50) appears with an asterisk (*) next to it in the job column.

| To display information about the jobs on a specified node in the
| TOPS-20 cluster, include the NODE keyword and node name argument.
|
| @SYSTAT NODE KL2102
| Thu 13-Aug-88 13:08:12
| THEP Up 0:10:33 17+6 Jobs Load av 0.11 0.12
| Job Line Program Node User Origin
| 231 DET DTRSRV KL2102 Not logged in
| 232 DET RMSFAL KL2102 Not logged in
| 233 DET RMSFAL KL2102 Not logged in
| 234 434 EXEC KL2102 LOMARTIRE LAT1(LAT)
| .
| .
| .
| 228 235 MAILS KL2102 OPERATOR
| 229 236 WATCH KL2102 OPERATOR
| 230 237 EXEC KL2102 OPERATOR
|
| If you specify an asterisk as the node name, the SYSTAT command
| displays information on all nodes in the TOPS-20 cluster.
|
| @SYSTAT SYSTEM NODE *
| Thu 13-Aug-88 13:02:00
| DISNEY Up 223:12:12 17+6 Jobs Load av 0.3 0.27 0.14
| THUP Up 0:10:33 11+5 Jobs Load av 10.36 10.27 10.14
| CLYDE Up 26:34:31 6+8 Jobs Load av 1.33 1.21 0.99
| CONRO UP 12:13:14 2+5 Jobs Load av 5.01 4.95 4.99

 3-2

 COMMUNICATING WITH OTHER USERS

 3.2 LINKING WITH OTHER TERMINALS

 One way to communicate with a user that is logged-in to the system is
 by linking terminals. This allows you to conduct a two-way
 conversation. To link terminals, give the TALK command followed by
 the name of the user you want to talk to. The system prints a message
 informing you that the terminals are linked, and prints the @ sign on
 the following line. Now, everything you type, or the system prints on
 your terminal is also printed on the terminal you are linked with.

 @TALK (TO) MAYO

 LINK FROM SARTINI, TTY26

 After you see the @ sign, you can conduct your conversation using one
 of the following options: an exclamation mark, the REMARK command, or
 a combination of both options.

 Begin each line you type with an exclamation point (!). After you
 press RETURN, the system prints an @ sign on the following line and
 you can continue typing, beginning each line with an exclamation
 point. If you do not begin the line you type with an !, after you
 press RETURN, the system prints the message ?UNRECOGNIZED COMMAND.

 @TALK (TO) MAYO

 LINK FROM SARTINI, TTY26
 @! This is a test.

 To avoid typing the exclamation point on each line when you have
 several lines of text, give the REMARK command. After you give the
 REMARK command, the system prints a message advising you to type the
 remark, and end it with CTRL/Z. The system does not print an @ sign
 when you use REMARK. After you type the message and end with CTRL/Z,
 the system prints the @ sign on the next line.

 @TALK (TO) MAYO

 LINK FROM SARTINI, TTY26
 @REMARK
 Type remark. End with CTRL/Z

 PER YOUR REQUEST, A NEW COPY OF THE
 UPDATED LIST OF MANUALS IS AVAILABLE
 IN THE DIRECTORY <NEW-MANUALS>. ^Z

 3-3

 COMMUNICATING WITH OTHER USERS

 You can use a combination of the exclamation point and the REMARK
 command when you TALK with another user. Use REMARK for a several
 line comment and the ! for a shorter comment. To end the link with
 another user's terminal, give the BREAK command. The other user can
 also give the BREAK command to end the link with your terminal.

 @TALK (TO) MAYO

 LINK FROM SARTINI, TTY26
 @REMARK
 Type remark. End with CTRL/Z.

 PER YOUR REQUEST, A NEW COPY OF THE
 UPDATED LIST OF MANUALS IS AVAILABLE
 IN THE DIRECTORY <NEW-MANUALS>. ^Z
 @!THANKS, I HAVE SEVERAL ITEMS TO ADD TO THE LIST.
 @!SEND MAIL TO HOLLAND WITH THE INFO.
 @BREAK (LINKS)

 When you are linked to another user's terminal, the other user's job
 is not affected by what you type. For example, if another user is
 running a program that is waiting for a command, and you TALK to that
 user, the system does not interpret what you type as a command to that
 user's program. Anything output to one terminal is output to the
 other as well. Thus you can show another user the output from a
 program by running it, or the contents of a file by typing it.

 If the user you want to TALK to does not want to receive links from
 another terminal, the system rings the bells on both terminals five
 times, then prints the following message on your terminal:

 ?Refused, Send mail to user instead

 Refer to Section 3.7, Controlling Messages And Terminal Links, for
 information on refusing and receiving links.

 If the user you want to TALK to is not logged in, the system prints
 the following message:

 ?User is not logged in
 Send mail to the user instead

 3.3 READING MAIL

 There are two types of mail that you can receive at your terminal:
 mail from the system and mail from other users. You can receive
 system and user mail when you are logged in or logged off the system.

 3-4

 COMMUNICATING WITH OTHER USERS

 3.3.1 System Mail

 System mail is sent to all users on the system by the operator or a
 privileged user. This type of mail automatically prints on your
 terminal when you log in.

 TOSCA, Computer Engineering, TOPS-20 Monitor 7.0(7)
 @LOGIN (USER) SARTINI (PASSWORD)___ (ACCOUNT) 341
 Job 57 on TTY127 16-MAR-88 09:49:24
 Date: 16-MAR-1988 0842-EST
 From: OPERATOR at TOSCA
 To: SYSTEM
 Subject: SYSTEM SHUTDOWN

 The system will not be available tomorrow from noon to 2:00 p.m.
 due to scheduled maintenance.

 When system mail is sent while you are logged in, you are notified
 with the message:

 [New message-of-the day available]

 To read the new message of the day, use the INFORMATION MAIL SYSTEM
 command:

 @INFORMATION MAIL SYSTEM
 Sender: OPERATOR
 Date: 23 Jul 88, 1033-EST
 From: OPERATOR
 To: SYSTEM at KL2102
 Subject: Lineprinter paper

 A new shipment of lineprinter paper is now available for anyone
 who needs to replenish paper.

 ========

 3.3.2 User Mail

 User mail is mail sent to you by another user on your system or a
 system in your network. When you log in, you are notified of new mail
 with a message similar to:

 You have mail from COMBS at 08:18:13

 When user mail arrives while you are logged in, you are notified with
 a message similar to:
|
| [You have netmail from COMBS@GIDNEY at 14:40:56]

 3-5

 COMMUNICATING WITH OTHER USERS

| The program that you can use to read messages sent to you by another
| user is DECmail/MS. (For complete information on the DECmail/MS
| program, refer to the TOPS-10/TOPS-20 DECmail/MS Manual).
|
| To start the DECmail/MS program, type MS and press RETURN. The system
| prints:
|
| @MS
| Last read:23-Apr-88 13:00. 24 messages, 5 pages.
| Message 19 flagged.
| MS>
|
| The lines that appear between the MS command and the MS> prompt give
| you the status of your mail file.
|
| To read any unread messages in the current message file, use the READ
| NEW command:
|
| MS>READ (MESSAGE SEQUENCE) NEW
| Message 24 (261 chars), received 23-Apr-88 22:46:35
| Date: 23 Apr 1988 2248-EDT
| From: MORRILL at KL2102
| To: RANDERSON at KL2102
| Subject: Project Meeting
| Message-ID: <"MS10(2055)+GLXLIB1(1056)" 11818792562.11.542.18243
| at KL2102)
|
| There will be a project meeting today at 4 p.m. in the
| Engineering Conference Room.
| ========
| MS read>>
|
| This command displays all messages in the current message file that
| you have not read. After the READ command displays a message, it
| leaves your terminal at read-command level, as indicated by the "MS
| read>>" prompt. Press the RETURN key to read the next new message (or
| to return to the MS> prompt if there are no other new messages).
|
| To read any of the messages again, use the READ command at the MS>
| prompt or at read-command level.
|
| MS>READ (MESSAGE SEQUENCE) message sequence
|
| or
|
| MS READ>>READ
|
| where:
|
| message sequence specifies the messages you want to read. At
| read-command level, it is assumed that you want to reread the current
| message.

 3-6

 COMMUNICATING WITH OTHER USERS

 Mail you receive from other users is contained in a file called
 MAIL.TXT. Although the mail program locates this file automatically,
 you should be aware of its location. This is described in Section
 4.6.2, The Device POBOX:.

 3.4 SENDING MAIL

| Another way to communicate with a user is to send mail with the
| DECmail/MS program. DECmail/MS handles local and network mail, which
| goes to users of different (remote) computers. DECmail/MS also
| provides facilities for filing, retrieving, editing and deleting mail
| messages.
|
| You can send mail to a user currently on the system, or to a user who
| is not logged in. The DECmail/MS program can also send mail to a
| group of users. To start the DECmail/MS program, type MS and press
| RETURN; the system prints MS>. Type the SEND command. After you give
| the SEND command, the DECmail/MS system prompts you for the "To".
| Type the user name or names (if you type a group of user names,
| separate them with commas); the system prints cc:. Type the name(s)
| of the user or users you want to receive a copy of the mail; the
| system prints Subject:. Type a one-line heading for the message.
|
| MS>SEND
| To: PORADA, MORRILL, MCELMOYLE
| cc: BROPHY
| Subject: SYSTEM CHANGES
|
| Now, the DECmail/MS system types the following help message on your
| terminal:
|
| Message (ESC to enter Send level, ctrl/Z to send, ctrl/K to
| redisplay, ctrl/B to insert file, ctrl/E to enter editor):
|
| After the DECmail/MS system types the help message, anything you type
| (other than ESC and the control characters) is assumed to be the text
| of your message.
|
| Type a line of text and issue CTRL/Z to send the message:
|
| THERE IS A LIST OF THE NEW SYSTEM
| CHANGES AVAILABLE IN THE PROJECT
| ROOM.
| ^Z
|
| The DECmail/MS system types information similar to the following,
| letting you know that the message was successfully sent:
|
| Processing mail...
| Mail queued for delivery by MX
| MS>

 3-7

 COMMUNICATING WITH OTHER USERS

| If you send mail frequently to a group of users, store the list of
| names in a file. Then, when you run the DECmail/MS program, instead
 of typing the entire list of names after the To:, you can type the
 name of the file, preceded by an @ sign. (Refer to Chapter 4 for
 information on specifying files and to Chapter 5 for information on
 creating files.)
|
| MS>SEND
 To: @USERS.LST
 CC:
 Subject:

| For a complete description of the DECmail/MS program, refer to the
| TOPS-10/TOPS-20 DECmail/MS Manual.

 3.5 SENDING QUICK MESSAGES

 Another way to communicate with a user who is logged in to the system
 is to send a message with the SEND command. To send a message, give
 the SEND command followed by the user name and a message with up to
 six 80-character lines of text. The system prints your user name,
 terminal line number and message on the receiving terminal.

 SEND does not detect the status of the receiving terminal. So, if the
 receiving terminal is turned off or the user is not logged in, the
 message cannot be received. Before you SEND a message, use the SYSTAT
 command to verify that the receiver is logged in to the system.

 The following example illustrates the SYSTAT command and the SEND
 command:

 @SYSTAT KISTLER
 10 11 EXEC KISTLER
 @SEND KISTLER Are you on the North project interest list?

 To type a multiple line message, just keep typing past the end of the
 line and onto the next line without typing RETURN. SEND reorganizes
 your message so that words split between two lines appear correctly
 formatted on the receiver's terminal.

 @SEND KISTLER The North project team meets every Friday at 9 in
 the Lunar Conference Room.

 The message appears on the receiver's terminal as:

 From LEOPOLD on line 11:
 [The North project team meets every Friday at 9 in the Lunar
 Conference Room.]

 3-8

 COMMUNICATING WITH OTHER USERS

| To send a message to a user on a remote node in the TOPS-20 cluster,
| specify the /NODE: switch:
|
| @SEND /NODE:THUP ANDERSON Don't forget the meeting!

 3.6 COMMUNICATING WITH THE OPERATOR

 To communicate with the operator on your system, use the PLEASE
 program. This program allows you to conduct a two-way conversation
 with the operator or send the operator a one-way message.

 To use the PLEASE program, type PLEASE and press RETURN. PLEASE then
 prints a message instructing you to type your message and end it with
 CTRL/Z or ESC. Now, type your message. If you need a response from
 the operator, end your message by typing CTRL/Z. If you just want to
 send a one-way message to the operator and do not need a response, end
 your message by pressing ESC.

 In the following example, you need a response from the operator, so
 you end your message with CTRL/Z. Then, when your dialog with the
 operator is finished, press ESC.

 @PLEASE
 Enter text, terminate with CTRL/Z to wait for response,
 or ESCape to send message and exit
 What happened to the RP07?<CTRL/Z>
 [PLSOPN Operator at GIDNEY has been notified at 11:18:32]

 11:36:04 From Operator at terminal 2
 => Just aligning the heads - back up in 10 minutes

 Enter new text (Same terminators)

 Thanks<ESC>

 In this example you don't need a response from the operator so you
 press ESC after your message:

 @PLEASE
 Enter text, terminate with CTRL/Z to wait for response,
 or ESCape to send message and exit
 The laser printer is out of paper<ESC>
 [PLSOPN Operator at GIDNEY has been notified at 11:18:32]
 @

 If your PLEASE message exceeds one line, press RETURN at the end of
 the line and continue typing on the next line.

 3-9

 COMMUNICATING WITH OTHER USERS

 If no operator is in attendance, PLEASE warns you before you can type
 your message. Your message is still sent and can be answered by the
 operator when he returns. However you should end your message with
 ESC, since it may be a long wait before it is answered. To find out
 if the operator is in attendance before you use the PLEASE program,
 give the INFORMATION SYSTEM-STATUS command.

 For a complete description of the PLEASE program, refer to the TOPS-20
 User Utilities Guide.

 3.7 CONTROLLING MESSAGES AND TERMINAL LINKS

 Several types of messages can appear on your terminal while you are
 running a program or executing a TOPS-20 command. In addition,
 another user can link his terminal to yours with an ADVISE or TALK
 command. You can allow or suppress types of messages and terminal
 links. This lets you work without interruption or print a clean copy
 of a file on a hard copy terminal.

 3.7.1 System Messages

 System messages are messages of general interest to all users. These
 messages are sent by the system, by the operator, or by a privileged
 user. Some examples of system messages are:

 [Caution -- disk space is low]
 [System going down in 1 minute!]
 [Deleted files will be expunged in 30 seconds]
 [System expunge completed]

 You can specify if you want to receive or refuse system messages on
 your terminal with the RECEIVE or REFUSE SYSTEM-MESSAGES commands.
 Note that these commands also control the notice of new mail.

 To see if your terminal is set to RECEIVE or REFUSE SYSTEM-MESSAGES,
 give the INFORMATION TERMINAL command. Then give the REFUSE
 SYSTEM-MESSAGES command to suppress system messages.

 @INFORMATION (ABOUT) TERMINAL-MODE
 .
 .
 REFUSE LINKS
 REFUSE ADVICE
 RECEIVE SYSTEM-MESSAGES
 RECEIVE USER-MESSAGES
 .
 .
 @REFUSE SYSTEM-MESSAGES

 3-10

 COMMUNICATING WITH OTHER USERS

 CAUTION

 Since some system messages report important events,
 you should use the REFUSE SYSTEM-MESSAGES command only
 when you need to produce uninterrupted output (such as
 on a hard-copy terminal). Remember to set your
 terminal back to RECEIVE SYSTEM-MESSAGES after the
 output is complete.

 3.7.2 User Messages

 User messages occur when another user issues a SEND command to send a
 message to your terminal:

 From SMITTY on line 24:
 [Going to lunch?]

 You can specify if you want to receive or refuse user messages on your
 terminal with the RECEIVE or REFUSE USER-MESSAGES commands. In the
 following example, check to see if your terminal is set to RECEIVE or
 REFUSE USER-MESSAGES with the INFORMATION TERMINAL command. Then give
 the RECEIVE USER-MESSAGES command to accept user messages.

 @INFORMATION (ABOUT) TERMINAL-MODE
 TERMINAL VT100
 .
 .
 .
 RECEIVE LINKS
 REFUSE ADVICE
 RECEIVE SYSTEM-MESSAGES
 REFUSE USER-MESSAGES
 .
 .
 .
 TERMINAL FULLDUPLEX
 @RECEIVE USER-MESSAGES

 3.7.3 Terminal Links

 Terminal links occur when another user gives a TALK or ADVISE command
 to link his terminal to yours:

 LINK FROM PRATT, TTY 123
 !Do you still have my pack?

 3-11

 COMMUNICATING WITH OTHER USERS

 You can stop another user from linking his terminal to yours with the
 REFUSE LINKS command. In the following example, check to see if your
 terminal is set to RECEIVE or REFUSE LINKS with the INFORMATION
 TERMINAL command. Then give the REFUSE LINKS command.

 @INFORMATION (ABOUT) TERMINAL-MODE
 TERMINAL VT100
 .
 .
 .
 RECEIVE LINKS
 REFUSE ADVICE
 RECEIVE SYSTEM-MESSAGES
 REFUSE USER-MESSAGES
 .
 .
 .
 TERMINAL FULLDUPLEX
 @REFUSE LINKS

 Note that if you set your terminal to REFUSE LINKS and another user
 attempts to TALK to you, the system signals you by ringing bells on
 your terminal five times.

 3.7.4 Inhibiting All Non-Job Output

 The TERMINAL INHIBIT command stops your terminal from accepting links,
 system-messages and user-messages; in other words, all output that
 does not originate from your own job. Use this command when you need
 to protect your terminal from unwanted output, for example, when
 printing a file on a hard copy terminal.

 TERMINAL INHIBIT essentially has the same function as REFUSE LINKS,
 SYSTEM-MESSAGES and USER-MESSAGES. However, TERMINAL INHIBIT blocks
 all links and messages before they can be rejected or accepted by your
 REFUSE and RECEIVE settings. Therefore, when TERMINAL INHIBIT is in
 effect, your REFUSE and RECEIVE settings are disabled. Note that in
 the INFORMATION TERMINAL-MODE display below, a "IS DISABLED" comment
 follows each REFUSE and RECEIVE setting.

 To block all terminal output that does not originate with your job,
 give the TERMINAL INHIBIT command. Then, check the result with the
 INFORMATION TERMINAL command.

 @TERMINAL INHIBIT
 @INFORMATION (ABOUT) TERMINAL-MODE
 TERMINAL VT100
 .
 .
 .

 3-12

 COMMUNICATING WITH OTHER USERS

 TERMINAL INHIBIT (NON-JOB OUTPUT)
 REFUSE LINKS IS DISABLED
 REFUSE ADVICE IS DISABLED
 RECEIVE SYSTEM-MESSAGES IS DISABLED
 RECEIVE USER-MESSAGES IS DISABLED
 .
 .
 .
 TERMINAL FULLDUPLEX

 Use the TERMINAL NO INHIBIT command to restore your REFUSE and RECEIVE
 settings.

 3.7.5 Mail Messages

 Mail messages appear on your terminal when another user sends you mail
 or when you have unread mail. These messages come from two different
 sources. The first type of mail message is a notice of new mail.
 This message comes from the mail program and is printed whenever new
 mail arrives:

 [You have a message from PRATT]

 You can specify if you want to receive notice of new mail on your
 terminal with the RECEIVE or REFUSE SYSTEM-MESSAGES commands.

 The second type of mail message results from your giving the SET
 MAIL-WATCH command.

 [You have mail from PRATT at 16:07:05]

 SET MAIL-WATCH causes the system to check your MAIL file for unread
 mail every five minutes. If the system finds unread mail it prints a
 message when your terminal is at TOPS-20 command level. This means
 that if, for example, you are using an editor, the notice of unread
 mail is not printed until you exit the editor and return to TOPS-20
 command level.

 You can control the notice of unread mail with the SET MAIL-WATCH and
 SET NO MAIL-WATCH commands. SET NO MAIL-WATCH is the default.

 The SET AUTOMATIC command allows the SET MAIL-WATCH command to send
 you a message any time, no matter what you are doing at your terminal.
 The SET NO AUTOMATIC command is the default.

 If you want to be reminded of unread mail no matter what you are doing
 at your terminal, give the SET MAIL-WATCH and SET AUTOMATIC commands.

 @SET MAIL-WATCH
 @SET AUTOMATIC

 3-13

 COMMUNICATING WITH OTHER USERS

 To see if you have any new mail, give the INFORMATION MAIL command.
 The system lists the name of the sender and the time received for the
 last unread message in your MAIL file.

 @INFORMATION MAIL
 Mail from PRATT at 16:07:05

 3.7.6 Alerts

 An alert results from your giving a SET ALERT command:

 [08:55:00 alert - Group meeting in 5 minutes]

 Unless you have given the SET AUTOMATIC command, alerts are issued
 only when your terminal is at TOPS-20 command level. If you do give a
 SET AUTOMATIC command, alerts will interrupt you no matter what you
 are doing at your terminal.

 You can cancel alerts with the SET NO ALERTS command or you can stop
 alerts from appearing when you are running a program with SET NO
 AUTOMATIC.

 This command cancels alerts for the next hour:

 @SET NO ALERT +01:00

 Check pending alerts with the INFORMATION ALERTS command.

 3-14

 CHAPTER 4

 FILE SPECIFICATIONS

 This chapter describes:

 o TOPS-20 File System Organization (Section 4.1)

 o Complete form of a file specification (Section 4.2)

 o Using wildcards to specify files (Section 4.3)

 o Specifying special characters - CTRL/V (Section 4.4)

 o Typing file specifications (Section 4.5)

 o Using logical names (Section 4.6)

 4.1 TOPS-20 FILE SYSTEM ORGANIZATION

 When you enter a program, data or text into the computer, it is stored
 in a file. A computer file system has an organization similar to that
 of an office file cabinet system. You create and label a file then
 store the file in your drawer of the file cabinet. Your drawer of the
 file cabinet is called your directory on TOPS-20.

 4.2 COMPLETE FORM OF A FILE SPECIFICATION

 The "label" on a file is called a file specification. A file's
 specification tells the system where to locate and identify the file.
 The complete form of a file specification is:

 dev:<dir>name.typ.gen;attribute

 4-1

 FILE SPECIFICATIONS

 where:

 dev: is a device name, a file structure name, or a
 defined logical name. (A file structure is a name
 used to reference specific disk devices. Logical
 names are described in Section 4.6.)

 <dir> is a directory name, or in special cases, a
 project-programmer number that specifies an area
 on the disk. You must enclose the directory name
 in angle brackets <> or square brackets [].

 name is a filename that specifies a particular file in
 the directory.

 .typ is a file type that helps identify the contents of
 a file.

 .gen is a generation number that specifies the number
 of times the file has been changed.

 ;attribute is a modifier for the file and specifies a
 distinctive characteristic for the file.

 4.2.1 Device Names - dev:

 A device name designates the location of the file on a particular
 device or file structure. (Refer to Section 6.1 for a description of
 file structures.)

 A device name consists of alphabetic characters that indicate the type
 of device, a number specifying a particular device (when more than one
 of a particular device is available), and a colon terminating the name
 of the device. Table 4-1 lists some common DECSYSTEM-20 devices and
 their device names.

 4-2

 FILE SPECIFICATIONS

 Table 4-1: System Device Names

 __

 Device Device Name
 __

 Your Connected Structure and Directory DSK:
 Your Terminal TTY:
 The structure that receives POBOX:
 your mail messages
 A Particular Terminal TTYn:
 A Particular Magnetic Tape MTAn:
 Any Line Printer LPT:
 A Particular Line Printer LPTn:
 Any Card Reader CDR:
 A Particular Card Reader CDRn:
 Receptacle for unwanted program output NUL:
 or supplier* of null input

 The number n indicates a particular unit when the device has
 multiple units.

 * For example, COPY (FROM) NUL: (TO) TEST.FIL erases the contents
 of the file TEST.FIL.
 __

 A colon terminates the device name. With some TOPS-20 commands, the
 colon following the device name is optional. Refer to the TOPS-20
 Command Reference Manual.

 Examples of device names are:

 TTY20: the terminal connected to line 20
 MTA0: the magnetic tape unit numbered 0
 LPT: a line printer
 ADMIN: a file structure

 If you omit a device name from a file specification, the system uses,
 as a default, the device or file structure you are presently using.

 4.2.2 Directory Names - <DIR>

 One area of disk storage allocated for your use is your log-in
 directory. You reference your log-in directory by using a directory
 name, which is your user name, enclosed in angle brackets <> or square
 brackets []. Therefore, if your user name is KIRSCHEN, you have a
 directory named <KIRSCHEN>. You can use other directories in addition
 to your log-in directory.

 4-3

 FILE SPECIFICATIONS

 If you have access to the directory of another user and you want to
 use a file from that directory, insert the directory name enclosed by
 angle brackets, immediately before the filename. The illustration
 below shows how to access the file LIZARD.DAT from the directory of
 user HODGES.

 <HODGES>LIZARD.DAT.3

 A directory name consists of up to 39 alphanumeric characters,
 including the special characters dollar sign, period, hyphen, and
 underline. You can use the * and % wildcard characters to specify a
 group of directories, though it is not actually part of a directory
 name. (Refer to Section 4.3 for more information on using wildcard
 characters.) Directory names are always enclosed in brackets and are
 used only when the device is a disk. Examples of directory names are:

 <PORADA>
 <MCELMOYLE>
 <MORRILL>
 <NEXT-RELEASE>

 4.2.3 Project-Programmer Numbers - [PPN]

 Most programs and commands allow you to type a directory name, but a
 few require a similar designator called a project-programmer number.
 Table 4-2 lists the TOPS-20 system programs that require you to type a
 project-programmer number instead of a directory name when you
 reference files in directories. Your installation may also have other
 system programs with this requirement.

 Table 4-2: Special System Programs

 ALGOL LIBARY
 CREF LINK
 FILCOM MAKLIB
 ISAM

 4-4

 FILE SPECIFICATIONS

 A project-programmer number consists of two numbers separated by a
 comma and enclosed in square brackets. To find the project-programmer
 number corresponding to a particular directory name, give the
 TRANSLATE command. The following example shows how to find the
 project-programmer number associated with the directory <KIRSCHEN>:

 @TRANSLATE (DIRECTORY) <KIRSCHEN>
 PS:<KIRSCHEN> (IS) PS:[4,516]

 The FILCOM program, for example, requires a project-programmer number.
 If you want to compare your version of the file PLEASE.MAC with the
 version of the same file in user KIRSCHEN's directory, give the
 following commands:

 @FILCOM

 *TTY:=PLEASE.MAC[4,516],PLEASE.MAC/A

 Refer to the TOPS-20 User Utilities Guide for a complete description
 of the FILCOM program.

 4.2.4 Filenames - name

 Each file in your directory is identified by a filename consisting of
 up to 39 alphanumeric characters, including hyphen, dollar sign, and
 underline. You choose the filename. A filename that reflects the
 contents of the file will help you remember what is in the file.
 Examples of filenames are:

 TEST
 COMPUT
 ACCTS
 DATA-ITEM
 10-MEM

 Although most programs and commands allow filenames up to 39
 characters long, some programs do not support this extended length.
 If you are using any of the programs listed in Table 4-2, the maximum
 length of a filename is six characters; $, -, and _ characters are
 invalid in a filename; and the wildcard characters * and % are used
 for specifying a group of filenames where permitted by the program.

 4-5

 FILE SPECIFICATIONS

 4.2.5 File Types - .typ

 To help identify the contents of a file or give the same filename to
 more than one file, specify a file type consisting of a period
 followed by up to 39 alphanumeric characters, including $, - and _.
 The wildcard characters can be used to specify a group of files with
 the same file type, but is not actually part of the file type.
 Examples of some standard file types that contain programs are:

 File Type Program Language

 .ALG ALGOL
 .BAS BASIC
 .CBL COBOL
 .FOR FORTRAN
 .MAC MACRO

 Other file types include:

 o DAT - a data file

 o RNO - the input file to the system program RUNOFF

 o MEM - the output file for the system program RUNOFF

 Refer to Appendix B for a list of standard file types.

 In addition to the standard file types, you may use your own file
 types.

 Although most programs and commands allow file types up to 39
 characters in length, some software programs do not recognize this
 extended length. If you are using any of the programs listed in Table
 4-2, the maximum length of a file type is three characters; the $, -,
 and _ characters are invalid in a file type; and the wildcard
 characters are used for specifying a group of file types where
 permitted by the program.

 4.2.6 Generation Numbers - .gen

 The generation number identifies modified or additional versions of
 the same file. The operating system increases the generation number
 by one when you change the file. You can create a new file and assign
 a generation number to it.

 4-6

 FILE SPECIFICATIONS

 When you type a file specification, you can include a generation
 number. At times you may have more than one generation of a file,
 especially if you previously gave the SET FILE GENERATION-RETENTION
 COUNT command. The system always assumes that the most recent file is
 the one with the highest generation number. If you create a new file
 with a generation number lower than an existing file with the same
 filename and type, you may have trouble saving and restoring it on
 tape using DUMPER or using it with the LOAD-class commands (unless you
 delete the version with the higher generation number). Refer to the
 TOPS-20 User Utilities Guide for a description of the DUMPER program,
 and to Section 9.3 of this manual for information on the LOAD-class
 commands.

 When you do not specify a generation number, the system selects one
 according to the way you use the file:

 1. If you create a new file, the system gives the new file a
 generation number of 1.

 2. If you use an existing file, the system selects the one with
 the highest generation number.

 3. If you create a new version of an existing file, the system
 adds one to the highest generation number for that file.

 4. If you delete or restore a file, the system deletes or
 restores all versions of the file.

 When you do specify a particular generation number, the system uses
 the file with that generation number. You can give a generation
 number as a positive number or as a symbol. There are four symbolic
 generation numbers. Refer to Table 4-3 for a list and description of
 the four symbolic generation numbers.

 Table 4-3: Symbolic Generation Numbers

 __

 Generation Number Represents
 __

 .0 the highest existing generation number.

 .-1 one greater than the highest existing
 generation number.

 .-2 the lowest existing generation number.

 .-3 or * all existing generations.
 __

 4-7

 FILE SPECIFICATIONS

 For example, if you have three generations (.1,.2,.3) of the file
 BACKUP.DAT, .0 is the symbolic generation number for BACKUP.DAT.3, .-2
 is the symbolic generation number for BACKUP.DAT.1, and .-1 is the
 symbolic generation for BACKUP.DAT.4. Refer to Section 6.5 for an
 example of how the system uses symbolic generation numbers.

 Some installations limit the number of generations of any one file you
 can keep. Therefore, if the limit is 3 and you create a fourth
 generation of the file, the system deletes the file with the lowest
 generation number. If you have the files BRKING.CBL.3,4,5, and you
 create BRKING.CBL.6, the system deletes the oldest file
 (BRKING.CBL.3). The system always assumes that the oldest file is the
 one with the lowest generation number, and the most recent file is the
 one with the highest generation number.

 If you are using a file with any of the programs listed in Table 4-2,
 you cannot include a generation number in the file specification.
 These programs always use the highest existing generation number for
 files if you are reading or the generation number 1 if you are
 creating a file.

 4.2.7 File Attributes - ;A, ;P, ;T

 File attributes specify distinctive characteristics for a file
 specification. More than one attribute may appear in a file
 specification. The three most common attributes are: ;A for account,
 ;P for protection, and ;T for temporary.

 The account descriptor takes the form:

 ;Adescriptor

 The descriptor is an account consisting of up to 39 alphanumeric
 characters. All charges for file storage are billed to this account.
 If you do not specify an account for your file specification, the
 system uses the account you specified in your LOGIN command or your
 last SET ACCOUNT command.

 The file protection code takes the form:

 ;Pprotection

 Protection is a TOPS-20 protection code. (Refer to Section 6.2,
 Protecting Directories and Files.)

 A temporary file specification contains the file descriptor ;T and a
 generation number of 100000 plus the number of the job that created
 the file. (Refer to Section 6.11 for more information on temporary
 files.) Temporary files are deleted from your login and connected
 directories when you log off the system.

 4-8

 FILE SPECIFICATIONS

 You can display a list of files with the same attribute by using the
 DIRECTORY command. This command prints a list of all files with an
 account of 17:

 @DIRECTORY (OF FILES) *.*;A17

 NOTE

 You can specify other file attributes when working in
 a DECnet or magnetic tape environment. Refer to
 Appendix C of the TOPS-20 Commands Reference Manual
 for the complete list of attributes. The DECnet-20
 User's Guide further describes the DECnet-related file
 attributes.

 4.3 USING WILDCARDS TO SPECIFY FILES

 You can use a wildcard character in a file specification to specify
 files that have part or all of a directory name, filename, file type
 or generation number that is the same in each file specification. The
 characters are valid wildcard characters.

 The * wildcard matches any number of characters in a field of a file
 specification that uniquely identifies the file. The following
 example illustrates using the wildcard character * to list all files
 in the directory <SMITH> with the file type .TXT:

 @DIRECTORY (OF FILES) *.TXT

 PS:<SMITH>
 DATA.TXT.7
 MAIL.TXT.5
 TEST.TXT.1

 Total of 3 files

 If you give the command DIRECTORY L*, the system lists all the
 filenames beginning with the letter L.

 @DIRECTORY (OF FILES) L*

 PS:<SMITH>
 LAST.TXT.10
 LEVEL.DAT.1
 LOOP.TXT.6
 LOST.DAT.4

 Total of 4 files

 4-9

 FILE SPECIFICATIONS

 If you give the command DIRECTORY *T, the system lists all the
 filenames ending with the letter T.

 @DIRECTORY (OF FILES) *T

 PS:<SMITH>
 ACCTST.FOR.1
 CKACCT.FOR.1
 NEWACT.FOR.1
 TEST.FIL.1

 Total of 4 files

 The % wildcard matches a single character in a field of a file
 specification that uniquely identifies the file. You cannot use % in
 a generation number. The following example illustrates using % to
 list all files in the directory <SMITH> containing four letters, and
 beginning with the letter L and ending with the letters ST:

 @DIRECTORY (OF FILES) L%ST

 PS:<SMITH>
 LAST.TXT.10
 LIST.FOR.3
 LOST.DAT.4

 Total of 3 files

 If you are using a file with any of the programs listed in Table 4-2,
 you must use a different convention for specifying groups of files.
 The * wildcard designates a group of filenames or file types, but must
 either entirely replace the filename or file type, or occur at the end
 of the filename or file type. Therefore, the construction TEST* is
 valid but the construction *TEST is not.

 NOTE

 Not all programs in Table 4-2 accept wildcard
 characters in a file specification. Also, the
 commands, COMPILE, DEBUG, EXECUTE, and LOAD do not
 accept wildcard characters in file specifications.

 4.4 SPECIFYING SPECIAL CHARACTERS - CTRL/V

 If you need to include a special character, that is, any character
 other than an alphanumeric, $, - or _ in a file specification, type
 CTRL/V directly before the special character.

 If you are using a file with any one of the programs listed in Table
 4-2, do not use the CTRL/V feature.

 4-10

 FILE SPECIFICATIONS

 4.5 TYPING FILE SPECIFICATIONS

 There are two methods of typing a file specification in a command:
 full input and recognition input. For full input, you type the
 complete file specification. If you are using any of the programs
 listed in Table 4-2, you must always use full input; recognition is
 not available.

| When you are unsure of a file specification, type a question mark to
| obtain a list of possible file names, extensions (including nulls),
| and file versions. For example:
|
| @DIRECTORY E? FILE NAME
| EXTRA
| EXTUSR
| EMACS
| @DIRECTORY EMACS.? FILE NAME
| INIT
| VARS
| @DIRECTORY EMACS.INIT.? FILE NAME
| 1
| 2

 Recognition input makes it easier for you to type file specifications.
 You can make the system recognize file specifications by using either
 CTRL/F or ESC. For file specifications, CTRL/F recognizes only the
 current field of the specification, for example it completes a
 directory name, filename, file type, generation number. The ESC key
 recognizes as many subsequent fields as possible, including any
 defaults. Many commands set up defaults so that you can press the ESC
 key at the beginning of a file specification, causing the system to
 print the full default file specification on your terminal.

 The following example illustrates a way to use CTRL/F to recognize a
 portion of a default file specification. If you want to change the
 file type of the file PROG1.OAS, give the RENAME command followed by
 the file name PROG1 and press the ESC key; the system prints .OAS.*
 (TO BE). Now type CTRL/F; the system prints PROG1. Type the new file
 type, .PAS.

 <ESC> <CTRL/F>
 | |
 @RENAME (FILE) PROG1.OAS.* (TO BE) PROG1.PAS

 The system considers generation numbers in specific ways. When you
 are using an existing file, the system selects the highest generation
 number; when you are creating a file and a file with that same name
 and type already exists, the system assigns a generation number one
 higher than the highest existing generation number.

 4-11

 FILE SPECIFICATIONS

 The following examples illustrate the way the system considers
 generation numbers. If you have two files in your directory,
 TEST.TXT.2 and TEST.TXT.3, and you give the TYPE command to print the
 TEST.TXT file, the system selects the file with the highest generation
 number. Give the TYPE command, followed by the filename TEST.TXT and
 press ESC. The system prints .3 (the highest generation number).

 <ESC>
 |
 @TYPE (FILE) TEST.TXT.3

 If you want to copy the file NEW.FIL.1 to the destination file
 TEST.TXT.3, give the COPY command, followed by the filename NEW.FIL
 and press ESC; the system prints .1 and (TO). Type the filename
 TEST.TXT and press ESC; the system assigns a generation number one
 higher than the existing generation number. In this case, the
 destination file becomes TEST.TXT.4.

 <ESC> <ESC>
 | |
 @COPY (FROM) NEW.FIL.1 (TO) TEST.TXT.4 !New generation!

 NOTE

 You can use recognition on any part of the file
 specification except the device name field. When you
 use a device name, you must always type this name in
 full. If you do not type a device name, the system
 uses DSK: (your connected file structure), but does
 not print it on your terminal.

 When you type more than one file specification, you can incorporate
 recognition input when typing each file specification. You can also
 incorporate wildcards with recognition input when you type a group of
 files.

 When you type more than one file specification on a line, separate
 each file specification with a comma. The following example
 illustrates using commas to separate file specifications in a PRINT
 command.

 @PRINT (FILES) ATEST.LOG, BTEST.LOG, CTEST.LOG
 [Printer job ATEST queued, request #18, limit 9, 3 files]

 4-12

 FILE SPECIFICATIONS

 4.6 USING LOGICAL NAMES

 A logical name is a descriptive word used to establish a search route
 for locating files in other directories or on other structures. When
 you define a logical name, you tell the system where, and in which
 order, to search for a file.

 A logical name comprises up to 39 alphanumeric characters, including
 -, $, and _. followed by a colon. However, you can use an abbreviated
 word for the logical name when you define the search list.

 For example, you are a member of a team working on a project. Your
 team has a directory called <TEAM> on the structure PS: where the
 members store all the completed programs for the project. When you
 are looking for a project file and you are not sure where it is, you
 must look through your own directory, and then through the team's
 directory to find it. Instead of giving two separate DIRECTORY
 commands for each directory, you can give one DIRECTORY command using
 a logical name that will automatically search through both directories
 until it finds the file. The example below illustrates defining a
 logical name to search your directory, (here your user name is KONEN),
 and then the team's directory. Include the structure name with the
 directory names.

 @DEFINE (LOGICAL NAME) ALL: (AS) PS:<KONEN>,PS:<TEAM>

 You now have the logical name ALL: defined as PS:<KONEN> and
 PS:<TEAM>. If you want to search for the file TEST.FOR in either
 directory, give the following command:

 @DIRECTORY (OF FILES) ALL:TEST.FOR

 PS:<TEAM>
 TEST.FOR.5

 The system searches first in the directory <KONEN> where it does not
 find the file, and then in the directory <TEAM> where it does find the
 file. If the file TEST.FOR exists in <KONEN> and in <TEAM>, the
 system searches only until it finds the first file. In this case,
 finding the file in <KONEN>, it does not continue the search in the
 directory <TEAM>. When you give the DIRECTORY command, the system
 always prints the name of the directory and the structure in which it
 finds the file.

 The logical name you define applies only to your current job. It
 remains in effect until you either remove it, or end your job by
 logging out. If you want the same defined logical name every time you
 log in, you can put the definition in your LOGIN.CMD file. (Refer to
 Section 1.7 for information on LOGIN.CMD files.)

 4-13

 FILE SPECIFICATIONS

 To find out what logical name you are using, you can give the
 INFORMATION LOGICAL-NAMES JOB command.

 @INFORMATION (ABOUT) LOGICAL-NAMES (OF) JOB
 ALL: => PS:<KONEN>,PS:<TEAM>

 There are also systemwide logical names that all users can give
 without having to define them for each job. A systemwide logical
 name, like SYS:, is usually defined by each installation and includes
 the directories that contain standard system software. To print a
 list of systemwide logical names, give the INFORMATION LOGICAL-NAMES
 SYSTEM command.

 @INFORMATION (ABOUT) LOGICAL-NAMES (OF) SYSTEM
 ACCOUNT: => GIDNEY:<ACCOUNTS>
 DEFAULT-EXEC: => SYSTEM:EXEC.EXE
 .
 .
 .
 SYS: => PS:<SUBSYS>,PS:<NEW>
 TOOLS: => SNARK:<TOOLS>

 When you define a logical name, you can include an existing systemwide
 logical name in your definition. Each directory name, device name, or
 other logical name you use in defining the logical name must be
 separated by a comma. For example, you can set up a search route to
 look for a file in the system directories, SYS:, then in <TEAM> and
 <KONEN>.

 @DEFINE (LOGICAL-NAME) TEST: SYS:,PS:<TEAM>,PS:<KONEN>

 By defining the logical name TEST:, the system searches SYS: first,
 because that was the first area you specified, and if it does not find
 the file there, continues its search through <TEAM> next, and finally
 through <KONEN>.

 If you copy a file to a logical name, the system places the file in
 the first area defined in the logical name. For example, if you copy
 the file CHECK.TST to the logical name ALL:, the system places the
 file in the directory <KONEN>, because that directory was the first
 area defined in ALL:.

 @COPY (FILE) CHECK.TST.1 (TO) ALL:CHECK.TST.1 !New file!
 CHECK.TST.1 => <KONEN>CHECK.TST.1 [OK]

 If you are defining a logical name for a program listed in Table 4-2,
 you cannot include the characters - $ or _ in the logical name. Also
 the logical name cannot exceed six characters, excluding the colon.

 4-14

 FILE SPECIFICATIONS

 To remove a logical name you have defined, give the DEFINE command,
 but do not type any definition. After the DEFINE command, type only
 the logical name. The following example shows how to remove the
 logical name TEST::

 @DEFINE (LOGICAL-NAME) TEST:

 You can also use the logical name as an abbreviation for all or part
 of a file specification. Using a logical name saves you typing if
 your file specification is lengthy.

 The following example shows defining a logical name for a directory
 name, and then giving the DIRECTORY command using the logical name:

 @DEFINE (LOGICAL NAME) TS: (AS) PS:<TEST-SPECS>
 @DIRECTORY (OF FILES) TS:

 The following example shows defining a logical name for a filename,
 and then giving the EDIT command followed by the logical name to get
 the file.

 @DEFINE (LOGICAL NAME) PP:(AS) R4-PROJECT-PLAN.RNO
 @EDIT PP:

 Logical names can be used to define physical device names. For
 example, suppose you have a program that uses one tape drive to input
 data and another to receive output. These tape drives, physically
 named MTA0: and MTA1:, can be given the logical names IN: and OUT:.
 By placing logical names for devices in your programs and defining
 them at runtime, you can eliminate the need to modify the program to
 refer to the devices that are currently available.

 4.6.1 The Device DSK:

 The system defines DSK: to be your connected structure and connected
 directory. Any time a command or program wants to use a file in your
 connected directory, it follows the definition of the logical name
 DSK: to locate the file. Thus, if you want to alter the way each
 system command and program searches for files, change the definition
 of the logical name DSK:. The following type of definition:

 @DEFINE (LOGICAL NAME) DSK: (AS) DSK:,ADMIN:<TESTER>

 is most common and tells the system to search in your connected
 directory first; then, if the file is not found, look in the alternate
 directory <TESTER> on your connected structure.

 4-15

 FILE SPECIFICATIONS

 NOTE

 Make sure you do not inadvertently leave out the
 comma. If you do, DSK: is defined as DSK:<TESTER>,
 and programs and commands will look only in this
 directory on the connected structure.

 Another example is:

 @DEFINE (LOGICAL NAME) DSK: (AS) DSK:,ADMIN:<RECORD>, -
 ADMIN:<GENLED>

 The system searches your connected structure and directory first.
 Then, if the file is not found, it looks on structure ADMIN: in
 directories <RECORD> and <GENLED>.

 When you create files, they are stored in your connected directory or
 in the first item in your definition of the logical name DSK:.

 4.6.2 The Device POBOX:

 Every user has his own personal message file, called a mail file. All
 your incoming messages go into your mail file. This file is named
| MAIL.TXT. The system defines the logical name POBOX: which defines a
| search list that points to structures where your mail files reside.
 When another user sends you mail or when you use a mail program to
 read your mail, the mail program follows the definition of POBOX: to
 locate MAIL.TXT. To learn the name of the structure that contains
 your directory with your MAIL.TXT file, give the command INFORMATION
 LOGICAL-NAMES POBOX:.

 @INFORMATION (ABOUT) LOGICAL-NAMES (OF) POBOX:
 System-wide:

 POBOX: => RANDOM:

 The directory name of your directory on the POBOX: structure is your
 user name, for example RANDOM:<DOE>.

 4-16

 CHAPTER 5

 CREATING AND EDITING FILES

 This chapter describes:

 o Selecting an editor (Section 5.1)

 o Defining the logical name EDITOR: (Section 5.2)

 o Correcting Typing Errors (Section 5.3)

 5.1 SELECTING AN EDITOR

 The TOPS-20 Operating System allows you to create or change files by
 using a system editor program. DIGITAL supports three editors for
 TOPS-20: EDIT, TV, and EDT-20. Other editors which are not supported
 by DIGITAL, such as EMACS and SED, may be installed on your system.

 5.1.1 EDIT

 EDIT is a line-oriented editor. With a line-oriented editor, you can
 change a line by referencing the line number, then substituting
 characters, or by retyping the line. Some computer programming
 languages use line numbers when giving error messages. Line numbers
 are also used with some debuggers.

 EDIT has an easy-to-learn and simple-to-use command language. You can
 use EDIT effectively on either a hard-copy or video terminal.

 You can use EDIT to create a program and enter it into a file. There
 are two commands that call the EDIT program:

 o The CREATE command - to create a file.

 o The EDIT command - to change a file.

 5-1

 CREATING AND EDITING FILES

 The following sequence shows how to use EDIT to create an ALGOL
 program that calculates the square root of a number. (If ALGOL is not
 available on your system, refer to Chapter 9, Producing And Running
 Your Own Programs, and use the FORTRAN program for the examples).

 1. Type CREATE and press the ESC key. The system prints (FILE).

 <ESC>
 |
 @CREATE (FILE)

 2. Type the filename and file type that you have chosen for your
 file. For this example, use SQRT.ALG.

 3. Press the RETURN key. EDIT prints the name of the input file
 and the first line number.

 <ESC>
 |
 @CREATE (FILE) SQRT.ALG<RET>
 Input: SQRT.ALG.1
 00100

 NOTE

 If you already have a file with this name and
 type, the generation number will not be 1.
 To change the filename, press the ESC key;
 the editor (EDIT) prints an asterisk. Type
 EQ (End and Quit), and press the RETURN key.
 The system prints the @. You can then CREATE
 a new file with a different filename and file
 type.

 4. Begin typing your program. (If you make a mistake, refer to
 Section 5.3, Correcting Typing Errors, for assistance.) Press
 the return key after each line of the program. EDIT
 automatically types the next line number. The line numbers
 that EDIT supplies give you reference points to use when you
 want to edit your file. (See Section C.2.1 in Appendix C).

 <ESC>
 |
 @CREATE (FILE) SQRT.ALG<RET>
 Input: SQRT.ALG.1
 00100 BEGIN<RET>
 00200 REAL X,Y;<RET>
 00300 WRITE ("[2C] TYPE THE VALUE OF X: [B]");<RET>
 00400 <TAB> READ (X);<RET>
 00500 <TAB> Y :=SQRT(X);<RET>
 00600 WRITE ("[C] THE SQUAREROOT OF ");<RET>
 00700 <TAB> PRINT (X,3,3);<RET>
 00800 <TAB> WRITE (" IS ");<RET>
 00900 <TAB> PRINT (Y,3,3);<RET>
 5-2

 CREATING AND EDITING FILES

 5. Press the ESC key after you type the last character in the
 last line of your program. This indicates that your file is
 complete. TOPS-20 returns the dollar sign then an asterisk.

 01000 END<ESC>$

 6. Type E (for End) and press the RETURN key. EDIT prints the
 name of your file, saves the file and returns you to the
 TOPS-20 operating system.

 *E<RET>

 [SQRT.ALG.1]
 @

 EDIT is fully described in the EDIT User's Guide and the EDIT
 Reference Manual.

 5.1.2 TV

 TV is a character-oriented editor. With a character-oriented editor,
 you can change one or more characters in a line without retyping the
 line.

 TV has a more powerful command language than EDIT. With this command
 language, you can accomplish complex editing functions with fewer
 commands.

 For the most effective use of TV, you should use a video terminal. TV
 is described in the TV Editor Manual. .hl2 EDT-20 EDT is DIGITAL's
 standard text editor. It is available on many DIGITAL operating
 systems, for example, TOPS-20, VAX/VMS, RSTS/E, RSX-11M, and
 RSX-11M-PLUS. There are only minor differences in the features of EDT
 found on each of these operating systems.

 EDT-20 has three editing modes: keypad, nokeypad, and line. Keypad
 and nokeypad modes are character-oriented editors for use on video
 terminals. Line mode can be used on either video or hardcopy
 terminals but is best used with hardcopy terminals.

 5-3

 CREATING AND EDITING FILES

 EDT provides many features that are not available in EDIT or TV. To
 name a few, EDT has an on-line help facility, it is customizable, and
 it allows you to work with several files during a single editing
 session.

 To learn how to use EDT on TOPS-20, refer to the EDT-20 Primer. For a
 complete description of EDT-20 commands and functions, refer to the
 EDT-20 Reference Manual. Once you have begun using EDT, the EDT Quick
 Reference Guide is a summary of EDT commands and functions.

 5.2 DEFINING THE LOGICAL NAME EDITOR

 To run an editor, type the name of the editor (EDIT, TV or EDT) and
 press RETURN. TOPS-20 also has three commands for running editors:
 EDIT, CREATE and PERUSE. These commands run the editor that is
 defined by the logical name EDITOR:. To determine your system's
 definition of EDITOR: give the INFORMATION LOGICAL-NAMES command.

 @INFORMATION (ABOUT) LOGICAL-NAMES (OF) EDITOR:
 System-wide:

 EDITOR: => SYS:EDIT.EXE

 If the system definition of EDITOR: is not the editor you have chosen
 to use, make your own definition of EDITOR: with the DEFINE command:

 @DEFINE (LOGICAL NAME) EDITOR: (AS) SYS:EDT.EXE

 Because this command is only in effect until you LOGOUT, you should
 place it in your LOGIN.CMD file so that it will take effect every time
 you log in.

 5.3 CORRECTING TYPING ERRORS

 As you type your program, you may need to correct typing errors. You
 can correct your program lines by typing CTRL/U or by pressing the
 DELETE key.

 o CTRL/U - Use CTRL/U when you want to delete the line that you
 are currently typing. CTRL/U deletes the line and allows you
 to start over again.

 When you type CTRL/U, EDIT responds with the number of the
 line you just deleted. Retype the line, and press the return
 key.

 5-4

 CREATING AND EDITING FILES

 o The DELETE Key - Use the DELETE key to erase incorrect
 characters in the current line.

 NOTE

 On some terminals, the DELETE key is labeled
 RUBOUT or DEL.

 Each time you press this key, you erase the last character
 that you typed. When the system deletes a character, it
 responds with the deleted character, followed by a backslash
 for each deleted character.

 Correcting a Mistake When You Make It -
 Suppose that while typing the word READ, you press the
 E key twice. If you notice your mistake right away,
 you can erase the second E by pressing the DELETE key
 once. The system responds by printing the deleted
 character (E) and a backslash. You can then continue
 typing the line.

 00400 REEE\AD (X)

 Correcting a Mistake After You Make It -
 In the example below, you notice that you misspelled
 SQUAREROOT, after you typed the word OF. To correct
 the error, delete the last six characters by pressing
 the DELETE key six times. (A space counts as a
 character.) You can then continue typing the line.

 00600 WRITE ("[C] THE OFF\O\ T\O\OEROOT OF ")

 You CANNOT use the DELETE key to correct characters on a line
 once you have pressed the RETURN key. The manual for your
 editor explains how to correct errors on previous lines.

 Section 2.7 describes other ways to correct typing errors.

 You CAN use the DELETE key to correct mistyped TOPS-20 commands. If
 you incorrectly type LOGOUT, for example, but notice the mistake
 before you press the RETURN key, you can use the DELETE key to fix the
 error. Section 2.7.1 contains further information about correcting
 commands with the DELETE key.

 5-5

 CHAPTER 6

 USING DISK FILES

 This chapter describes:

 o Using file structures (Section 6.1)

 o Protecting directories and files (Section 6.2)

 o Connecting to directories (Section 6.3)

 o Accessing directories (Section 6.4)

 o Copying files (Section 6.5)

 o Renaming files (Section 6.6)

 o Appending files (Section 6.7)

 o Listing files (Section 6.8)

 o Printing files (Section 6.9)

 o Deleting and restoring files (Section 6.10)

 o Creating temporary files (Section 6.11)

 o Regulating disk file storage (Section 6.12)

 o Long term off-line file storage (Section 6.13)

 o Visible and invisible files (Section 6.14)

 6-1

 USING DISK FILES

 6.1 USING FILE STRUCTURES

 A file structure comprises one or more disk packs containing your
 files and other user files. A file structure name consists of
 alphanumeric characters followed by a colon. Even if a file structure
 is made up of several disk packs, it is referenced by one name. You
 create and reference files on a structure by specifying the structure
 name in the device field (dev:) of a file specification.

| One file structure, the public structure (PS:), also known as the
| system structure, is the boot structure (BS:) by default and always
| remains on line during system operation. This public structure
 contains a directory for every user of the system, and the necessary
 accounting information to allow the users to log in. When you log in,
 you are connected to your directory on the public structure. This
 directory is referred to as your log-in directory and, in addition to
 the accounting information, contains some or all of your files.

 Once you have entered your programs into the computer and executed
 them, you have several files in your directory. To obtain a listing
 of the filenames, type the DIRECTORY command, and press the return
 key.

 @DIRECTORY<RET> Request a list of your filenames.
 PS:<SARTINI> The structure on which your directory resides
 and your directory name.
 ADDTWO.FOR.2 The edited version of your FORTRAN file.
 .QOR.1 An unedited backup file, for protection.
 .REL.2 Translation of your edited FORTRAN file.
 SQRT.ALG.1 Your original ALGOL program.
 .REL.1 Translation of your ALGOL file.

 TOTAL OF 5 FILES
 @

 The files in your directory are listed in alphabetical order. When
 two or more files have the same name but different types, the name is
 listed only once, for the first file. Subsequent entries for the name
 are indented, and only the file types and generation numbers are
 listed.

 If you use EDIT to edit an existing file for the first time, EDIT
 changes your original, unedited file into a backup file. In the
 process of making this backup file, EDIT changes the file type to Qxx,
 where xx are the last two letters of the original file type. EDIT
 creates this backup file so that you have an unaltered copy of your
 file. Every time you edit the file after the first time, the Qxx file
 is given a new generation number. In the example above, ADDTWO.QOR.1
 is the backup file.

 6-2

 USING DISK FILES

 You can have and use files on structures other than the public
 structure. Like the public structure, these structures also contain
 directories and files. Unlike the public structure, you cannot log in
| to these structures. Although the public structure (PS:) and boot
| structure (BS:) remains on line during system operation, other
 structures may be mounted (put on line) and dismounted by the operator
 according to users' requests. To request the mounting and dismounting
 of structures, use the MOUNT STRUCTURE and DISMOUNT STRUCTURE
 commands.

 The MOUNT STRUCTURE command informs the system that you require the
 use of a specific file structure (other than the public one). It
 causes the system to increment a count, called the mount count. The
 mount count for a structure is the number of users who have given the
 MOUNT command for that structure. This count assures you that a
 structure will remain mounted until you no longer need it. You
 usually have to give the MOUNT command before using files on any
 structure other than the public one. (Structures that require a MOUNT
 command are termed "regulated;" other structures are termed
 "unregulated.")

 @MOUNT STRUCTURE (NAME) MISC:
 Structure MISC: mounted

 The DISMOUNT STRUCTURE command informs the system that you no longer
 require the use of a structure and decrements the mount count for that
 structure.

 @DISMOUNT STRUCTURE (NAME) MISC:
 Structure MISC: dismounted

 After a structure is mounted, you can use the directories and files on
 that structure, depending on the protection codes set for those
 directories and files. (Refer to Section 6.2 for more information on
 directory and file protection codes and Section 6.3 and 6.4 for more
 information on connecting to directories and accessing files).

 To find out which structures are presently mounted, give the
 INFORMATION STRUCTURE * command.

 @INFORMATION (ABOUT) STRUCTURE (NAME) *
 Status of structure BOSTON:
 Mount count: 4, open file count: 227, units in structure: 2
 Public Domestic
 Users who have MOUNTed BOSTON: SUSSMAN, TOMCZAK, LNEFF, DNEFF
 Users ACCESSing BOSTON: OPERATOR, R.ACE, SAMBERG, COMBS, SYLOR,
 KONEN, COHEN, ZIMA, JENNESS, BLOUNT, SUSSMAN, REILLY,
 CIRINO,

 .
 .
 .

 6-3

 USING DISK FILES

 Status of structure PMH:
 Mount count: 1, open file count: 0, units in structure: 1
 Domestic
 Users who have MOUNTed PMH: HALL
 No users are ACCESSing PMH:
 Users CONNECTed to PMH: HALL

 6.2 PROTECTING DIRECTORIES AND FILES

 The TOPS-20 file system allows flexibility in sharing some or all of
 your files with other users. Files and directories are protected at
 three levels: owner, group member, and all users. Usually files are
 protected to prevent access from non-owners who are not group members.
 When you want to share files among a known set of users, you can
 arrange to share files by asking your system manager to establish a
 group. Members of a group can access directories belonging to the
 group, and use files in those directories. (For a complete
 description of groups, refer to the TOPS-20 System Managers Guide.)

 The access to each directory and file is determined by a protection
 number. You may have some files in your directory that you do not
 want to share. By setting the proper file protection you can prevent
 users from accessing these files, while allowing them to use other
 files in your directory.

 Each directory protection number and file protection number comprises
 six digits, divided into three distinct sections that contain two
 digits each. The first two digits specify the owner's access; the
 second two digits specify the group members' access; and the third two
 digits specify all other users' (also called world) access.

 PROTECTION CODE

 dd dd dd

 Owner Group All Users

 6.2.1 Directory Protection Numbers

 The digits in a protection number have different meanings, depending
 on whether they are in a directory protection number or in a file
 protection number. Table 6-1 lists the directory protection digits.

 6-4

 USING DISK FILES

 Table 6-1: Directory Protection Digits

 Digits Permit

 77 Full access to the directory is permitted.

 40 Access to files in the directory according to the
 protection number on the individual files is
 permitted. To delete and expunge the entire
 directory (though these digits permit expunging files
 on an individual basis), you must also assign the
 digit 10. To create files, you must also assign the
 digit 04.

 10 Connecting to the directory without giving a
 password, undeleting files, expunging the entire
 directory, changing times, dates and accounting
 information for files is permitted. All other access
 is governed by the protection on the individual file.

 04 Create files in the directory.

 00 Access to the directory is not permitted.

 You can add directory protection digits together. For example, if
 your directory protection number is 774000, you have full access as
 the owner of the directory, you allow members of the group to access
 the directory according to the protection on individual files, and you
 prohibit all other users from accessing the directory. If you want to
 allow members of the group not only to access the directory, but also
 to create files in your directory, you can add the directory
 protection code 04 to the 40 to get 44. Your entire directory
 protection code then becomes 774400.

 6.2.2 File Protection Numbers

 Table 6-2 lists the file protection digits.

 6-5

 USING DISK FILES

 Table 6-2: File Protection Digits

 __

 Digits Permit
 __

 77 Full access to the file.

 40 Read the file.

 20 Write or delete the file.

 10 Execute the file.

 04 Append to the file.

 02 Find the file specification using wildcarding.

 00 Find the file specification only if the file is
 specified explicitly and completely. No other access
 is allowed.
 __

 The system default protection number for files is generally 777700.
 This means that the owner of a file and members of the owner's group
 have full access, and all other users have no access to the file.

 As with directory protection codes, you can construct file protection
 codes by adding the protection digits together. For example, a code
 of 44 allows reading and appending, but prohibits modifying or
 deleting the file, or listing the file in a DIRECTORY command.

 6.2.3 Checking Protection Numbers

 To validate access to directories and files, the system scans the
 protection code beginning with the two digits to the right, and moves
 to the left until it has reached the highest level of access.

 The system scans a file or directory protection number in the
 following way:

 1. It scans the two digits to the far right in the protection
 code to see if all users have access.

 2. If all users have access, you can access the file or
 directory.

 6-6

 USING DISK FILES

 3. If all users do not have access, the system moves to the two
 digits in the center of the protection number to see if
 members of the group have access.

 4. If members of a group have access, you can access the file or
 directory if you are in the group.

 5. If members of a group do not have access, the system moves to
 the two digits to the far left of the protection code to see
 if the owner has access.

 6. If the owner has access, you can access the file or directory
 if you are the owner.

 7. If the owner does not have access, the system prints an error
 message.

 The protection system works in the following way. For example, you
 want to type the file TEST.TXT in user HOLLAND'S directory on your
 terminal. Before printing the file you requested, the system scans
 the protection code on the directory <HOLLAND> to validate that you
 have access. If you are not allowed to access the directory, the
 system prints an error message and cancels the command.

 @TYPE (FILE) <HOLLAND>TEST.TXT
 ?Directory access privileges required - "<HOLLAND>TEST.TXT"

 If the directory protection allows you the access, the system scans
 the protection on the individual file TEST.TXT. If you are not
 allowed to access the file, the system prints an error message and
 cancels the command.

 @TYPE (FILE) <HOLLAND>TEST.TXT
 ?READ protection violation for: "<HOLLAND>TEST.TXT.2"

 If the file protection allows you to access the file, the system
 prints the file on your terminal.

 To print a directory protection number, use the INFORMATION DIRECTORY
 command with the VERBOSE subcommand. The directory protection number
 is in the field "Protection of directory". To print the file
 protection number, use the VDIRECTORY command (or the DIRECTORY
 command with the PROTECTION subcommand).

 @VDIRECTORY (OF FILES) TEST.FIL
 PS:<PORADA>
 TEST.FIL.1; P777700 1 110(7) 21-Mar-88 11:44:25 PORADA

 6-7

 USING DISK FILES

 6.2.4 Changing a Directory Protection Number

 To change a directory protection number, use the SET DIRECTORY
 PROTECTION command.

 @SET DIRECTORY PROTECTION (OF DIRECTORY) <EMORRILL> (TO) 770000

 6.2.5 Changing a File Protection Number

 The system assigns a default file protection number to all files
 created in a directory. This default is usually 777700. To change
 the default file protection number for a directory, use the SET
 DIRECTORY FILE-PROTECTION-DEFAULT command.

 @SET DIRECTORY FILE-PROTECTION-DEFAULT <BLACK> 770000

 To change a file protection number, use the SET FILE PROTECTION
 command.

 @SET FILE PROTECTION (OF FILES) TEST.FIL (TO) 774400
 TEST.FIL.1 [OK]

 To print a directory's default file protection number use the
 INFORMATION DIRECTORY command, with the VERBOSE subcommand.

 6.3 CONNECTING TO DIRECTORIES

 When you log in, you are automatically connected to the directory on
 the public structure that has the same name as your user name. For
 example, user McElmoyle is connected to <MCELMOYLE> on the public
 structure:

 @LOGIN (USER) MCELMOYLE (PASSWORD)___(ACCOUNT) 341

 If you need to work in another directory, you can connect to that
 directory. When you connect to a directory, the system automatically
 disconnects you from the directory you are presently in and uses the
 new directory as your default directory. Your default directory is
 the one the system assumes when you omit a directory name in a file
 specification.

 In addition, you have owner rights for that directory, just as if you
 logged in to it. The owner rights for a directory are valid as long
 as you are connected to that directory; the rights terminate when you
 connect to another directory. You always retain the owner rights to
 the files in your log-in directory.

 6-8

 USING DISK FILES

 You can connect to a directory on the public structure or on another
 on-line structure. To connect to another directory, give the CONNECT
 command and the name of the directory you want to use. You are
 prompted for a password for the directory depending on your ownership
 and group rights for the directory.

 The example below illustrates the effects of logging in, then
 connecting to another directory on the public structure. When you
 (user MCELMOYLE) log in to the system, you are connected to your own
 directory on the public structure. When you omit a directory name
 and/or structure name in a file specification, the system assumes your
 logged-in directory <MCELMOYLE> on the public structure. After you
 log in, connect to the directory <BROWN> on the public structure.
 Now, if you omit the directory name and/or structure name in a file
 specification, the system assumes your connected directory <BROWN> on
 the public structure.

 @LOGIN (USER) MCELMOYLE (PASSWORD)___(ACCOUNT) 341
 Job 5 on TTY26 31-Mar-88 14:56:24, Last Login 30-Mar-88 08:24:13
 @CONNECT (TO DIRECTORY) <BROWN>
 Password:___
 _____PS:_____
 | |
 | |
 |-----------|
 User MCELMOYLE------->| MCELMOYLE |
 C -------| |
 O | |-----------|
 N | |-----------| \
 N ------>| BROWN | | Connected
 E | | | Directory
 C |-----------| /
 T | |

 ___________/
 Connected
 Structure

 When you give the CONNECT command for a directory that is located on a
 different structure, your default structure also changes. The system
 assumes both the connected structure and the connected directory when
 you omit them in a file specification.

 6-9

 USING DISK FILES

 The example below illustrates the effects of logging in on the public
 structure and then connecting to a directory on another structure
 named MISC:. When you (user MCELMOYLE) log in, you are connected to
 your directory on the public structure. After you log in, connect to
 the directory <BROPHY> on the structure MISC:.

 @LOGIN (USER) MCELMOYLE (PASSWORD)___(ACCOUNT) 341
 Job 28 on TTY26 31-Mar-88 12:02:46, Last Login 30-Mar-88 08:32:26
 @CONNECT (TO DIRECTORY) MISC:<BROPHY>
 Password:___

 _____PS:_____ ____MISC:_____
 | | | |
 | | | |
 LOGIN |-----------| CONNECT |------------|
 User MCELMOYLE------->|<MCELMOYLE>|------------->| <BROPHY> |
 |-----------| |------------|
 | | | |
 | | | |
 ------------- --------------
 ______________/
 Connected
 Structure

 If you later omit a structure name or a directory name from a file
 specification, the system assumes the structure MISC: and the
 directory <BROPHY>.

 If you forget which directory or structure you are connected to, give
 the INFORMATION JOB-STATUS command. If no directory name is printed,
 then you are connected to your logged in directory.

 @INFORMATION (ABOUT) JOB-STATUS
 Host AURORA
 Job 105, TTY46, User HIGGINS, SUMMIT:<HIGGINS>
 Account 341

 6-10

 USING DISK FILES

 6.4 ACCESSING DIRECTORIES

 To access another directory and remain connected to your present
 directory, give the ACCESS command.

 When you access a directory, you are actually working in your
 connected directory but you also have owner and group rights to the
 other directory. This means that you can use the files in the
 directory you have accessed by specifying that directory in the file
 specification. Unless you specify otherwise, any file you create
 appears in your connected directory. If you want the file to be
 written into the directory you have accessed, you must specify the
 directory name in the file specification. If the directory you access
 is located on a different structure than your connected directory, you
 must specify the structure and directory names in any file
 specification.

 The example below illustrates the effects of logging in, then
 accessing another directory on the public structure. When you (user
 MCELMOYLE) log in to the system, you are connected to your login
 directory. After you log in, access the directory <BROWN> on the
 public structure. You now have owner and group rights for directory
 <BROWN>.

 @LOGIN (USER) MCELMOYLE (PASSWORD)___(ACCOUNT) 341
 Job 32 on TTY26 31-Mar-88 10:08:16, Last Login 30-Mar-88 11:36:44
 @ACCESS (TO DIRECTORY) <BROWN>
 Password:___

 _____PS:_____
 | |
 | |
 |-----------|\ \
 User MCELMOYLE------->| MCELMOYLE || Connected | Has "owner"
 A -------| || Directory | rights only
 C | |-----------|/ /
 C | |-----------| \
 E ------>| BROWN | | MCELMOYLE has
 S | | | "owner" and
 S |-----------| / "group" rights
 | |

 ___________/
 Connected
 Structure

 6-11

 USING DISK FILES

 You can access more than one directory during a job session. You can
 access a directory on one structure and also access a directory on a
 different structure. If each directory you access is located on a
 different structure, the owner and group rights for these directories
 remain in effect throughout your entire job session (from LOGIN to
 LOGOUT) or until a structure is dismounted. You can access only one
 directory per structure, however. If you access a second directory on
 the same structure, your access to the first directory is cancelled.
 You always retain your owner rights to your log-in directory on the
 public structure. However, when you give the ACCESS command to a
 different directory on the public structure, you lose the group
 privileges of your log-in directory.

 You can log in, access another directory on the public structure, then
 access a directory on another structure, MISC:, as in the following
 example:

 @LOGIN (USER) MCELMOYLE (PASSWORD)___(ACCOUNT) 341
 Job 32 TTY26 31-Mar-88 10:08:14, Last Login 30-Mar-88 11:16:02
 @ACCESS (TO DIRECTORY) <BROWN>
 Password:___
 @ACCESS (TO DIRECTORY) MISC:<BROPHY>
 Password:___

 ____PS:____ ___MISC:___
 | | | |
 | | | |
 User |---------|\ \ | |
 MCELMOYLE-->| || | Has "owner" | |
 --| || Connected | rights only |---------|\
 A| |MCELMOYLE|| Directory / | || MCELMOYLE
 C| | || ACCESS | BROPHY || has "owner
 C| | - - -|| - - - - - - - - - - - ->| || and "group"
 E| |---------|/ | || rights
 S| |---------|\ |---------|/
 S| | || MCELMOYLE has | |
 ->| BROWN || "owner and | |
 | || "group" rights | |
 |---------|/ | |
 ----------- -----------
 _________/
 Connected
 Structure

 6-12

 USING DISK FILES

 6.5 COPYING FILES

 You can use the COPY command to reproduce one of your files. This
 procedure is useful if you want to change a file without altering the
 original file.

 To copy a file to another file, give the COPY command. The COPY
 command copies the contents of an existing file (called a source file)
 to a destination file, and keeps the original file. The following
 example shows how to copy the existing file TEST1.DAT to the
 destination file 2TEST.DAT.

 @COPY (FROM) TEST1.DAT.1 (TO) 2TEST.DAT.2 !New generation!
 TEST1.DAT.1 => 2TEST.DAT.2 [OK]

 You can also use the COPY command to copy a file from another user's
 directory. First give the ACCESS command with the other user's
 directory name and password. (The password does not print on the
 terminal.) Then type COPY, and press the ESC key. The system prints
 (FROM). Type the other user's directory name (enclosed in angle
 brackets), the name of the file you want to copy and the ESC key. The
 system prints the generation number and the guideword (TO). Press the
 RETURN key. The other user's file is copied to your disk area. The
 file keeps the same name.

 @ACCESS<ESC>(TO DIRECTORY) <PORADA><RET>
 Password: <RET>

 @COPY<ESC>(FROM) <PORADA>TODAY.EXE<ESC>.3 (TO)<RET>
 <PORADA>TODAY.EXE.3 => TODAY.EXE.1 [OK]

 You can also copy a file from another user's directory and give the
 file a different filename. To do this, use the procedure described
 above. The system prints the generation number and guideword (TO):

 @COPY<ESC>(FROM) <PORADA>TODAY.EXE<ESC>.3 (TO)

 Instead of pressing the RETURN key, as in the previous example, type
 the name that you want to give the new file. When you have typed the
 new name, press the RETURN key. The system prints a message telling
 you that it has copied the file.

 @COPY<ESC>(FROM) <PORADA>TODAY.EXE<ESC>.3 (TO) TEST.EXE<RET>
 <PORADA>TODAY.EXE.3 => TODAY.EXE.1 [OK]
 @

 6-13

 USING DISK FILES

 You can copy multiple files by using a wildcard. For example, if you
 type COPY (FROM) *.FOR, the system places each file with the file type
 .FOR into a destination file. If you type COPY (FROM) TEST.*, the
 system places each file with the filename TEST into a destination
 file.

 @COPY (FROM) TEST.* (TO) NEWTST.*.-1
 TEST.FOR.1 => NEWTST.FOR.1 [OK]
 TEST.TXT.2 => NEWTST.TXT.1 [OK]

 If you use recognition input in the above example, when you press ESC
 after the filename NEWTST, the system rings the terminal bell, asking
 you to type more information. In this example, type a period after
 the filename, indicating to the system the end of the filename; and
 press ESC. The system prints the wildcard character, *, and a .-1
 generation number. The -1 generation number is a symbolic generation
 number and indicates to you that when the system processes the command
 line, it will use one greater than the highest number of each file.
 (Refer to Section 4.2.6, Generation Numbers - .gen, for more
 information on symbolic generation numbers.)

 6.6 RENAMING FILES

 You can use the RENAME command to change the name of a file or to put
 a file into another directory on the same structure. When you use
 RENAME, the system simply changes the file specification instead of
 actually duplicating the file.

 @RENAME (EXISTING FILE) TEST1.DAT.* (TO BE) TESTAL.DAT.-1
 TEST1.DAT.1 => TESTAL.DAT.2 [OK]

 To move files from one structure to another, use the COPY command.
 RENAME will not work across structures. After copying the file, you
 can delete the original.

 @COPY (FROM) MISC:TEST.FIL.5 (TO) TEST.FIL.1 !New file!
 MISC:TEST.FIL.5 => TEST.FIL.1 [OK]
 @DELETE MISC:TEST.FIL.5

 6.7 APPENDING FILES

 To add the contents of one or more source files to the end of a
 destination file, give the APPEND command. The destination file can
 be an existing file or a new file. The following example shows how to
 add the contents of the source file STAT.TXT.5 to the end of the file
 CHECK.TXT:

 @APPEND (SOURCE FILE) STAT.TXT.5 (TO) CHECK.TXT
 STAT.TXT.5 [OK]

 6-14

 USING DISK FILES

 You can append a series of files with the same filename or file type
 using a wildcard. The following example shows how to append all files
 with the file type .FOR. Notice that these files are appended in
 alphabetical order when using a wildcard for the filename.

 @APPEND (SOURCE FILE) *.FOR (TO) ATEST.FOR.1 !New file!
 ACCOUN.FOR.2 [OK]
 ACCTST.FOR.1 [OK]
 NEWTST.FOR.1 [OK]
 TEST.FOR.1 [OK]

 You can append files from a directory on one structure to a directory
 on another structure. The system prints the structure name, the
 directory name and the filename of the source file, followed by the
 message [OK] when the file has been appended.

 @APPEND (SOURCE FILE) PS:<DOE>SMALL.FOR (TO) MISC:<DOE>LARGE.FOR
 PS:<LATTA>SMALL.FOR.2 [OK]

 NOTE

 Some programs, such as COBOL and SORT, cannot use
 appended files.

 6.8 LISTING FILES

 To display a copy of your file on your terminal, type the TYPE
 command, and press the ESC key. After (FILE), type the filename and
 file type of your file. Press the RETURN key.

 To see a copy of ADDTWO.FOR type the following command:

 @TYPE (FILE) ADDTWO.FOR

 If you want TOPS-20 to stop printing a file after it begins, type a
 CTRL/O. CTRL/O stops the printout. You can resume the printing by
 typing a second CTRL/O.

 6.9 PRINTING FILES

 To print a file or files, give the PRINT command. The PRINT command
 places entries into the line printer output queue.

 @PRINT (FILES) UPDATE.CBL
 [Printer job UPDATE queued, request 57, limit 27]

 6-15

 USING DISK FILES

 To see that your job is in the line printer output queue, give the
 INFORMATION OUTPUT-REQUESTS command. The system lists all the jobs in
 the queue. If you want only the entries of your job(s), include the
 /USER switch.

 @INFORMATION (ABOUT) OUTPUT-REQUESTS

 Printer Queue:
 Job Name Req# Limit User
 -------- ---- ----- ------------------------
 * BOX 53 270 LYONS On Unit:0
 Started at 14:29:29, printed 122 of 270 pages
 * UPDATE 57 27 SARTINI On Unit:1
 Started at 14:38:18, printed 0 of 27 pages
 MIDAS 34 27 REILLY /Forms:NARROW
 There are 3 Jobs in the Queue (2 in Progress)

 You can control several conditions of your print request by using
 switches with the PRINT command.

 To simply print a file, it is not necessary to include switches.
 However, you can include switches with the PRINT command. To obtain a
 list of valid switches, type PRINT, followed by a ?. The list of
 switches the system prints contains both job switches and file
 switches.

 @PRINT ? /SPOOLED-OUTPUT
 or Job switch, one of the following:
| /ACCOUNT: /AFTER: /CHARACTERISTIC:
 /DESTINATION-NODE: /FORMS: /GENERIC
 /JOBNAME: /LIMIT: /LOWERCASE
 /NOTE: /NOTIFY: /PRIORITY:
| /REMOTE-PRINTER: /SEQUENCE: /UNIT:
 /UPPERCASE /USER:
 or File switch, one of the following:
 /BEGIN: /COPIES: /DELETE /FILE:
 /HEADER /MODE: /NOHEADER /PRESERVE
 /REPORT: /SPACING:
| or ","
| or File specification
 @PRINT

 If you include a job switch with the PRINT command, the entire job is
 affected by the switch. For example, if you print three files and you
 add the /AFTER: switch, all three files will be printed after the time
 you specify.

 @PRINT (FILES) LARGE.DAT, MYTEST.DAT, TEST1.DAT /AFTER:15-MAR-88
 [Printer job LARGE queued, request #58, limit 27]

 6-16

 USING DISK FILES

 If you include a file switch with the PRINT command, only the file
 directly before the switch is affected. For example, if you print
 three files and you add the /COPIES:6 switch after the first filename,
 the system prints six copies of the first file only.

 @PRINT (FILES) LARGE.DAT/COPIES:6, MYTEST.DAT, TEST1.DAT

 A file switch can act as a job switch when placed before all files in
 a command. For example, if you print three files and you add the
 /COPIES:6 switch before the first filename, the system prints six
 copies of each of the three files.

 @PRINT (FILES)/COPIES:6,LARGE.DAT,MYTEST.DAT,TEST1.DAT

|
| You can direct a PRINT request to a remote destination by including
| the /REMOTE-PRINTER switch. The destination is either a VMS printer
| queue for DQS printers or a LATserver PORT or SERVICE for LAT
| printers. To specify a string that communicates file features such as
| layout or lettering type, include the /CHARACTERISTIC switch.
|
| The following example shows how to print a job with a PORTRAIT 90
| characteristic on a XEROX 8700 printer on a VMS system.
|
| @PRINT FILE4.MEM/REMOTE-PRINTER:XEROX/CHARACTERISTIC:P90
| [Printer job FILE4 queued, request #33, limit 1 files]
|
| You can direct a PRINT request to a remote node by specifying the
| /DESTINATION-NODE switch. The remote node can be either an IBM remote
| station, a node in a TOPS-20 cluster, a VMS remote node or a
| LATserver.
|
| The following example shows how to PRINT a job on a printer service
| named XEROX on a LATserver named LAT97.
|
| @PRINT FILE.DAT/REMOTE-PRINTER:XEROX/DESTINATION-NODE:LAT97
| [Printer job FILE queued, request #45, limit 1 files]
|
| You can specify the SET REMOTE-PRINTING PRINTER command to establish
| the /REMOTE-PRINTER queue and characteristic parameters. The SET
| REMOTE-PRINTING command can be invoked at command level or within a
| command file.
|
| The following example shows how to define the name of a remote printer
| queue on node OURVAX.
|
| @SET REMOTE-PRINTING PRINTER XEROX SI$8700 OURVAX
| @
|

 6-17

 USING DISK FILES

| Now, to direct a print request to the remote printer queue:
|
| @PRINT MYFILE.MEM/REMOTE-PRINTER:XEROX
| @
|
| For more information about directing print requests to remote
| destinations, refer to the TOPS-20 Commands Reference Manual.

 6.9.1 Modifying a PRINT Request

 To change and/or add one or more switches to a previously issued PRINT
 command, give the MODIFY command. After you give the MODIFY command,
 type PRINT, followed by the first six letters of the jobname, or the
 request ID, then type the switch you want to change or add.

 You can modify almost all PRINT command switches. To obtain a list of
 switches you can modify, give the MODIFY PRINT/ command, followed by a
 question mark (?).

 The following example shows how to modify the PRINT request for
 LARGE.DAT by including the /AFTER: switch:

 @MODIFY (REQUEST TYPE) PRINT (ID) LARGE /AFTER:25-MAR-88
 [1 Job modified]

 After you give the command, the system prints a message informing you
 that the job was modified. If the system is processing the entry when
 you give the MODIFY command, it does not modify the job and prints the
 message [No Jobs modified].

 6.9.2 Canceling a PRINT Request

 To cancel or remove entries you have previously placed in the line
 printer output queue, give the CANCEL command. After you give the
 CANCEL command, type PRINT, followed by the first six letters of the
 jobname or the request ID of the job you want to remove.

 Once the CANCEL command removes the entry from the line printer output
 queue, the system prints the message [1 Job Canceled]. If the system
 is processing the entry when you give the CANCEL command, it stops the
 job and prints the message, [1 Job Canceled (1 was in progress)].

 The following example shows how to cancel the PRINT request for
 TEST.FOR.

 @CANCEL (REQUEST TYPE) PRINT (ID) TEST
 [1 Job canceled]

 6-18

 USING DISK FILES

 If you have several PRINT jobs in the lineprinter output queue, you
 can cancel them all by using an asterisk.

 @CANCEL (REQUEST TYPE) PRINT (ID) *
 [3 Jobs canceled]

| You can cancel a PRINT request to a remote printer in the same TOPS-20
| cluster as the requesting node by including the /DESTINATION-NODE:
| switch in the command. This switch cancels only the print requests
| that were made from the local node. Other print requests made on the
| remote node are not affected.
|
| The following example shows how to cancel a remote print request.
|
| @CANCEL PRINT SUM7/DESTINATION-NODE:KL2102
| [1 print request cancelled]
|
| Note that PRINT requests directed to a remote node not in the same
| cluster as the requesting node cannot be cancelled from the requesting
| node.

 6.9.3 Setting Defaults for the PRINT Command

 If you want the PRINT command to always contain certain switches, give
 the SET DEFAULT PRINT command, followed by the switch or switches.
 Whenever you give a PRINT command, the switches you specified in the
 SET DEFAULT command are automatically included in the PRINT command.

 To give the /NOTE switch with PRINT commands, place the following
 command in COMAND.CMD.

 @SET DEFAULT (FOR) PRINT /NOTE:FLOOR4

 Every time you give the PRINT command, the system includes the switch
 /NOTE:FLOOR4 in the command.

 To avoid having to type the SET DEFAULT PRINT command every time you
 log in to the system, put this command in a COMAND.CMD file. (Refer
 to Section 1.7 for information about a COMAND.CMD file.)

 To see which defaults you set for the PRINT command, give the
 INFORMATION DEFAULTS PRINT command.

 @INFORMATION (ABOUT) DEFAULTS (FOR) PRINT
 SET DEFAULT PRINT /NOTE:FLOOR4

 6-19

 USING DISK FILES

 6.10 DELETING AND RESTORING FILES

 When you no longer need to keep a file, you can delete it by giving
 the DELETE command. The DELETE command marks the file for automatic
 deletion; it does not actually erase the file.

 The deleted files in your logged-in or connected directory are erased
 (expunged) when one of the following occurs:

 o You give the EXPUNGE command for the directory.

 o The operator gives the EXPUNGE command for all directories in
 the structure.

 o You (or another user connected to your directory) log off the
 system.

 The EXPUNGE command erases all files marked for deletion since the
 last time the directory was expunged. Deleting and erasing files are
 separate operations. Therefore, once you delete a file, it does not
 immediately disappear. If you delete a file by mistake, you can type
 the UNDELETE command to restore the file to your directory. Type this
 command as soon as you detect your mistake; otherwise, you may not be
 able to restore the file. You cannot restore a file once you log off
 the system.

 To delete the file TEST.FIL from your directory, give the following
 command:

 @DELETE (FILES) TEST.FIL
 TEST.FIL.5 [OK]

 You can give the DIRECTORY command with the deleted subcommand to list
 all the files that have been deleted but not yet expunged.

 @DIRECTORY (OF FILES) TEST.FIL.5,
 @@DELETED
 @@

 PS:<PORADA>
 TEST.FIL.5

 To restore TEST.FIL, give the UNDELETE command.

 @UNDELETE (FILES) TEST.FIL.5
 TEST.FIL.5 [OK]

 If you give the DIRECTORY command again, you will see that the file
 has been restored in your directory.

 6-20

 USING DISK FILES

 If you delete a file and give the EXPUNGE command, the file is erased
 immediately.

 @DELETE (FILES) TEST.FIL
 TEST.FIL.5 [OK]
 @EXPUNGE (DELETED FILES)
 PS:<PORADA> [3 pages freed]

 If you expunge a file by mistake, contact the operator. Most systems
 keep backup tapes from which you can obtain an older version of the
 file. If you expunge a newly-created file, one that has not been
 backed-up on tape, you cannot recover it.

 CAUTION

 Do not delete files and plan to undelete them at a
 later time, because deleted files may be expunged by
 the system at any time.

 6.11 CREATING TEMPORARY FILES

 When you have a file that you need only for the current terminal
 session, such as a scratch file, give the file the ;T attribute. The
 ;T attribute indicates that the file is temporary. When you log off
 the system, the system deletes and expunges any temporary files in
 your logged-in and/or connected directories.

 One way to create a temporary file is to use the COPY TTY: command.
 This command simulates the action of the CREATE command by copying the
 text you type on your terminal (device TTY:) to a file.

 Give the COPY TTY: command, type the contents of the file and end
 your input with a CTRL/Z:

 @COPY (FROM) TTY: (TO) TEMP.FIL;T
 TTY: => TEMP.FIL.100160;T

 ESCAPE 031
 EXTENDED
 OPAQUE
 PAGE
 ^Z

 To give an existing file the ;T attribute, use the RENAME command.

 @RENAME (EXISTING FILE) SCRATCH.FIL (TO BE) SCRATCH.FIL;T
 SCRATCH.FIL.1 => SCRATCH.FIL.100014;T [OK]

 6-21

 USING DISK FILES

 Do not use recognition input to print the second file name in the
 RENAME command. Recognition prints the comment !New generation!
 after the file specification and causes the ;T attribute to be
 ignored.

 You can assign any generation number to a temporary file. If you do
 not specify a generation number, the system assigns the file a
 generation number of 100000 plus your job number. In the above
 example, the user's job number is 14; the system added 100000 for a
 generation number of 100014. Two users connected to the same
 directory can both create temporary files; however, if one user logs
 off, the other user's temporary files are not deleted, because the
 files are identified by different job numbers.

 Refer to Appendix C of the TOPS-20 Commands Reference Manual for a
 complete list of file attributes.

 6.12 REGULATING DISK FILE STORAGE

 The system manager sets an upper limit on the amount of disk space for
 each directory on the system. This disk space, referred to as
 directory storage allocation, is allotted as a number of pages.

 Each directory receives a specific number of pages. To see the number
 of pages allocated to your directory, and the number of pages you are
 using, give the INFORMATION DISK-USAGE command.

 @INFORMATION (ABOUT) DISK-USAGE (OF DIRECTORY) <SARTINI>
 PS:<SARTINI>
 37 Pages assigned
 50 Working pages, 50 Permanent pages allowed
 34142 Pages free on PS:

 In the example above, user SARTINI has 37 pages assigned to his
 directory, and a working storage allocation and permanent storage
 allocation of 50 pages. There are 34142 free pages remaining on this
 file structure.

 The system automatically checks your working storage allocation
 whenever you create a new file page. If you are over that allocation,
 it prints the message "?Disk or directory full, or quota exceeded" and
 does not let you continue writing to your file. You can delete any
 unimportant or temporary files and expunge the directory to get under
 your working allocation.

 6-22

 USING DISK FILES

 Whenever you give a LOGIN or LOGOUT command or connect to another
 directory, the system checks the permanent disk storage allocation of
 your connected directory. If it is exceeded, the system prints a
 message in the form:

 <directory> Over permanent storage allocation by n page(s)

 CAUTION

 If you exceed your working storage allocation, the
 system programs listed in Table 4-2 expunge any
 deleted files. When a system program expunges deleted
 files, it prints a message; however, once you see the
 message, you cannot halt the expunging process.

 Depending upon the policy at your installation, if you do not regulate
 your own disk storage allocation, the operator may regulate it for you
 by running a system program to move some of your disk files to
 magnetic tape for short-term off-line storage. This program looks for
 directories that are over quota and moves files from the directories
 until they are under quota. The operator runs this program as often
 as required to bring directories under quota. This forced migration
 of files from disk to tape is used to keep the system disk space free.

 The system manager determines which type of files the program moves to
 tape storage. However, if you want to specify a particular order in
 which you want the files moved when the operator runs the program, you
 can include a MIGRATION.ORDER file in your log-in directory. In the
 MIGRATION.ORDER file, you can list the files you want moved first.
 For example, to request that temporary files and files with the .LST
 file type be migrated before your other files, place this line in the
 MIGRATION.ORDER file:

 *.TMP, *.LST

 The SET FILE RESIST command also gives you some control over
 involuntary file removal. It delays migration of the specified files
 for as long as possible.

 @SET FILE RESIST (MIGRATION OF FILES) MEMO.INI
 MEMO.INI.1 [OK]

 The file MEMO.INI will be among the last files to be removed from the
 disk.

 6-23

 USING DISK FILES

 To see the files that will "resist" migration, give the DIRECTORY
 command with the RESIST-MIGRATION subcommand:

 @DIRECTORY (OF FILES) ,
 @@RESIST-MIGRATION (FILES ONLY)
 @@

 PS:<TUCKER.USER>
 MEMO.INI.1
 USEDOC.DST.3
 USEPLN.DST.2

 Total of 3 files

 To see the files that were moved to off-line storage by the system
 program, give the DIRECTORY command. Next to the names of the files
 that were moved, the system prints ;OFFLINE.

 @DIRECTORY (OF FILES)

 PS:<SARTINI>
 2TEST.DAT.3
 NEWACCT.LST.1;OFFLINE
 OVERVIEW.LST.10;OFFLINE
 SQUARE.B20.1

 Total of 4 files

 If you need to use the file, give the RETRIEVE command followed by the
 name of the file. The RETRIEVE command notifies the system that you
 are requesting the restoration of the file from off-line storage.

 @RETRIEVE (FILES) MYTEST.DAT.1

 MYTEST.DAT.1 [OK]

 To see your retrieval request, give the INFORMATION RETRIEVAL-REQUESTS
 command. The system prints a list of requests in the retrieval queue.

 @INFORMATION (ABOUT) RETRIEVAL-REQUESTS

 Retrieval Queue:
 Name Req# Tape 1 Tape 2 User
 ------ ---- ------ ------ ---------------------
 ADVENT 6 5845 5641 ENGEL
 CHESS 7 5845 5641 ENGEL
 MYTEST 68 5854 5852 SARTINI
 OTHELL 9 5641 8459 ENGEL
 There are 4 jobs in the Queue (None in Progress)

 6-24

 USING DISK FILES

 You can remove any retrieval requests before the contents of the
 off-line file are restored to disk by using the CANCEL command.

 @CANCEL (REQUEST TYPE) RETRIEVE (ID) MYTEST
 [1 Job canceled]

 6.13 LONG TERM OFF-LINE FILE STORAGE

 If you have disk files that you do not use, but want to keep, you can
 mark these files for extended off-line storage by using the ARCHIVE
 command. The operator periodically runs a program that moves the
 files marked for archiving from disk to magnetic tape for off-line
 storage. After the program moves the files to tape, it sends a
 message through the MAIL program telling you the file has been
 archived and its contents deleted from the disk. Your system manager
 can tell you which files you should archive, and how long they will be
 stored. The system manager can also tell you how often the operator
 runs the program to move the files marked for archiving.

 You can also use DUMPER for off-line storage. Refer to the DUMPER
 description in the TOPS-20 User Utilities Guide for more information.

 6.13.1 Archiving Files

 To mark a file for archiving, give the ARCHIVE command, followed by
 the name of the file you want archived.

 @ARCHIVE (FILES) CHECK.TXT
 CHECK.TXT.1 [Requested]

 6.13.2 Getting Information about Archive Status of Files

 To see that the file is marked for archiving, give the INFORMATION
 ARCHIVE-STATUS command, followed by the name of the file.

 @INFORMATION (ABOUT) ARCHIVE-STATUS (OF FILES) CHECK.TXT
 CHECK.TXT.1 Archive requested

 You can also give the INFORMATION ARCHIVE-STATUS command without any
 argument. The system prints a list of your files that are archived,
 and files for which archiving has been requested.

 6-25

 USING DISK FILES

 Once you mark a file for archiving, the name of the file no longer
 appears when you give the DIRECTORY command. To see which files are
 archived, and which files are marked for archiving, give the
 subcommand ARCHIVE to the DIRECTORY command. The files that are
 already archived will have the comment ;OFFLINE next to the filename.

 @DIRECTORY,
 @@ARCHIVE
 @@

 PS:<SARTINI>

 CHAPT21.TCT.1;OFFLINE
 CHECK.TXT.1

 Total of 2 files

 When you mark a file for archiving, you cannot modify, delete, or copy
 the file. The file does not appear in your directory unless you
 include the ARCHIVE subcommand in the DIRECTORY command.

 6.13.3 Canceling an Archive Request

 If you decide that you do not want to archive the file, give the
 CANCEL command to remove the archival request. You can give the
 CANCEL command as long as the file is still in archival request
 status, that is, as long as the INFORMATION ARCHIVE-STATUS command
 shows that archive is requested but not completed.

 @CANCEL (REQUEST TYPE) ARCHIVE (FOR FILES) CHECK.TXT
 CHECK.TXT.1 [OK]

 6.13.4 Retrieving an Archived File

 Once a file is archived, it is stored off-line on magnetic tape. If
 you need to use the file again, give the RETRIEVE command. The
 RETRIEVE command notifies the system that you are requesting the
 restoration of the file from off-line storage. To actually restore
 the file, the operator mounts the magnetic tape containing the
 archived file, and moves the file to your directory on disk.

 @RETRIEVE (FILES) CHAP21.TCT
 CHAP21.TCT.1 [OK]

 6-26

 USING DISK FILES

 To see your retrieval request, give the INFORMATION RETRIEVAL-REQUESTS
 command. The system prints a list of the requests in the retrieval
 queue.

 @INFORMATION (ABOUT) RETRIEVAL-REQUESTS

 Retrieval Queue:
 Name Req# Tape 1 Tape 2 User
 ------ ---- ------ ------ ---------------------
 CHAP21 48 5520 5543 SARTINI
 There is 1 job in the queue (none in progress)

 Once your archived file is restored to disk, you must copy its
 contents to a new file before you modify it. You must use a copy of
 the file because you cannot alter an archived file in any way, even
 after it is restored to disk.

 You can cancel any retrieval requests before the archived file
 contents are restored to disk, by using the CANCEL RETRIEVE command.

 @CANCEL (REQUEST TYPE) RETRIEVE (ID) CHAP21
 [1 Job Canceled]

 6.13.5 Deleting an Archived File

 If you decide that you will never need the tape copy of an archived
 file, delete the file with the DISCARD command. The DISCARD command
 does not delete the file itself, but it deletes the pointer from your
 directory to the file copy on tape. The tape copy of the file is
 actually deleted when the operator recycles tapes that contain files
 that have passed their expiration dates and/or have their pointers
 deleted.

 After you give the DISCARD command, the operator sends you a mail
 message that contains information about the discarded file. If you
 wish to use the tape copy, you may be able to recover it using this
 information, as long as the tape has not yet been recycled.

 If you have a disk copy of an archived file, the DISCARD command
 restores this file to its normal status.

 6.13.6 Archiving Expired Files Automatically

 There are several dates associated with each file you create. One of
 these dates is the on-line expiration date, which determines when a
 file's disk contents may be automatically moved to off-line storage.
 The SET DIRECTORY ARCHIVE-ONLINE-EXPIRED-FILES command enables this
 automatic archiving. This command is discussed at the end of the
 section.

 6-27

 USING DISK FILES

 On-line expiration dates are displayed with the DIRECTORY command:

 @DIRECTORY (OF FILES) ,
 @@DATES (OF) ONLINE-EXPIRATION
 @@

 PS:<TUCKER.USER>
 Online expiration

 ARCHIV.MEM.4 3-May-88
 .QNO.15 5-May-88
 .RNO.15 21-Nov-88
 COMAND.CMD.5 21-Nov-88
 MEMO.INI.1 8-Apr-88
 USER.RNO.2 8-Apr-88

 Total of 6 files

 The system manager establishes a systemwide on-line expiration date,
 but you can override the system default with the SET DIRECTORY
 ONLINE-EXPIRATION-DEFAULT command:

 @SET DIRECTORY ONLINE-EXPIRATION-DEFAULT (OF DIRECTORY) -
 <TUCKER> (TO) 26-NOV-88

 You can specify a time interval rather than a specific date:

 @SET DIRECTORY ONLINE-EXPIRATION-DEFAULT (OF DIRECTORY) -
 <TUCKER> (TO) +30

 The command above sets the on-line expiration date to 30 days from the
 creation date.

 You can also establish on-line expiration dates for individual files:

 @SET FILE ONLINE-EXPIRATION (OF FILES) MEMO.INI (TO) +120
 MEMO.INI.1 [OK]

 If you want a file to be immediately available for archiving, give the
 SET FILE EXPIRED command:

 @SET FILE EXPIRED (FILES) PENDING.Q
 PENDING.Q.11 [OK]

 The command above sets the expiration date to today's date.

 When you are satisfied with the on-line expiration dates for your
 files, you can indicate that the system is to mark them for archiving
 when the expiration dates are reached:

 @SET DIRECTORY ARCHIVE-ONLINE-EXPIRED-FILES (OF DIRECTORY) -
 <TUCKER>

 6-28

 USING DISK FILES

 You also have the choice of leaving expired files in your directory
 until a possible forced migration:

 @SET DIRECTORY NO ARCHIVE-ONLINE-EXPIRED-FILES (OF DIRECTORY) -
 <TUCKER>

 This is the default setting for directories.

 To see if expired files in your directory will be automatically
 archived, give the INFORMATION DIRECTORY command:

 @INFORMATION (ABOUT) DIRECTORY (DIRECTORY NAME) <TUCKER>
 Name PS:<TUCKER>
 .
 .
 Archive online expired files
 .
 .

 The line "Archive online expired files" indicates that automatic
 archiving will take place. If the SET DIRECTORY NO
 ARCHIVE-ONLINE-EXPIRED-FILES command is in effect, this line does not
 appear in the information display.

 6.14 VISIBLE AND INVISIBLE FILES

 Typically, you will have files that are not currently in use and
 cluttering your directory. You can clean up a directory by moving the
 files to tape (archiving), or to other directories, or by making your
 infrequently used files invisible.

 An invisible file is not displayed by a simple DIRECTORY command and
 is not accessible to programs and EXEC commands. The ARCHIVE command
 automatically makes files invisible. When you RETRIEVE archived
 files, they will remain invisible when restored to disk.

 To make a file invisible, use the SET FILE INVISIBLE command. To make
 an invisible file visible again, use the SET FILE VISIBLE command. To
 display your invisible files, use the DIRECTORY command with the
 INVISIBLE subcommand.

 6-29

 CHAPTER 7

 USING MAGNETIC TAPE

 This chapter describes:

 o Using magnetic tape storage (Section 7.1)

 o Using unlabelled tapes (Section 7.2)

 o Using labelled tapes (Section 7.3)

 7.1 USING MAGNETIC TAPE STORAGE

 Magnetic tape provides off-line storage for data. You put data onto
 tape for storage using the COPY command, DUMPER program, or a program
 of your own. (For a complete description of the DUMPER program, refer
 to the TOPS-20 User Utilities Guide.) Tapes can be labelled or
 unlabelled. An unlabelled tape is identified only by a gummed label
 on the outside of the tape reel. A labelled tape is identified by the
 information contained internally on the tape as well as a gummed label
 on the outside of the tape reel. Refer to the TOPS-20 Tape Processing
 Manual for more information on labelled and unlabelled tapes.

 7.2 USING UNLABELLED TAPES

 Before you use an unlabelled tape, give the INFORMATION SYSTEM-STATUS
 command to find out if the tape allocation facility of TOPS-20 is
 enabled. The process to gain and release access to a tape differs,
 depending upon whether this tape allocation facility is in use.
 (Refer to the TOPS-20 System Manager's Guide for an explanation of
 tape allocation.)

 7-1

 USING MAGNETIC TAPE

 7.2.1 Using Unlabelled Tapes with Tape Allocation Enabled

 If tape allocation is enabled on your system, you can mount an
 unlabelled tape by giving the MOUNT TAPE command followed by the name
 of the tape (the name that appears on the gummed label). Before you
 give the MOUNT TAPE command, tell the operator the name you selected
 for your tape or ask him to get the tape from the tape library. After
 you give the MOUNT TAPE command, you must wait until the operator
 mounts the tape, and the system prints a message telling you that the
 tape is mounted.

 @MOUNT TAPE (NAME) ACE1:
 [Tape set ACE1, volume ACE1 mounted]
 [ACE1: defined as MT0:]

 You can include the /NOWAIT switch with your MOUNT TAPE command. By
 including this switch, you do not have to wait for a response from the
 operator and you can continue working until the tape is mounted. When
 you use the /NOWAIT switch, you can also check on your mount request
 by giving the INFORMATION MOUNT-REQUESTS command.

 @MOUNT TAPE (NAME) ACE1: /NOWAIT

 If you want to remove the request from the queue before the tape is
 mounted, type a CTRL/C to return to command level, then give the
 CANCEL MOUNT command. If you included a /NOWAIT switch with the MOUNT
 TAPE command, you can simply give the CANCEL MOUNT command.

 After the operator mounts the tape, the system sends a message
 advising you that the tape is ready for your use. You can now run
 your program.

 When you complete your work, give the DISMOUNT TAPE command, followed
 by the name of the tape. The system prints a message telling you that
 the tape is dismounted.

 @DISMOUNT TAPE (NAME) ACE1:
 [Tape dismounted, logical name ACE1: deleted]

 7.2.2 Using Unlabeled Tapes with Tape Allocation Disabled

 If tape allocation is not enabled on your system, you must first
 assign a tape drive for your job. To find out which tape devices are
 available, give the INFORMATION AVAILABLE-DEVICES command.

 @INFORMATION (ABOUT) AVAILABLE-DEVICES
 Devices available to this job:
 DSK, PS, ADMIN, MTA1, MTA2, LPT, CDR, PTY15, NUL
 Devices assigned to/opened by this job: TTY23

 7-2

 USING MAGNETIC TAPE

 Assign one of the devices beginning with 'MTA'. The example shows
 assigning drive 2.

 @ASSIGN (DEVICE) MTA2:

 After assigning the drive to your job, you can run the PLEASE program
 and ask the operator to mount your tape.

 @PLEASE
 Enter text, terminate with CTRL/Z to wait for response
 Or ESC to send message and Exit
 Please mount tape TEST:<CTRL/Z>
 [PLSOPN Operator at GIDNEY has been notified at 11:18:32]

 11:36:04 From Operator at terminal 2
 =>Your tape is mounted

 Enter new text (Same terminators)

 Thanks<ESC>

 When you complete your work, give the UNLOAD command. This command
 unloads the magnetic tape by rewinding it entirely onto the source
 reel.

 After you give the UNLOAD command, give the DEASSIGN command. The
 DEASSIGN command returns the device you had previously ASSIGNed back
 to the pool of available devices. If you forget to do this, no other
 user can use the device until you log out.

 7.2.3 Setting Tape Parameters

 You must make sure that you read and write the data on the tape with
 the proper tape parameters set. Give the INFORMATION TAPE-PARAMETERS
 command.

 @INFORMATION (ABOUT) TAPE-PARAMETERS
 SET TAPE DENSITY 1600
 SET TAPE PARITY ODD
 SET TAPE FORMAT CORE-DUMP
 SET TAPE RECORD-LENGTH 512

 These parameters work for most tape transfers; if you have to change
 any of the parameters, give the SET TAPE command.

 @SET TAPE DENSITY (TO) 800

 These changed parameters remain in effect until you log off, or change
 the parameters.

 7-3

 USING MAGNETIC TAPE

 NOTE

 Not every tape drive supports every parameter. Check
 with your system manager to find out what drive types
 are available on your system and which parameters work
 with each drive type.

 If you set a parameter by giving a DUMPER command, that parameter
 affects only the DUMPER operations and does not change your job
 defaults. For a complete description of DUMPER, refer to the TOPS-20
 User Utilities Guide.

 7.2.4 Positioning the Tape

 There are commands that position a magnetic tape: BACKSPACE, REWIND,
 and SKIP. The BACKSPACE command backspaces the tape over a certain
 number of records or files on unlabeled tapes, and over a certain
 number of files on labeled tapes; the REWIND command rewinds the tape
 to the beginning of the tape; the SKIP command advances the magnetic
 tape a certain number of records or files on unlabeled tapes, and a
 certain number of files on labeled tapes.

 @SKIP (DEVICE) MTA2: 4 FILES

 7.3 USING LABELLED TAPES

 The operator creates the labelled tapes for you through a process
 called initialization. When a tape is initialized, the system
 actually writes specific information on the tape. Included in this
 information is a volume identifier, also called a VOLID. The VOLID is
 a unique number assigned to the tape.

 Once the operator creates the labelled tape, you can give the MOUNT
 TAPE command followed by the tape volid or the setname you selected
 for your tape(s). In the following example, the /NEW switch specifies
 that you are creating a new tape with the tape setname ABCD:. For a
 complete list of switches to use with the MOUNT TAPE command, refer to
 the TOPS-20 Commands Reference Manual.

 @MOUNT TAPE (NAME) ABCD:/NEW
 [Tape set ABCD, volume 002001 mounted]
 [TEST: defined as MT2:]

 After the operator mounts the tape, the system sends a message
 advising you that the tape is ready for your use and which drive you
 have been assigned. You can now run your program.

 7-4

 USING MAGNETIC TAPE

 If your program requires additional tapes to complete the job, the
 operator will automatically mount the additional tapes. The system
 does not notify you of the volids of the additional tapes. To find
 out the volids of the additional tapes you can give the INFORMATION
 VOLUMES command, followed by the tape set name to obtain a list of the
 volume identifiers for each tape in the tape set. In the following
 example, the tape set name ABCD: contains three tapes with the volids
 of 002001, 002002, and 002003:

 @INFORMATION (ABOUT) VOLUMES (OF TAPE) ABCD:
 Volumes of tape set ABCD: 002001, 002002, 002003

 To read an existing tape set containing several volumes, include the
 tape setname and the /VOLIDS: switch in the MOUNT TAPE command.

 @MOUNT TAPE (NAME) ABCD:/VOLIDS: 002001,002002,002003
 [Tape set ABCD, volume 002001 mounted]
 [ABCD: defined as MT2:]

 You can also mount a specific volume in the tape set by specifying the
 /START switch followed by the volid for that specific volume. For
 example, if you want to mount the second volume in the tape set name
 ABCD:, give the following command.

 @MOUNT TAPE (NAME) ABCD:/VOLIDS:002001,002002,002003 -
 /START:VOLUME 002002
 [Tape set ABCD, volume 002002 mounted]
 [ABCD: defined as MT0:]

 The operator mounts the tape, and the system prints a message telling
 you that the tape that you requested is mounted.

 If you include the /NOWAIT switch in the MOUNT TAPE command you can
 check on your request to mount the tape, by giving the INFORMATION
 MOUNT-REQUESTS command. The system prints a list of mount requests in
 the queue, and indicates the status of the request.

 @INFORMATION (ABOUT) MOUNT-REQUESTS

 Mount Queue:
 Volume Status Type Dens Write Req# Job# User
 ------- -------- ---- ---- ------- ------ ---- ---------
 MCBFT2 MTA2 Tape 1600 32 18 SROBINSON
 ASDF MTA3 Tape defa Enabled 73 36 KONEN
 002002 MTA0 Tape 6250 Enabled 74 7 SARTINI

 There are 3 requests in the queue

 7-5

 USING MAGNETIC TAPE

 If you want to remove your mount request from the queue, give the
 CANCEL MOUNT command, followed by the tape setname. You must first
 give a CTRL/C to get out of the MOUNT command before you can cancel
 the mount request. If you included the /NOWAIT switch, you can simply
 give the CANCEL MOUNT command. You can give the CANCEL MOUNT command
 as long as the request is in waiting status, that is, as long as the
 operator has not mounted the tape.

 @CANCEL (REQUEST TYPE) MOUNT ABCD:
 [1 mount request canceled]

 When you no longer need to access the tape, give the DISMOUNT TAPE
 command, followed by the tape setname.

 @DISMOUNT TAPE ABCD:
 [Tape dismounted, Logical name ABCD: deleted]

 7-6

 CHAPTER 8

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 This chapter describes:

 o Running system programs (Section 8.1)

 o Giving commands to system programs (Section 8.2)

 o Getting information about system features (Section 8.3)

 o Running user programs (Section 8.4)

 o Controlling programs (Section 8.5)

 o Running programs without destroying memory (Section 8.6)

 o Running multiple programs (Section 8.7)

 8.1 RUNNING SYSTEM PROGRAMS

 The TOPS-20 system has many system programs. To get a complete list
 of the programs available, contact your system manager. The HELP ?
 command prints a list of the programs explained by the HELP program.

 In general, a system program produces an output file by performing
 some operation on an input file. Some programs perform different
 functions, depending on the file type of the input file; however,
 unless you specifically request it, the program does not destroy your
 input file. You can give a particular name to your output file or let
 it take a default name. The program creates default names by keeping
 the name of the input file and changing the file type. For instance,
 the default output name used by the RUNOFF program is the input
 filename with the file type .MEM.

 8-1

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 To run any of the system programs provided with TOPS-20, type the name
 of the program, and press RETURN. The following example shows how to
 start the DUMPER program:

 @DUMPER !Type DUMPER and press RETURN.
 DUMPER> !DUMPER starts
 !And waits for a command

 8.2 GIVING COMMANDS TO SYSTEM PROGRAMS

 Once the system program responds with its prompt, you can give the
 program a command. There are two types of prompts from the system
 program.

 Some programs respond by printing an asterisk on the terminal. You
 can then type a command in the following format:

 desination-filespec = source-filespec

 destination file specification = source file specification(s)
 /switch(es)

 You cannot use recognition on file specifications or switches when you
 run any of the programs listed in Table 4-2, Special System Programs.

 Other system programs respond by printing a prompt that identifies the
 program, such as the prompt for the DUMPER program.

 @DUMPER
 DUMPER>

 You can use recognition on commands and arguments to these programs.

 8-2

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 8.2.1 Example: Using a System Program

 The FILCOM (for FILe COMparison) program which compares two files and
 indicates the differences between them, works as follows:

 1. Create two files that are similar but not identical. You may
 create two files of your own or use the files created in the
 following example:

 @CREATE (FILE) FIRST.FIL
 Input: FIRST.FIL.1
 00100 TYPE 101
 00200 101 FORMAT ('THIS PROGRAM WAS WRITTEN FIRST.')
 00300 TYPE 102
 00400 102 FORMAT ('BUT THE TWO PROGRAMS ARE SIMILAR.')
 00500 END

 [FIRST.FIL.1]
 @

 @CREATE (FILE) SECOND.FIL
 Input: SECOND.FIL.1
 00100 TYPE 101
 00200 101 FORMAT ('THIS PROGRAM WAS WRITTEN SECOND.')
 00300 TYPE 102
 00400 102 FORMAT ('BUT THE TWO PROGRAMS ARE SIMILAR.')
 00500 END
 *E

 [SECOND.FIL.1]
 @

 2. Start the FILCOM program by typing FILCOM and pressing the
 RETURN key. When FILCOM is ready, it prints an asterisk on
 your terminal:

 @FILCOM

 *

 3. Tell FILCOM which files to compare and what to do with the
 results of the comparison. For this example, type the line:

 *TTY:=FIRST.FIL,SECOND.FIL

 This line tells FILCOM to compare the two files and print the
 results on your terminal (TTY stands for terminal.) If,
 instead, you want to store the results in the file PROG.DIF,
 type the line:

 *PROG.DIF=FIRST.FIL,SECOND.FIL

 8-3

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 4. Press RETURN at the end of the line to execute the command

 *TTY:=FIRST.FIL,SECOND.FIL
 File 1) DSK:FIRST.FIL[4,16] created: 0837 10-Jun-1988
 File 2) DSK:SECOND.FIL[4,16] created: 0839 10-Jun-1988

 1)1 00200 101 FORMAT ('THIS PROGRAM WAS WRITTEN FIRST.')
 1) 00300 TYPE 102

 2)1 00200 101 FORMAT ('THIS PROGRAM WAS WRITTEN SECOND.')
 2) 00300 TYPE 102

 %files are different

 *

 In the comparison, lines preceded by a 1) are from the first file,
 FIRST.FIL. Lines preceded by a 2) are from the second file,
 SECOND.FIL. FILCOM puts an extra number beside the lines that differ,
 and then prints the line. After each of the differing lines, FILCOM
 prints the next line (for example, TYPE 102), so that you can easily
 find your place in the files.

 After the first comparison, FILCOM prints another asterisk to show
 that it is ready to do more work. This time, let FILCOM compare the
 files but print only the second file. If there are any differences
 between the second file and the first, request FILCOM to put a
 vertical bar in the left column beside any such line. The switch /U
 does this.

 *TTY:=FIRST.FIL,SECOND.FIL/U

 00100 TYPE 101
 : 00200 101 FORMAT ('THIS PROGRAM WAS WRITTEN SECOND')
 00300 TYPE 102
 00400 102 FORMAT ('BUT THE TWO PROGRAMS ARE SIMILAR.')
 00500 END

 %files are different

 *

 Now, to exit FILCOM, type a CTRL/C. The system prints the @.

 *^C
 @

 You can run many system programs in this manner. Some programs behave
 differently. For help, type HELP and the program name. If you cannot
 obtain any information, contact your system manager.

 8-4

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 8.3 GETTING INFORMATION ABOUT SYSTEM FEATURES

 The HELP program gives you useful information about the commands for
 various programs of the TOPS-20 system. The simplest way to run the
 HELP program is to type HELP and press the RETURN key. TOPS-20 then
 responds with the general instructions for obtaining information.

 @HELP

 HELP Command ====
 The HELP command prints helpful documentation on various system
 features, The command

 @HELP
 will print this message on your terminal.

 @HELP NAME
 will look for, and print out information about the system feature
 names in "NAME". For example,

 @HELP EDIT
 will print out information about the EDIT program.

 @HELP ?
 will give a list of features for which HELP is available and
 retype to wait for any additional input.

 [End of HELP.HLP]
 @

 To get information about a system feature, type HELP, followed by a
 space and a question mark. The system prints a list of features for
 which it has information.

 @HELP ? one of the following:
| 68274 8700 ACCT20 ACL ACTGEN ADJPSX ALGDDT
| ALGOL APL APLSF ASTROL BLAST BLIS10 BLIS11
| BLISS BLSCRF BOX CALC CALMNT CALN CBL74
| CHANGE CHECKD CHESS CHKPNT CMPTXT CMS CN
| CNVDSK COBDDT COBOL CONGEN CONTEN CONTNT CONV20
| .
| .
| .
| SNOBOL SORT SOUP STEP SYSERR SYSJOB TAR
| TCX TERMINAL TGHA TMSTAP TOC TRAK20 TRANSF
| TRANSL TTYINI TUTIO TV TYPVF7 ULIST UNITS
| US USAG20 USAH20 VAXTAP VTECO WATCH WATCH-NEW
| XEROX XOUT
 or confirm with carriage return

 8-5

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 To get help on a specific feature, type HELP and the name of a system
 program as an argument. TOPS-20 then responds with the information
 available about that program.

 @HELP FILCOM
 FILCOM V21B(60)

 FILCOM compares two files in either ASCII mode
 or binary depending upon switches or file name extensions.
 All standard binary extensions are recognized as binary by
 default.
 Switches are :-
 /A compare in ASCII mode
 /B allow compare of Blank lines
 /C ignore Comments and spacing
 /E file is in .EXE format
 /S ignore Spacing
 /H type this Help text
 /#L Lower limit for partial compare
 or number of Lines to be matched
 (# represents an octal number)
 /#U Upper limit for partial compare
 /Q quick compare only, give error message if files differ
 /U compare in ASCII Update mode
 /W compare in Word mode but don't expand files
 /X expand files before word mode compare

 @

 Note that many programs also have a HELP command. /H is the help
 command for programs that have an * prompt, while HELP is the command
 for programs using the program name and > prompt; for example, DUMPER.

 8.4 RUNNING USER PROGRAMS

 To run your own executable program in your connected directory, give
 the RUN command. In the following example, run the program LESTSQ:

 @RUN (PROGRAM) LESTSQ

 Files with the file type .EXE contain executable programs. An
 executable program is a program that has already been compiled,
 loaded, and saved. (Refer to Section 9.1.)

 8-6

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 To run another user's program, give the file specification with the
 RUN command:

 @RUN (PROGRAM) <HOLLAND>TEST

 You must have read and/or execute access to the file and access to the
 directory.

 8.5 CONTROLLING PROGRAMS

 You can control programs by using three control characters: CTRL/C,
 CTRL/O and CTRL/T. CTRL/C halts the execution of a program; CTRL/O
 controls output to your terminal; CTRL/T checks the status of a
 running program.

 8.5.1 Typing CTRL/C to Halt Execution

 You may want to stop your program for several reasons.

 o Unexpected things may happen in your program and it does not
 complete execution.

 o You may write your program to get information from another
 file, and during execution of the program find that the other
 file does not exist.

 o You may want to perform some other task.

 To stop an executing program or command, type two CTRL/Cs. Only
 one CTRL/C echoes on the terminal. The program (or command) stops
 and returns you to command level. In the following example, you
 decide to stop your program.

 @EXECUTE (FROM) SQRT.ALG
 ALGOL: SQRT
 LINK: Loading

 ALGOL Running at 701105 Used 0:00:04.5 in 0:01:49
 ^C
 @

 You can now give any command that does not change the contents of
 memory; for example, the TERMINAL command. (You can give commands
 that change memory if you have "kept" forks in memory. Refer to
 Section 8.7 Running Multiple Programs). When you are finished, give
 the CONTINUE command and the program resumes where it left off. (The
 CONTINUE command will not continue a TOPS-20 command that you
 interrupted.)

 8-7

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 Some programs (such as APL, BASIC, and EDIT) intercept the CTRL/C and
 do not return you to TOPS-20 command level. In these special cases,
 refer to the description of the particular program to return to
 TOPS-20 command level.

 The system does not respond immediately to a single CTRL/C, but waits
 for the time when you would normally give input to the program.
 However, the system processes two CTRL/Cs immediately.

 8.5.2 Typing CTRL/O to Stop Output to Your Terminal

 To stop terminal output but not execution, type CTRL/O. The system
 prints:

 ^O...

 and stops all output to the terminal. The program (or command) still
 executes, but no output appears on the terminal. When the program (or
 command) finishes, the system prints the TOPS-20 prompt.

 @DIRECTORY (OF FILES) *.FOR

 PS:<MILLER>
 ARDVRK.FOR.1
 BASTST.FOR.3
 ^O...

 If you stop output on the terminal and want to resume printing later
 during the execution of the same program or command, type another
 CTRL/O.

 @DIRECTORY (OF FILES) *.CBL

 PS:<MILLER>
 ANDTST.CBL.6
 BEHIND.CBL.2
 DEVCHR.CBL.4
 ^O...
 WOBBLE.CBL.3
 XTMP.CBL.9
 Total of 34 files

 Each successive pair of CTRL/Os stops and resumes terminal output.

 The effect of CTRL/O is cancelled when the program requests terminal
 input.

 8-8

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 8.5.3 Typing CTRL/T to Print the Run Status

 You can check the progress of your program even while it is running.
 To do this, type CTRL/T.

 The response from CTRL/T shows:

 1. The current time

 2. The status of your program

 3. The amount of computer time used

 4. The time elapsed since you logged in

 In the example below, you type a CTRL/T immediately after the computer
 prints ALGOL:SQRT. At that time, the program is executing the
 instruction stored in memory location 540016. Up to this point, you
 have used 15.9 seconds of computer time while being logged in for 17
 minutes and 2 seconds.

 @EXECUTE (FROM) SQRT.ALG
 ALGOL: SQRT<CTRL/T>
 09:36:35 SQRT Running at 540016 Used 00:00:15.9 in 0:17:02,
 Load 2.08
 LINK: Loading
 [LNKXCT SQRT Execution]

 TYPE THE VALUE OF X: 4

 THE SQUAREROOT OF 4.000 IS 2.000

 End of execution.
 @

 Depending on when you press CTRL/T, other possible responses are:

 IO WAIT AT location This means that your program is probably
 waiting for you to type something.

 HALT AT location This means that your program has
 finished.

 The symbol "location" is a 6-digit octal number that tells you which
 instruction in computer memory is currently being executed.

 Typing a CTRL/T does not interfere with the running of your program in
 any way. However, if your program is printing information on your
 terminal at the same time that you type a CTRL/T, the response from
 CTRL/T is mixed with the information from your program.

 8-9

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 The information is in the form:

 time name status Used CPU-time in logged-in-time, Load average

 The status message tells you the status of the program. Table 8-1
 lists some of the common status messages.

 Table 8-1: CTRL/T Status Messages

 Message Means the Process is:

 RUNNING AT pc Running
 IO WAIT AT pc Doing input or output
 HALT AT pc Stopped
 FORK WAIT AT pc Waiting for a process to terminate
 SLEEP AT pc Temporarily suspended

 pc is the memory location of the current instruction being
 executed. You can cause this location to be displayed as either a
 symbol or an octal address by using the SET TYPEOUT MODE command.
 Refer to the TOPS-20 Commands Reference Manual for information on
 SET TYPEOUT MODE.
 __

 The load average gives a rough indication of current system use, and
 thus helps you estimate the length of time your program will take to
 run. Higher load averages tend to indicate heavy use and slow system
 response. Refer to the TOPS-20 WATCH document for further information
 on load averages.

 If you stop the program by typing a CTRL/C, the system may precede any
 of the messages in Table 8-1 with ^C FROM. If a process terminates
 unexpectedly, the CTRL/T message prints in the form:

 HALT: reason

 where reason can be one of the messages listed in Table 8-2.

 8-10

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 Table 8-2: Unexpected Process Termination Messages

 __

 CHANNEL n INTERRUPT AT pc
 There is a software interrupt on channel n when
 executing the instruction located at pc.

 OVERFLOW AT pc
 There is an integer overflow when executing the
 instruction at location pc.

 FLOATING OVERFLOW AT pc
 There is a floating point overflow when performing
 a floating point operation at location pc.

 PUSHDOWN OVERFLOW AT pc
 There is an overflow during a pushdown stack
 operation at location pc.

 END-OF-FILE AT pc
 There is an unexpected end-of-file encountered
 while executing the instruction at location pc.

 IO DATA ERROR AT pc
 There is an input or output data error when
 executing the instruction at location pc.

 FILE ERROR 3 INTERRUPT AT pc
 FILE ERROR 4 INTERRUPT AT pc
 There is a file error while executing the
 instruction at location pc.

 ILLEGAL MEMORY READ AT pc
 ILLEGAL MEMORY WRITE AT pc
 ILLEGAL EXECUTE AT pc
 There is an illegal attempt to access memory at
 location pc.

 FORK TERMINATION INTERRUPT AT pc
 There is a software interrupt that terminated
 another fork (process) while executing the
 instruction at location pc.

 FILE OR SWAPPING SPACE EXCEEDED AT pc
 There is no more room in the system memory or disk
 storage while executing the instruction at
 location pc.

 8-11

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 8.6 RUNNING PROGRAMS WITHOUT DESTROYING MEMORY

 If you are executing a long-running program and find a file missing,
 you can stop the program without destroying the contents of memory,
 run another program (such as an editor) to create the missing file,
 and return to continue your original program. Before running another
 program to create the file, type two CTRL/Cs to halt the program and
 then give a PUSH command. The PUSH command creates a new, inferior
 TOPS-20 command level and a fresh copy of memory. You can now run a
 program without affecting the program in the superior TOPS-20 command
 level. When you finish, give the POP command to return to the
 previous memory and command level. Finally, give the CONTINUE command
 to resume the execution of your program.

 NOTE

 If you run another program without giving the PUSH
 command, the new program will replace the old program
 in memory, and you will not be able to continue the
 old program.

 The following example illustrates how to run a FORTRAN program. As it
 nears completion, the program requires a file you forgot to create.
 Stop the program; give the PUSH command; create the file; give the POP
 command; and continue the program.

 @EXECUTE (FROM) RANK.FOR !Execute the program
 FORTRAN: RANK
 LINK: Loading
 [LNKXCT RANK Execution]

 %FRSOPN File was not found !The file was not found
 Unit=1 DSK:NUMBER.DAT/ACCESS=SEQIN/MODE:ASCII

 Enter new file specs. End with $(ALT)
 *^C !type CTRL/C to stop
 @PUSH (COMMAND LEVEL) !Save the program and set up
 a new copy of memory
 TOPS-20 Command processor 6.1(7)
 @CREATE (FILE) NUMBER.DAT
 .
 .
 .
 @POP (COMMAND LEVEL) !Return to the last command level
 @CONTINUE !Resume execution
 NUMBER.DAT !Type the name of the file
 STOP !The program finishes

 END OF EXECUTION
 CPU TIME: 0.38 ELAPSED TIME: 3.87:49
 EXIT

 8-12

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 When you need to run a program and do not want to destroy the current
 contents of memory, give the PUSH command, run the appropriate
 program, give the POP command and continue the first program. The POP
 command returns you to the preceding level. You can give as many
 pairs of the PUSH and POP commands as you need. If the system
 temporarily does not have enough resources to give you a new level of
 TOPS-20, it cancels the PUSH command and prints the message:

 ?Insufficient resources available

 Reissue the command, and if you still get errors, you may have given
 too many PUSH commands without any intervening POP commands. Give a
 POP command. If the system cannot execute a POP command, it cancels
 the command and prints the message:

 ?No higher command level

 When you give a PUSH command, the contents of memory are preserved in
 their exact state and cannot be changed until you give a POP command
 to return to that level.

 8.7 RUNNING MULTIPLE PROGRAMS

 In addition to the PUSH and POP commands, TOPS-20 provides another
 method of running multiple programs without destroying memory. This
 feature, called "Multiforking," allows you to have multiple programs
 at the same TOPS-20 command level (EXEC). Each program resides in its
 own address space. This space is called a "fork" or a "process."
 Multiforking allows you to go from an editing program to a compiler
 and back again without reloading either program. Furthermore, you can
 run multiple programs and leave your terminal free for other work.

 Figure 8-1 illustrates the structure of multiple forks created with
 the PUSH command. Note that the forks are organized in a hierarchy.
 Each PUSH command creates an inferior EXEC. To address a higher fork,
 you must POP back up the hierarchy. Each time you POP, you erase the
 inferior EXEC and its forks.

 8-13

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 1.Using PUSH and POP

 | EXEC |
 | |

 | EDT |

 |
 | @PUSH
 v

 | EXEC |
 | |

 | BLISS |

 |
 | @PUSH
 v

 ---TTY---- | EXEC |
 | |--------| | @INFORMATION FORK-STATUS
 | | -------------------- =>LINK(3):
 ---------- | LINK | ^C from Running at 700304,
 -------------------- 0:00:02.8

 2.Using Multiforking

 ---TTY---- | EXEC | @INFORMATION FORK-STATUS
 | |--------| | EDT(1):Kept,HALT at 460015,
 | | -------------------- 0:00:01.7
 ---------- | EDT | BLISS| LINK| BLISS(2):Kept,Background,
 -------------------- IO wait at 404426,0:00:02.1
 => LINK(3):^C from Running
 at 700304, 0:00:00.8

 Figure 8-1: Methods of Running Multiple Programs

 Now look at the structure of multiple forks created with multiforking
 in Figure 8-1. Note that there is only one EXEC command level, and
 the forks are organized parallel to each other. Because of this
 structure, any fork can be addressed without erasing any existing
 forks. Since all the forks belong to the same EXEC, the INFORMATION
 FORK-STATUS command displays the status of all forks. With the PUSH
 and POP method, you can only see the status of the "current" fork.
 The current fork is the fork that TOPS-20 commands refer to when you
 do not give a fork name as a command argument. In the fork status
 display, an arrow (=>) points to the current fork.

 8-14

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 You can control forks with the multiforking-class commands discussed
 in the following sections.

 8.7.1 Saving Forks

 Normally, any time you load a program, the new program takes the place
 of or "resets" the program in the current fork. You can preserve the
 contents of a fork with the KEEP command. The KEEP command gives a
 fork a "kept" status. A kept fork is not cleared from memory when you
 run another program. Instead, a new fork is created for the new
 program.

 In the following example, you have the EDIT program loaded, and you
 need to run the BLISS program while preserving the state of EDIT.
 First, display the fork status with the INFORMATION FORK-STATUS
 command. Then, make the EDIT fork a kept fork to protect it from
 being reset by BLISS. Next, redisplay the fork status:

 @INFORMATION FORK-STATUS
 => EDIT (1): HALT at 6254, 0:00:22.8
 @KEEP (FORK)
 @INFORMATION FORK-STATUS
 => EDIT (1): Kept, HALT at 6254, 0:00:22.8

 Now, load the BLISS program and exit BLISS to check the fork status:

 @BLISS
 BLISS>/EXIT
 @INFORMATION FORK-STATUS
 EDIT (1): Kept, HALT at 6254, 0:00:22.8
 => BLISS (2): HALT at 6065, 0:00:00.2

 Note that the arrow indicates that BLISS is now the current fork.

 Forks are named after the program they contain and numbered in the
 order they were created. In the multiforking class commands, the fork
 name and number are interchangeable.

 You can execute a program in a kept fork by typing only the fork name
 or enough letters of the fork name to distinguish it from any other
 fork name or TOPS-20 command. For information on automatically
 KEEPing forks, see the SET PROGRAM command in the TOPS-20 Commands
 Reference Manual.

 8-15

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 8.7.2 Changing the Current Fork

 Multiforking-class commands always refer to the current fork unless
 you specify a fork name as a command argument. Other EXEC commands
 always refer to the current fork and do not accept a fork name
 argument. The FORK command changes the current fork so that the EXEC
 commands refer to a new current fork. Use the FORK command before any
 EXEC command that only refers to the current fork, such as EXAMINE,
 DEPOSIT, and INFORMATION MEMORY-USAGE.

 In the next example, you need to know how many pages are being used by
 the EDIT program. Since the command INFORMATION MEMORY-USAGE provides
 memory information about the current fork, which is now BLISS, you
 must first make EDIT the current fork. Give the command FORK EDIT,
 and check the fork status to note that EDIT is the new current fork.
 Then give the INFORMATION MEMORY-USAGE command.

 @FORK (IS) EDIT
 @INFORMATION FORK-STATUS
 => EDIT (1): Kept, ^C from IO wait at 2476, 0:00:00.5
 BLISS (2): HALT at 3744, 0:00:00.9
 @INFORMATION MEMORY-USAGE

 8.7.3 Creating Background Forks

 A fork that is running while your terminal is at EXEC command level or
 at another program command level is called a "background" fork. To
 place the BLISS program in a background fork, type the command
 CONTINUE BLISS to make BLISS the current fork, and enter BLISS command
 level. (Note that if BLISS was a kept fork, typing only BLISS would
 invoke the BLISS fork.)

 At the BLISS> prompt, enter a filename to start the BLISS program.
 Then, type two CTRL/Cs (the first CTRL/C does not appear on your
 terminal) to halt BLISS and bring you back to EXEC command level.
 Check the status of BLISS with the INFORMATION FORK-STATUS command.

 @CONTINUE BLISS
 BLISS>PROBE.BLI
 ;File: PUBLIC:<DBONIN.FORK>PROBE.BLI.3
 ^C
 @INFORMATION FORK-STATUS
 EDIT (1): Kept, HALT at 6254, 0:00:22.8
 => BLISS (2): ^C from Running at 155471, 0:00:54.2

 Now, continue BLISS with the CONTINUE command and the /BACKGROUND
 switch. The /BACKGROUND switch places the program in the background
 and lets you stay at EXEC command level.

 8-16

 RUNNING SYSTEM PROGRAMS AND OTHER USERS' PROGRAMS

 @CONTINUE /BACKGROUND
 @INFORMATION FORK-STATUS
 EDIT (1): Kept, HALT at 6254, 0:00:22.8
 => BLISS (2): Background, Running at 6065, 0:00:54.2

 With BLISS running in a background fork, your terminal is now free for
 other work. You can give other EXEC commands, run EDIT or a new
 program. A new program does not clear the unkept BLISS fork while
 BLISS is in the background. The system notifies you when BLISS wants
 input by ringing the terminal bell and printing the message [BLISS:
 wants the TTY].

 Because EDIT is in a kept fork, you can continue EDIT at its start
 address by typing EDIT.

 @EDIT
 [Starting]
 Edit: CHECK.TXT
 *

 The [Starting] message indicates that the kept fork was continued at
 its start address. You can set kept forks to continue at their
 continue, reenter, or start address with the command, SET PROGRAM.
 (For more information on the SET PROGRAM command, see the TOPS-20
 Commands Reference Manual).

 8.7.4 Deleting Forks

 Forks are valuable system resources. The maximum number available on
 any system is usually 512. When all the system's forks are in use,
 new users cannot log in and the system displays the message ?Full No
 more forks. Also, when users already on the system attempt to create
 new forks the system displays the message ?Insufficient system
 resources.

 Therefore, you should always return your idle forks to the system.
 The RESET command clears forks from memory and makes them available to
 other users.

 @INFORMATION FORK-STATUS
 => EDIT (1): Kept, HALT at 6254, 0:00:22.8
 BLISS (2): Background, Running at 6065, 0:02:54.2
 @RESET EDIT
 @INFORMATION FORK-STATUS
 BLISS (2): Background, Running at 6065, 0:02:54.2

 Your system manager can restrict the number of forks allowed to each
 job. Attempting to exceed this limit also results in the message
 ?Insufficient system resources.

 8-17

 CHAPTER 9

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 This chapter describes:

 o Producing a simple program (Section 9.1)

 o Preparing a multi-module program (Section 9.2)

 o Using the LOAD-class commands (Section 9.3)

 9.1 PRODUCING A SIMPLE PROGRAM

 To produce a simple program:

 o Write the source program in a programming language

 o Enter the source program into a file

 o Execute (compile, load, and start) the program

 If you find errors after executing the program, change the source
 program to eliminate the errors, and re-execute the program.

 9.1.1 The Source Program

 A source program is the program you input, in a programming language,
 to the system. The file containing your program has a file type
 indicating the language in which the program is written. After the
 system translates your program, it creates a new file containing the
 translation. The new file has the same file name as the source file,
 but it has a file type of .REL (which stands for relocatable binary).
 This translated program is called an object program.

 9-1

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 To write the source program, choose one of the programming languages:
 ALGOL, BLISS, COBOL, FORTRAN, MACRO, or PASCAL. The languages BASIC,
 APL and CPL do not produce object programs (.REL files). To write a
 program in one of these languages, follow the procedures described in
 the appropriate language manual. (Refer to Appendix D, USING BASIC
 for an explanation of how to enter and run a BASIC program.)

 The following example shows a FORTRAN program that requires you to
 type a number; the program then prints two times that number. Enter
 this program into a file.

 C THIS IS A SMALL FORTRAN PROGRAM
 TYPE 101
 101 FORMAT (' TYPE A NUMBER: '$)
 ACCEPT 102,X
 102 FORMAT (F)
 Y=2*X
 TYPE 103,X,Y
 103 FORMAT (' TWO TIMES ',F,' IS ',F)
 STOP
 END

 9.1.2 Executing the Program

 Once you enter the source program into a file, do the following:

 o Compile the source program to produce an object program.

 o Load the object program into memory and combine it with any
 routines required from the appropriate system library.

 o Start the program in memory.

 The language compiler or assembler translates the source program,
 producing an object program. The LINK program places the object
 program in memory, and the START command starts the program. You do
 not have to give all these commands to perform the individual
 functions. Instead, you can give the EXECUTE command, which performs
 the functions collectively. The COMPILE, LOAD, DEBUG, and EXECUTE
 commands are referred to as LOAD-class commands.

 @EXECUTE (FROM) SMALL.FOR
 FORTRAN: SMALL
 MAIN.
 LINK: Loading
 [LNKXCT SMALL Execution]

 TYPE A NUMBER: 5

 9-2

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 TWO TIMES 5.0000000 IS 10.0000000
 STOP

 END OF EXECUTION
 CPU TIME: 0.07 ELAPSED TIME: 3.00
 EXIT

 9.1.3 Debugging the Program

 If your program does not run correctly the first time, check for:

 o Syntax errors

 o Execution errors

 To eliminate syntax errors, examine the line or lines for which the
 compiler or assembler prints errors. Edit the source program to
 correct the errors and re-execute it. Continue until your program is
 successfully translated.

 If your program does not give the correct answer after it executes,
 check for a logic error in the program. To do this, you can carefully
 review the source program for any errors or you can use one of the
 system debugging programs: COBDDT for COBOL programs; FORDDT for
 FORTRAN programs and DDT for most other programs. These debugging
 programs allow you to stop at certain points in your program, examine
 the contents of the program, make changes, and then continue the
 program. (For more information refer to the appropriate TOPS-20
 language manual.)

 To get a listing of your compiled program, give the COMPILE command
 with the /LIST switch; the listing file has the same name as your last
 source file and is output directly to the line printer. When you give
 the COMPILE command, the system scans the list of files to be
 compiled. Only those files that are current (a source program not
 changed since the last compilation) are not recompiled. If you have a
 current object program, you must include the /COMPILE switch to force
 the compiler to recompile your source file. The following example
 shows how to recompile the program SMALL and get a listing:

 @COMPILE (FROM) SMALL/LIST/COMPILE
 FORTRAN: SMALL
 MAIN.
 @

 9-3

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 To see the location of your program in the line printer output queue,
 give the INFORMATION OUTPUT-REQUESTS command.

 @INFORMATION (ABOUT) OUTPUT-REQUESTS

 Printer Queue:
 Job Name Req# Limit User
 -------- ---- ----- --------------------------
 * SMALL 3891 52 SARTINI /Unit:1
 Started at 11:02:34, Printed 0 of 52 Pages
 There is 1 Job in the Queue (1 in Progress)

 The SMALL program is the only job listed and the only job being
 printed.

 9.1.4 Saving the Program for Future Use

 Once you debug the program, load it into memory (using the LOAD
 command) and save the loaded program in an .EXE file (using the SAVE
 command). Refer to the following example. The .EXE file is an
 executable memory image file.

 @LOAD (FROM) SMALL
 LINK: Loading
 @SAVE (ON FILE)
 SMALL.EXE.1 Saved

 To run the program, give a RUN command.

 @RUN SMALL

 TYPE A NUMBER: 25

 TWO TIMES 25.0000000 IS 50.0000000
 THREE TIMES 25.0000000 IS 75.0000000
 STOP

 END OF EXECUTION
 CPU TIME: 0.08 ELAPSED TIME: 6.42
 EXIT

 Using the .EXE file and a RUN command saves the system from checking
 to see that the object file is current and loading it into memory.
 Make an .EXE file only when your program is running correctly. RUN is
 not a LOAD-class command. Therefore, if the source program for SMALL
 changes, giving the command RUN SMALL will not compile the program
 SMALL.

 9-4

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 9.2 PREPARING A MULTI-MODULE PROGRAM

 To produce a program consisting of a number of modules, do the
 following:

 o Write the modules in a programming language and enter the
 modules into files

 o Translate the modules, load them into memory, and then run
 the program

 Sections 9.2.1 through 9.2.7 describe some helpful functions:

 o Writing and entering modules into files

 o Producing listings with cross-references to labels

 o Creating and accessing subroutine libraries

 o Saving the program for future use

 o Saving arguments in indirect files

 o Comparing files with the FILCOM program

 9.2.1 Writing and Entering Modules into Files

 Design the program and write the modules in a programming language.
 Using separate files for the modules gives you flexibility in
 debugging the program. If there is an error in one module, you do not
 have to recompile the other modules. If you do not enter each module
 into a separate file and an error occurs in one of the modules, you
 must recompile all modules in that file.

 The following example illustrates entering each module into a separate
 file:

 File COMP.FOR

 TYPE 101
 101 FORMAT (' TYPE TWO NUMBERS: '$)
 ACCEPT 102,A,B
 102 FORMAT (2F)
 CALL ADDEM(A,B)
 CALL DIFFER(A,B)
 STOP
 END

 9-5

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 File ADDEM.FOR

 SUBROUTINE ADDEM(A,B)
 C = A + B
 TYPE 101,C
 101 FORMAT (' THE SUM IS: ',F)
 RETURN
 END

 File DIFFER.FOR

 SUBROUTINE DIFFER(A,B)
 C = ABS(A - B)
 TYPE 101,C
 101 FORMAT (' THE DIFFERENCE IS: ',F)
 RETURN
 END

 9.2.2 Executing the Program

 You can run the program by giving the EXECUTE command. The FORTRAN
 compiler processes all three source modules and produces the three
 object programs; then the LINK program loads them into memory and
 starts them.

 @EXECUTE (FROM) COMP,ADDEM,DIFFER
 FORTRAN: COMP
 MAIN.
 FORTRAN: ADDEM
 .
 .
 .
 END OF EXECUTION
 CPU TIME: 0.16 ELAPSED TIME: 2.00
 EXIT

 9.2.3 Producing a Cross-Reference Listing

 Many programs contain numerous modules that are significantly larger
 than those shown in the previous examples. If you want to find the
 place where a variable is defined or used, you must search each module
 line by line. However, the system can help you by creating a
 cross-reference listing that you can print on the line printer. The
 cross-reference listing shows where each variable is defined and used.

 9-6

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 The CREF (for Cross-REFerence) program produces the listing. To use
 the CREF program, give the /CREF switch, along with a LOAD-class
 command that compiles your source program. After the program is
 compiled, your directory will contain a .CRF file in addition to your
 .REL file. Thus, if you have the file TEST.FOR and give the command:

 @COMPILE (FROM) /CREF TEST

 your directory will contain the files TEST.FOR, TEST.REL and TEST.CRF.

 The .CRF file contains information for the CREF program. When you are
 ready to produce the listing, give the CREF command. This command
 produces listings for all the .CRF files in your connected directory
 that were created since you logged in. The program sends the listings
 to the printer. The following example produces a cross reference
 listing for the COMP, ADDEM, and DIFFER programs.

 @EXECUTE (FROM) /CREF COMP,ADDEM,DIFFER !Include /CREF
 FORTRAN: COMP
 MAIN.
 FORTRAN: ADDEM
 .
 .
 .
 END OF EXECUTION
 CPU TIME: 0.15 ELAPSED TIME: 1.52
 EXIT
 @CREF !Then run CREF
 CREF: COMP
 CREF: ADDEM
 CREF: DIFFER

 If you already have object files for the programs, give the COMPILE
 command with the /CREF, /NOBINARY, and /COMPILE switches. The system
 produces just the .CRF file, without producing an object file.

 The following example shows how to produce only cross-reference
 listings:

 @COMPILE (FROM) /CREF /NOBINARY /COMPILE COMP,ADDEM,DIFFER
 FORTRAN: COMP
 MAIN.
 FORTRAN: ADDEM
 ADDEM
 FORTRAN: DIFFER
 DIFFER
 @CREF
 CREF: COMP
 CREF: ADDEM
 CREF: DIFFER

 9-7

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 If you have a COBOL program, the /CREF switch puts the cross
 references in the listing file that it normally produces; you do not
 need to run the CREF program.

 Refer to the TOPS-20 User Utilities Guide for a complete description
 of CREF.

 9.2.4 Using Subroutine Libraries

 If you have a set of frequently used subroutines, you can group them
 in a single object file called a library file, rather than keep the
 object files separate. Then when you give a LOAD-class command, all
 you need type is the one library file specification instead of a list
 of subroutine file specifications. In addition, it is easier to keep
 track of one file, especially if a group of users is sharing the
 subroutines.

 For example, if you have the subroutines OPREAD, OPWRIT, CLREAD, and
 CLWRIT, which may be called by the main program WRITER, your
 LOAD-class command is:

 @LOAD (FROM) WRITER,OPREAD,OPWRIT,CLREAD,CLWRIT

 If you place the four subroutines in a library, DOFILE, your command
 is shortened to:

 @LOAD (FROM) WRITER,DOFILE/LIBRARY

 The /LIBRARY switch causes the system to load only those subroutines
 that are actually called. If you use the library file and the
 /LIBRARY switch, after writing a main program that calls the
 subroutines, you do not have to remember which subroutines the program
 calls to include the proper file specifications in the LOAD-class
 command.

 A library file is produced by compiling the subroutines separately and
 then running the MAKLIB program to construct the library file. MAKLIB
 is a program that manipulates .REL files. If you need to modify any
 one of the library files, edit the source file, recompile, and use
 MAKLIB to replace the subroutine in the library file.

 Sections 9.2.4.1 through 9.2.4.5 show how to create a library
 containing four subroutines, use the library, change a subroutine,
 then replace the old subroutine in the library with the new one. Four
 subroutines: OPREAD, OPWRIT, CLREAD, and CLWRIT are entered into
 files, compiled, then stored in the library, DOFILE.

 Refer to the TOPS-20 User Utilities Guide for a complete description
 of MAKLIB.

 9-8

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 9.2.4.1 Entering the Subroutines into Files - Enter the subroutines
 into separate files.

 File OPREAD.FOR

 SUBROUTINE OPREAD(NAME)
 OPREAD - OPENS A FILE FOR READING
 DOUBLE PRECISION NAME
 OPEN(UNIT=21,ACCESS='SEQIN',FILE=NAME)
 RETURN
 END

 File OPWRIT.FOR

 SUBROUTINE OPWRIT(NAME)
 OPWRIT - OPENS A FILE FOR WRITING
 DOUBLE PRECISION NAME
 OPEN(UNIT=21,ACCESS='SEQOUT',FILE=NAME)
 RETURN
 END

 File CLREAD.FOR

 SUBROUTINE CLREAD(NAME)
 CLREAD - CLOSES A FILE OPENED FOR READING
 DOUBLE PRECISION NAME
 CLOSE(UNIT=21,FILE=NAME)
 RETURN
 END

 File CLWRIT.FOR

 SUBROUTINE CLWRIT(NAME)
 CLWRIT - CLOSES A FILE OPENED FOR WRITING
 DOUBLE PRECISION NAME
 CLOSE(UNIT=21,FILE=NAME)
 RETURN
 END

 9.2.4.2 Compiling the Subroutines - After entering the subroutines
 into files, compile them to produce four separate object files.

 @COMPILE (FROM) OPREAD,OPWRIT,CLREAD,CLWRIT
 FORTRAN: OPREAD
 OPREAD
 FORTRAN: OPWRIT
 OPWRIT
 FORTRAN: CLREAD
 CLREAD
 FORTRAN: CLWRIT
 CLWRIT

 9-9

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 9.2.4.3 Creating the Library File - Create the library file by
 running the MAKLIB program. After starting MAKLIB, type the name of
 the library file, followed by an equal sign. Then type the name of
 each object file, followed by the /APPEND switch.

 @MAKLIB
 *DOFILE=OPREAD/APPEND,OPWRIT/APPEND,CLREAD/APPEND,CLWRIT/APPEND

 If you want some switches to be in effect every time you run the
 MAKLIB program, you can create a SWITCH.INI file and include the
 switches. When you issue a MAKLIB command line, MAKLIB reads the
 SWITCH.INI file in your connected directory and uses the switches
 specified in that file. (Note that the EDIT program, on the other
 hand, reads the SWITCH.INI file in your logged-in directory.)

 The format of the line in the SWITCH.INI file is:

 MAKLIB/switch(es)

 Thus, if you always want to give the /LIST switch (which lists the
 names of the modules that are contained in the master library) with
 MAKLIB, insert in the SWITCH.INI file the line

 MAKLIB/LIST

 Now, instead of typing the command

 @MAKLIB
 *MASTER=NEW/LIST

 you can type the following command, and the /LIST switch is
 automatically included in the command:

 @MAKLIB
 *MASTER=NEW

 If the switches occupy more than one line, use a hyphen at the end of
 the first line and continue on the next line.

 Once you create the library file, you can list its contents on your
 terminal by giving a MAKLIB command with the /LIST switch in the
 command below. The first number following the subroutine name is the
 highest relocatable address it occupies, and the second number
 indicates its length; both numbers are octal.

 *TTY:=DOFILE/LIST
 Listing of Modules
 Produced by MAKLIB Version 2.2(104) on 26-Mar-88 at 15:00:48

 9-10

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 DSK:DOFILE.REL[4,164] Created on 26-Mar-88 at 15:00:00

 OPREAD 400016 000007
 OPWRIT 400016 000010
 CLREAD 400016 000007
 CLWRIT 400016 000010

 To end MAKLIB, type a CTRL/C.

 9.2.4.4 Using the Library File - To use the library file, first
 create a main program that uses the subroutines. LOAD this main
 program and the library file into memory. Notice that the WRITER
 program in the example below does not use all the subroutines. When
 you give the LOAD command with the /LIBRARY switch, the system loads
 only the subroutines, OPWRIT and CLWRIT.

 File WRITER.FOR

 DOUBLE PRECISION NAME,DAY
 CALL DATE(DAY)
 CALL OPWRIT('DATE.FIL')
 TYPE 101,DAY
 101 FORMAT (' UPDATING AS OF: ',A10)
 WRITE (21,102) DAY
 102 FORMAT (' => UPDATED ON: ', A10)
 CALL CLWRIT('DATE.FIL')
 STOP
 END

 After entering the main program, load it with the library file and
 start it. Remember to include the /LIBRARY switch.

 @LOAD (FROM) WRITER,DOFILE/LIBRARY
 FORTRAN: WRITER
 MAIN.
 LINK: Loading

 EXIT
 @START
 UPDATING AS OF: 26-Mar-88
 STOP

 END OF EXECUTION
 CPU TIME: 0.41 ELAPSED TIME: 1.33
 EXIT

 9-11

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 9.2.4.5 Changing a Subroutine in the Library - To change a subroutine
 in the library, edit the source file, recompile the subroutine and use
 MAKLIB to update the library file. After editing the file, compile a
 new object file.

 @COMPILE (FROM) OPWRIT.FOR
 FORTRAN: OPWRIT
 OPWRIT

 Now, run the MAKLIB program. First, check the contents of the library
 file to be sure you are updating the proper file.

 @MAKLIB
 *TTY:=DOFILE/LIST
 Listing of Modules
 Produced by MAKLIB Version 2A(67) on 26-Sep-88 at 15:05:06

 DSK:DOFILE.REL[4,164] Created on 26-Sep-88 at 15:00:00

 OPREAD 400016 000007
 OPWRIT 400016 000010
 CLREAD 400016 000007
 CLWRIT 400016 000010

 Second, update the library file. Type the name of the new library
 file followed by an equal sign. Type the name of the library file you
 want to update and the /MASTER: switch. After /MASTER: type the
 name of the subroutine you are replacing and a comma. Last, type the
 name of the file containing the new subroutine followed by the
 /REPLACE switch. Press RETURN. When the system completes the update,
 it prints an asterisk.

 *DOFILE=DOFILE/MASTER:OPWRIT,OPWRIT/REPLACE

 You can now check the new library to be sure that the new subroutine
 is included. As you can see, the length of the OPWRIT subroutine has
 changed to include the additional statements.

 *TTY:=DOFILE/LIST
 Listing of Modules
 Produced by MAKLIB Version 2A(67) on 26-Sep-88 at 15:10:10

 DSK:DOFILE.REL[4,164] Created on 26-sep-88 at 15:09:00

 OPREAD 400020 000007
 OPWRIT 400035 000015
 CLREAD 400020 000007
 CLWRIT 400020 000010
 *^C

 9-12

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 Load the main program with the new library. You do not have to
 recompile the main program or any of the other subroutines to change
 OPWRIT. After loading the program, save it for future use, then start
 the program.

 @LOAD (FROM) WRITER,DOFILE/LIBRARY
 LINK: Loading
 @SAVE
 WRITER.EXE.1 Saved
 @START
 [DATE.FIL OPENED]
 UPDATING AS OF: 26-Sep-88
 STOP

 END OF EXECUTION
 CPU TIME: 0.18 ELAPSED TIME: 0.86
 EXIT

 Refer to the TOPS-20 User Utilities Guide for more information on the
 MAKLIB program.

 9.2.5 Loading and Saving the Program for Future Use

 The example below shows how to load the main program and the library
 file. Instead of loading all four subroutines in DOFILE, the system
 loads only the two that the program actually uses (OPWRIT and CLWRIT).

 @LOAD (FROM) WRITER,DOFILE/LIBRARY
 LINK: Loading

 EXIT

 Give the SAVE command to save the program. To run the program later,
 give the RUN command. Note that if you specified a name in your
 program by using the PROGRAM statement, the name of the saved file
 will reflect that name.

 @RUN (PROGRAM) WRITER

 Never save a program after you have started it; some storage areas may
 not get properly cleared during restarting.

 9-13

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 9.2.6 Saving Arguments in Indirect Files

 If the arguments for a LOAD-class command are complex, you can store
 them in a file called an indirect file. Later, when you give the
 LOAD-class command, specify the file where the arguments are stored,
 rather than typing the entire line. Instead of receiving the
 arguments directly from your terminal, the system receives them
 indirectly from the file. In this case precede the indirect filename
 with an @ sign.

 If you give the indirect command file a file type of .CMD, you do not
 have to include a file type when giving its file specification. This
 example shows the line in a command file that will compile the four
 subroutines:

 OPREAD,OPWRIT,CLREAD,CLWRIT

 To use the file in a LOAD-class command, precede it with an @. You
 can use recognition in typing the file specification. If you do not
 give a file type, the system uses file type .CMD.

 @COMPILE (FROM) @D
 FORTRAN: OPREAD
 OPREAD
 FORTRAN: OPWRIT
 OPWRIT
 FORTRAN: CLREAD
 CLREAD
 FORTRAN: CLWRIT
 CLWRIT

 This example shows an indirect file you can use to create the program
 WRITER and to search the library:

 WRITER.FOR,DOFILE.REL/LIBRARY

 9.2.7 Comparing Changes in Files

 To run the FILCOM program, type FILCOM and press RETURN; the system
 prints an asterisk. Type a command to FILCOM in the form:

 destination-filespec = source-filespec, source-filespec2,/switches

 The destination file is the file that contains the differences. It
 can be printed in a file or on your terminal (TTY:). The first file
 is the one that will be listed first in the list of differences, and
 the second file is the one that will be listed second. The list of
 switches specifies any special parameters for properly performing the
 comparison.

 9-14

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 First, change one line in the file WRITER.FOR and save the new file in
 UPDATE.FOR. This example uses the EDIT editor.

 @EDIT (FILE) WRITER.FOR.1 (OUTPUT AS) UPDATE.FOR
 Edit: WRITER.FOR.1
 *F=>$
 00700 102 FORMAT (' => UPDATED ON: ', A10)
 *SUPDATED$ADDED NEW DATA$.
 00700 102 FORMAT (' => ADDED NEW DATA ON: ', A10)
 *E

 [UPDATE.FOR.1]

 There are now two files: WRITER.FOR, which contains the original
 line, and UPDATE.FOR, which contains the modified line. The example
 below shows how to compare the two files and output the differences to
 your terminal. Type a CTRL/C to end FILCOM.

 @FILCOM !Start FILCOM

 *TTY:=WRITER.FOR,UPDATE.FOR !Type the command
 FILE 1) DSK:WRITER.FOR CREATED: 1554 2-MAR-88
 FILE 2) DSK:UPDATE.FOR CREATED: 1556 24-MAR-88

 1)1 00700 102 FORMAT (' => UPDATED ON: ', A10)
 1) 00800 CALL CLWRIT('DATE.FIL')

 2)1 00700 102 FORMAT (' => ADDED NEW DATA ON: ', A10)
 2) 00800 CALL CLWRIT('DATE.FIL')

 %files are different

 *^C !Type a CTRL/C to
 !end FILCOM

 For more information on the FILCOM program, see the TOPS-20 User
 Utilities Guide.

 9.3 USING THE LOAD-CLASS COMMANDS

 The LOAD-class (COMPILE, LOAD, EXECUTE, DEBUG) commands help you
 produce programs easily and correctly. The four commands perform all
 the functions you need to compile (or assemble) and debug a program:

 COMPILE The COMPILE command causes the appropriate language
 processor to produce object programs from source
 programs.

 9-15

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 LOAD The LOAD command causes the appropriate language
 processor to produce an object program and then load it
 into memory.

 EXECUTE The EXECUTE command causes the appropriate language
 processor and LINK to produce an object program, load
 it into memory, and then start its execution.
 DEBUG The DEBUG command causes the appropriate language
 processor and LINK to produce an object program, load
 it and the appropriate debugging program into memory,
 then start execution of the debugging program.

 In addition to the functions listed above, the LOAD-class commands
 perform some helpful and timesaving functions by:

 1. Recognizing the programming language in which you write your
 program(s) if you use the standard file types

 2. Recompiling only out-of-date source programs

 3. Remembering arguments of the last LOAD-class command when you
 omit the arguments to a current command

 4. Taking arguments from an indirect file

 5. Concatenating files to produce one source program

 6. Passing switches to the LINK program

 7. Specifying special actions with switches

 Sections 9.3.1 through 9.3.6 describe some useful ways you can use
 these features.

 Section 9.3.1 describes object programs and their uses. You may skip
 this section, but the information is valuable in understanding the
 flexibility that relocatable programs provide.

 9.3.1 Object (Relocatable) and Executable Programs

 The main function of any LOAD-class command is to produce an object
 program. (Refer to Figure 9-1.) The source program is stored in a
 source file with a file type that indicates the programming language.
 (Table 9-1 contains a list of the standard file types.) By compiling
 the source program with a LOAD-class command, you produce the object
 program stored in a file having a filename the same as the source
 filename. The object program is relocatable, which means you can load
 it into memory with subroutines, or as a subroutine, without
 recompiling. Hence, the object file has a file type of .REL (for
 relocatable) and is often called a .REL file. To run the program, you

 9-16

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 must load the object program into memory. At that time, the various
 subroutines and main programs are linked. The loaded program is now
 executable; it may be saved in a disk file with the same name as the
 main source program and the file type .EXE (for executable).

 Source file= name.typ
 |----------------|
 | |
 | Source program |
 | |
 |----------------|
 |
 |
 | Compiling (or assembling)
 v
 Object file= name.REL
 |----------------|
 | |
 | Object program |
 | |
 |----------------|
 |
 |
 | Loading
 v
 Memory
 |--------------------|
 | |
 | Executable program |
 | |
 |--------------------|
 |
 |
 | Saving
 v
 Executable file= name.EXE
 |--------------------|
 | |
 | Executable program |
 | |
 |--------------------|

 Figure 9-1: Source, Object, and Executable Programs

 Any program you run must be in executable form. To form an executable
 program, you must compile the source program, then load the object
 program into memory. After you have the executable program in memory,
 you can save it for future use or start its execution.

 9-17

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 In creating an executable program, you must go through the process of
 compiling and loading. Should you use the same subroutine in more
 than one program, you can reuse the object program when loading the
 modules into memory. By eliminating the needless compilation, you
 save both time and computer charges.

 9.3.1.1 Using Relocatable Object Programs - Once you compile a source
 program into an object program, you can load that object program into
 memory with any combination of cooperating programs and produce an
 executable program. (The word program, as it is used here, refers to
 both main programs and subroutines.)

 The examples below show how to use the FILLER subroutine in three
 different programs, without having to recompile it each time.

 In the first example, FILLER is used with the main program, TESTER.
 To run TESTER, give the command:

 @EXECUTE (FROM) TESTER,FILLER

 The system compiles TESTER and FILLER, loads them into memory, and
 then starts the execution of TESTER.

 The second program, LAYOUT also has another subroutine, TTYOUT, that
 you must include in the EXECUTE command.

 @EXECUTE (FROM) LAYOUT,FILLER,TTYOUT

 The system compiles LAYOUT and TTYOUT, loads them into memory with
 FILLER and executes LAYOUT.

 The third program, GAMMA, has a POLAR subroutine that is included in
 the EXECUTE command.

 @EXECUTE (FROM) GAMMA,POLAR,FILLER

 When typing the file specifications, you do not have to place them in
 any specific order.

 9.3.2 Selecting a File and Recognizing the Programming Language

 When you give a filename as an argument to a LOAD-class command, you
 do not have to include the file type. For example, you can give the
 command:

 @COMPILE (FROM) SMALL
 FORTRAN: SMALL
 MAIN.

 9-18

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 The system found the file SMALL.FOR and compiled it using FORTRAN.
 The file type .FOR identifies to the system that the file contains
 FORTRAN source code and should be compiled using FORTRAN.

 When you do not include a file type in a LOAD-class command, the
 system searches for a file name with a file type that matches a file
 type in Table 9-1. The order in Table 9-1, is the order in which the
 system searches for a matching file.

 Upon finding a matching file, the system (if necessary) compiles it
 using the language compiler specified by the file type. For example,
 if the file type is .CBL, the system uses the COBOL compiler. If
 there is no file type, or if the file type is not one of the file
 types in Table 9-1, the system defaults to the FORTRAN compiler. Note
 that your installation may modify this list to include other language
 processors.

 Table 9-1: LOAD-Class Command Standard File Types

 __

 File Type Language Compiler
 __

 MAC MACRO
 CBL COBOL-68 or COBOL-74
 C74 COBOL-74
 C68 COBOL-68
 74C COBOL-74
 68C COBOL-68
 ALG ALGOL
 B10 BLISS-10
 BLI BLISS-10
 B36 BLISS-36
 SIM SIMULA
 PAS PASCAL
 SNO SNOBOL
 FAI FAIL
 SAI SAIL
 FOR FORTRAN
 REL Object Program, do not compile
 __

 For example, if you type the file name PAYROL, the system looks for
 PAYROL., PAYROL.MAC, PAYROL.CBL, PAYROL.C74, PAYROL.C68, and so on.
 If none of those files exists, the system prints the message: %Source
 file missing - PAYROL. If PAYROL.CBL exists; the system would compile
 PAYROL.CBL using COBOL.

 9-19

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 If you have the files PAYROL.CBL and PAYROL.MAC and give a LOAD-class
 command listing the name PAYROL, the system uses the file PAYROL.MAC.
 If you also have the file PAYROL..1, the system uses it instead of
 using PAYROL.MAC. If PAYROL..1 needed compiling, the system would use
 the FORTRAN compiler.

 9.3.2.1 Using Nonstandard File Types - If you include a file type in
 your file specification, the system examines the file type to select
 the proper translator. If the file type is not one of the standard
 file types shown in Table 9-1, the system uses the FORTRAN compiler.

 @COMPILE (FROM) TEST.REF
 FORTRAN: TEST
 MAIN.

 If you want to use a nonstandard file type on a non-FORTRAN program,
 include one of the compiler switches after the file specification.

 @COMPILE (FROM) ENABLE.MON/MACRO
 MACRO: ENABLE

 9.3.2.2 Setting a Default Compiler - You can set a default compiler
 with the SET DEFAULT COMPILER-SWITCHES command. For example, this
 command tells the system to use the PASCAL compiler whenever you give
 a filename without a file type:

 @SET DEFAULT COMPILER-SWITCHES /PASCAL

 You can also define a file type to mean another compiler. For
 example, this command tells the system that a file with the type .C68
 should compile with the COBOL-74 compiler instead of COBOL-68.

 @SET DEFAULT COMPILER-SWITCHES C68 /COBOL-74

 To display your default settings, give the INFORMATION DEFAULT
 COMPILER-SWITCHES command. It is recommended that you put SET DEFAULT
 commands in your COMAND.CMD file.

 9.3.2.3 Using the File Type .REL - If you want to use a particular
 object file, type the filename and the file type .REL. The system
 does not attempt to compile this file; it simply loads it into memory.

 @LOAD (FROM) START.REL
 LINK: Loading

 EXIT

 9-20

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 If you have an object program stored in a file with a file type other
 than .REL (this is highly discouraged), include the /RELOCATABLE
 switch after the file specification. Otherwise, the system attempts
 to compile the object program as a source program.

 @LOAD (FROM) MIDDLE.OBJ/RELOCATABLE
 LINK: Loading

 EXIT

 9.3.2.4 Examples - If you have the file TRYIT.FOR.1 and you give the
 following command:

 @EXECUTE (FROM) TRYIT

 the system uses the file TRYIT.FOR.1. If you have the files
 NXTONE.MAC and NXTONE.CBL, and give the following command:

 @EXECUTE (FROM) NXTONE

 the system searches Table 9-1 and finds .MAC before .CBL. Therefore,
 the system uses the file NXTONE.MAC.

 If you have the files TABLE and TABLE.FOR, and give the command:

 @EXECUTE (FROM) TABLE

 the system uses the file TABLE as the source program and compiles it
 with FORTRAN (as the default).

 9.3.3 Compiling Only Out-of-Date Object Programs

 Whenever you give a LOAD-class command that requires a .REL file, the
 system compiles an object program only if one or more of the following
 occurs:

 1. There is no existing .REL file with the same filename.

 2. The .REL file is out of date (which means that the .REL file
 is older than the corresponding source file).

 3. You give a /COMPILE switch to the LOAD-class command.

 9-21

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 9.3.4 Remembering Arguments to LOAD-Class Commands

 If you omit the arguments to a LOAD-class command, the system supplies
 the arguments you specified in the last LOAD-class command containing
 a file specification or LINK switch. For example, if you give the
 following sequence of commands:

 @COMPILE (FROM) TEST.FOR,SUB1.FOR
 @EXECUTE (FROM)

 the COMPILE command stores its arguments; then, when you omit the
 arguments to the EXECUTE command, the system uses the arguments you
 gave to the COMPILE command.

 Whenever you give a LOAD-class command, the system saves its arguments
 only if it contains a source or object file specification or a LINK
 switch. Otherwise, the system appends the saved arguments from a
 previous command to your current command. The system does not change
 the saved arguments to include the contents of your current command.
 Suppose you give the command:

 @COMPILE (FROM) /CREF/COBOL MANCOB,TTYIN,TTYOUT,LPOUT

 then the command:

 @LOAD (FROM) /MAP

 The arguments from the COMPILE command are appended to the single
 switch you gave in the LOAD command. The system really executes the
 command:

 @LOAD (FROM) /MAP/CREF/COBOL MANCOB,TTYIN,TTYOUT,LPOUT

 If your next command is:

 @COMPILE (FROM) /COMPILE

 the system executes the command:

 @COMPILE (FROM) /COMPILE/CREF/COBOL MANCOB,TTYIN,TTYOUT,LPOUT

 Notice this command does not include the /MAP switch. The command:

 @EXECUTE (FROM) LINER.MAC

 would change the saved arguments to just the file specification
 LINER.MAC. If you give a command without a source file specification
 and there are no saved arguments to LOAD-class commands, the system
 prints "?No saved arguments" and cancels the command.

 @EXECUTE
 ?No saved arguments

 9-22

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 9.3.5 Concatenating Files to Produce One Source Program

 Frequently it is useful to combine a parameter definition file or a
 small subroutine library with a main program. The + sign appends the
 file following it to the file before it to produce one source program.
 The example below shows how you might use a + to produce a MACRO
 program. The DEFS file contains parameter and storage definitions and
 the PROMPT file contains the main logic of the program.

 File DEFS.MAC

 SEARCH MONSYM,MACSYM
 PRMTXT: ASCIZ/NEXT COMMAND>/
 T1==1
 T2==2

 File PROMPT.MAC
 TITLE PROMPT
 PROMPT: HRROI T1,PRMTXT !Get address of string
 PSOUT !Print it
 HALTF !Stop
 END PROMPT

 @COMPILE (FROM) DEFS+PROMPT
 MACRO: PROMPT

 9.3.6 Specifying Special Actions with Switches

 You can supply various switches with the LOAD-class commands. Refer
 to the TOPS-20 Commands Reference Manual for a complete description of
 the LOAD-class commands.

 Many switches have a global effect if you type them before any file
 specifications. For instance, the command:

 @COMPILE (FROM) /CREF TAB,SIFT,WOB

 produces a cross-reference listing for each file and requires
 significantly less typing than if you had to type:

 @COMPILE (FROM) TAB/CREF,SIFT/CREF,WOB/CREF

 It may be easier to set some global switches and turn them off for a
 particular file. If you have a list of source files with nonstandard
 file types that you want to compile with FORTRAN, you might use the
 command:

 @COMPILE (FROM) /FORTRAN SCHED.R1,ENA.R1,DIS.R1

 9-23

 PRODUCING AND RUNNING YOUR OWN PROGRAMS

 Now suppose you add the routine MONINT.R1, which is a COBOL file; you
 could modify your command as follows:

 @LOAD (FROM) /FORTRAN SCHED.R1,ENA.R1,MONINT.R1/COBOL,DIS.R1

 As a result of this command, all the files are compiled with FORTRAN
 except MONINT.R1, which is compiled with COBOL. The /COBOL switch
 located after the file affects only the file it follows.

 However, if you add two COBOL programs, MON1 and MON2, your command
 is:

 @LOAD /FORTRAN SCHED.R1,ENA.R1,DIS.R1,/COBOL MON1.R1,MON2.R1

 In that case, you have changed the global /FORTRAN switch to /COBOL,
 and each succeeding file is compiled using COBOL.

 9-24

 CHAPTER 10

 USING BATCH

 This chapter describes:

 o Preparing a batch job (Section 10.1)

 o Creating a control file (Section 10.1.1)

 o Monitoring your batch job (Section 10.1.2)

 o Submitting a control file (Section 10.1.3)

 o Setting defaults for the SUBMIT command (Section 10.1.3.1)

 o Checking a batch job (Section 10.1.4)

 o Examining the output from a batch job (Section 10.1.5)

 o Modifying a batch job (Section 10.2)

 o Canceling a batch job (Section 10.3)

 10.1 PREPARING A BATCH JOB

 If you have a procedure that you execute frequently, you can submit it
 as a batch job rather than repeatedly executing it from your terminal.

 To prepare to submit a batch job, enter the commands you would
 normally type on a terminal into a file called a batch control file.
 You can submit a control file to the batch system via a punched card
 deck or your terminal. Submitting this file creates a request for the
 system to run your job. The batch system logs your job in, executes
 the commands stored in the batch control file, and after executing the
 last command in the file, ends the job by logging it off. The batch
 system records the input and output of the job in a log file.

 10-1

 USING BATCH

 When you create a control file, use any filename and a file type of
 .CTL. Type each command and argument in full into the control file
 instead of abbreviated input. You must precede each TOPS-20 command
 and subcommand with an @. You must precede each program command with
 an *.

 NOTE

 If you are including subcommands in a control file:

 o place only one @ before a subcommand.

 o place an @ before the RETURN that terminates the
 entire command.

 You can create a BATCH.CMD file that is read by the system when your
 batch job is run. This file contains any TOPS-20 system commands you
 want executed every time you run the batch program. The BATCH.CMD
 file is similar to the LOGIN.CMD file the system reads every time you
 log in. Like the LOGIN.CMD file, a BATCH.CMD file usually contains
 commands such as the DEFINE command (to define logical names). Once
 the batch job is logged in, the system reads the BATCH.CMD file and
 executes the commands contained in it.

 Your system manager can create a sytem-wide BATCH.CMD file. The file
 SYSTEM:BATCH.CMD is read by the system before reading your own
 BATCH.CMD file.

 NOTE

 Do not include TERMINAL commands in a BATCH.CMD file.

 The batch program does not recognize the TOPS-20 commands listed in
 Table 10-1. If you include them, the system issues a fatal error
 message. Be certain you do not include these commands in your control
 file, BATCH.CMD file, or COMAND.CMD file.

 Table 10-1: Illegal Commands in Batch Jobs

 |--------------------------|
 | ATTACH |
 | SET CONTROL-C-CAPABILITY |
 | SET TIME-LIMIT |
 | TALK |
 |--------------------------|

 10-2

 USING BATCH

 10.1.1 Creating a Control File

 To create a control file, place all the commands you usually type on
 your terminal into the file. The following example shows how to
 create a control file that runs the FILCOM program to compare two
 files and prints a file containing the comparisons:

 File TEST.CTL

 @FILCOM
 *SAMPLE.SCM=DATA.OLD,DATA.NEW
 @PRINT SAMPLE.SCM
 $

 10.1.2 Monitoring Your Batch Job

 You can include the SEND command in your batch control file to send a
 message informing you when the batch job is done. Use SEND's line
 number argument and not the user name argument for this purpose.(Refer
 to Chapter 3 for more information on using the SEND command). You can
 also include a command to run one of the mail programs. (Refer to the
 TOPS-20 User Utilities Guide for information on the MAIL program or,
 if you are using the DECmail/MS mail program, refer to the
 TOPS-10/TOPS-20 DECmail/MS Manual).

 10.1.3 Submitting a Control File to Batch

 To submit a control file to batch, give the SUBMIT command followed by
 the name of the control file. The SUBMIT command places the job in a
 waiting line called the batch input queue. When batch can accommodate
 another job, it selects one from the input queue.

 The example below shows how to submit the TEST.CTL control file.
 Because the control file has the file type .CTL, you do not need to
 include the file type in the command.

 @SUBMIT (BATCH JOB) TEST
 [Job TEST Queued, Request-ID 105, Limit 0:05:00]

 You can submit more than one control file to batch with the same
 SUBMIT command. The following example shows how to submit TEST.CTL
 and DATA.CTL:

 @SUBMIT (BATCH JOB) TEST,DATA
 [Job TEST Queued, Request-ID 106, Limit 0:05:00]
 [Job DATA Queued, Request-ID 107, Limit 0:05:00]

 Where you place switches in a SUBMIT command line determines the files
 affected by the switch.

 10-3

 USING BATCH

 If you place a switch after the command but before you give the
 filenames, all the files are affected by the switch. A switch that
 affects all files is called a global switch. In the following example
 submit TEST.CTL and DATA.CTL using a global switch /AFTER:.

 @SUBMIT (BATCH JOB)/AFTER:8-Jun-88 TEST,DATA
 [Job TEST Queued, Request-ID 108, Limit 0:05:00]
 [Job DATA Queued, Request-ID 109, Limit 0:05:00]

 If you type a command followed by a filename, a switch, and another
 filename, only the file preceding the switch is affected. A switch
 that affects only one file is called a local switch. The following
 example shows how to submit TEST.CTL using a local /AFTER: switch and
 DATA.CTL:

 @SUBMIT (BATCH JOB) TEST/AFTER:10-Jun-88,DATA
 [Job TEST Queued, Request-ID 110, Limit 0:05:00]
 [Job DATA Queued, Request-ID 111, Limit 0:05:00]

 10.1.3.1 Setting Defaults for the SUBMIT Command - If you want the
 SUBMIT command to always contain certain switches, give the SET
 DEFAULT SUBMIT command, followed by the switch or switches. To give
 the /OUTPUT: switch with SUBMIT commands, place the following command
 in COMAND.CMD:

 @SET DEFAULT (FOR) SUBMIT /OUTPUT:NOLOG

 To avoid having to type the SET DEFAULT SUBMIT and its arguments every
 time you log in to the system, put this command in a COMAND.CMD file.
 (Refer to Section 1.7 for information about a COMAND.CMD
 file.) Whenever you give a SUBMIT command, the switches you specify
 in the SET DEFAULT command are automatically included in the SUBMIT
 command. To see the defaults you have set for the SUBMIT command,
 give the INFORMATION (ABOUT) DEFAULTS (FOR) SUBMIT command.

 @INFORMATION (ABOUT) DEFAULTS (FOR) SUBMIT
 SET DEFAULT SUBMIT /OUTPUT:NOLOG

 Every time you give the SUBMIT command, the system includes the switch
 /OUTPUT:NOLOG in the command.

 10.1.4 Checking a Batch Job

 To check the progress of the batch job, give the INFORMATION
 BATCH-REQUESTS command. The system prints a list of all the jobs in
 the batch queue and their status. Certain switches specified in the
 SUBMIT command appear in the queue listing. The system lists these
 switches if their value is not the default.

 10-4

 USING BATCH

 To print only the status of your job, use the /USER switch with the
 INFORMATION BATCH-REQUESTS command. To print the status of another
 user's job, use the /USER: switch, followed by the user's name.

 @INFORMATION (ABOUT) BATCH-REQUESTS

 Batch Queue:
 Job Name Req# Run Time User
 -------- ----- -------- -----------------
 * VNP20 102 00:07:00 SROBINSON In Stream:1
 Job# 32 Running EXEC Runtime 0:00:00
 * CROSS 103 00:05:00 SROBINSON In Stream:2
 Started at 08:31:09
 FOO 3 00:05:00 RETI /Proc:CALL37
 DATA 111 00:05:00 SARTINI
 GALAXY 104 00:10:00 SAMBERG
 There are 5 Jobs in the Queue (2 in Progress)

 10.1.5 Examining the Output from a Batch Job

 The system places the output from a batch job into a log file. A log
 file has a filename that is the same as the job name, and a file type
 of .LOG. Unless you specify otherwise, the system automatically sends
 the log file to the line printer, but also leaves a copy of it in your
 directory.

 Give the DIRECTORY command to see that the log file is in your
 directory with the control file.
 @DIRECTORY (OF FILES) TEST

 AURORA:<HIGGINS>
 TEST.CTL.1
 .LOG.1

 Total of 2 files

 The following example contains the log file from the batch job,
 TEST.CTL.1.

 17-Oct-88 13:20:34

 BATCON Version 5(6057) GLXLIB Version 5(1247)

 Job TEST Req #88 for EMORRILL in Stream 1

 OUTPUT: Log TIME-LIMIT: 0:05:00
 UNIQUE: Yes BATCH-LOG: Append
 RESTART: No ASSISTANCE: Yes
 ACCOUNT: 341 SEQUENCE: 1435

 10-5

 USING BATCH

 Input from => PUBLIC:<EMORRILL>TEST.CTL.1
 Output to => PUBLIC:<EMORRILL>TEST.LOG

 13:20:36 USER TEAL, Accounting Dept., TOPS-20 Monitor 7(7)
 13:20:36 MONTR Job 290 on TTY246 17-Oct-88 13:20:36
 13:20:39 MONTR [PUBLIC Mounted]
 13:20:39 MONTR
 13:20:39 MONTR [CONNECTED TO PUBLIC:<EMORRILL>]
 13:20:39 MONTR @FILCOM
 13:20:41 USER
 13:20:41 USER **SAMPLE.SCM=DATA.OLD, DATA.NEW
 13:20:43 USER
 13:20:43 USER No differences encountered
 13:20:43 USER
 13:20:43 USER *^C
 13:20:43 MONTR @@PRINT SAMPLE.SCM
 13:20:44 MONTR [Printer job SAMPLE queued, request #89, limit 3]
 13:20:44 MONTR @
 13:20:46 MONTR Killed by OPERATOR, TTY 233
 13:20:46 MONTR Killed Job 290, User EMORRILL, Account 341, TTY 246,
 13:20:46 MONTR at 17-Oct-88 13:20:46, Used 0:00:02 in 0:00:12

 The system begins each line in the log file with the time the line was
 processed. The system prints a code following the time that indicates
 the job state: at TOPS-20 command level (MONTR) or at program command
 level (USER). Other codes may appear as well. The remainder of the
 line contains system output and the lines in the control file.

 The system checks that the job is at TOPS-20 command level before it
 processes a TOPS-20 command in the control file. Since the first
 command in the control file is FILCOM, the job enters FILCOM command
 level. The next TOPS-20 command in the control file is PRINT.
 Because the job is at FILCOM command level, the system must give a
 CTRL/C to return to TOPS-20 command level before it processes the
 PRINT command.

 For a detailed description of batch, refer to the TOPS-10/TOPS-20
 Batch Reference Manual.

 10.2 MODIFYING A BATCH JOB

 To change and/or add one or more switches to a previously issued
 SUBMIT command, give the MODIFY command. After you give the MODIFY
 command, type BATCH, followed by the first six letters of the jobname,
 or the request ID; then type the switch you want to change or add.

 10-6

 USING BATCH

 You can modify almost all SUBMIT command switches. To obtain a list
 of switches you can modify, give the MODIFY BATCH command, followed by
 a slash (/) and a question mark (?). The system prints a list of
 switches you can modify, and reprints the command line.

 @MODIFY (REQUEST TYPE) BATCH/? Switch, or parameter to modify, one
 of the following:

 /AFTER: /BEGIN: /CARDS:
 /DEPENDENCY-COUNT: /DESTINATION-NODE: /FEET:
 /JOBNAME: /OUTPUT: /PAGES:
 /PRESERVE /PRIORITY: /PROCESSING-NODE:
 /RESTARTABLE: /SEQUENCE: /TIME:
 /TPLOT: /UNIQUE: /USER:
 @MODIFY (REQUEST TYPE) BATCH/

 In the following example, modify the batch job TEST.CTL by adding the
 /AFTER: switch and the date August 15, 1988:

 @MODIFY (REQUEST TYPE) BATCH (ID) TEST/AFTER:15-AUG-88
 [1 Job Modified]

 10.3 CANCELING A BATCH JOB

 To remove entries you have previously placed in the batch input queue,
 give the CANCEL command. After you give the CANCEL command, type
 BATCH, followed by the first six letters of the jobname or the request
 ID of the job you want to remove.

 Once the CANCEL command removes the entry you specify from the batch
 queue, the system notifies you of the removal by printing the message
 [1 Job Canceled]. If the system is processing the entry in the queue
 when you give the CANCEL command, it stops the job and prints the
 message, [1 Job Canceled, (1 was in progress)].

 In the following example, remove the batch job TEST.CTL.

 @CANCEL (REQUEST TYPE) BATCH (ID) TEST
 [1 Job Canceled]

 If you have several batch jobs running, you can cancel them all by
 using an *. Give the CANCEL command, followed by the request type you
 want to cancel; then type an * instead of a job name. The following
 example shows how to remove all of your batch jobs:

 @CANCEL (REQUEST TYPE) BATCH *
 [2 Jobs Canceled]

 10-7

 APPENDIX A

 TOPS-20 COMMANDS

 This appendix contains a brief explanation of the commands in the
 TOPS-20 Command Language. The commands are grouped in categories of
 similar use. Although some of these commands are not described in
 this manual, the purpose of this list is to make you aware of the full
 extent and capability of the TOPS-20 Command Language. For a complete
 description of all TOPS-20 commands, refer to the TOPS-20 Commands
 Reference Manual.

 A.1 SYSTEM ACCESS COMMANDS

 These commands allow you to gain and relinquish access to the system,
 to change jobs, and to release and connect terminals to your job.

 ATTACH Connects your terminal to a designated job.

 DETACH Disconnects your terminal from the current job
 without affecting the job.

 DISABLE Returns a privileged user to normal status.

 ENABLE Permits privileged users to access and change
 confidential system information.

 LOGIN Gains access to the TOPS-20 system.

 LOGOUT Relinquishes access to the TOPS-20 system.

 UNATTACH Disconnects a terminal from a job; it does not
 have to be the terminal you are using.

 A-1

 TOPS-20 COMMANDS

 A.2 FILE SYSTEM COMMANDS

 The file system commands allow you to create and delete files, to
 specify where they are to be stored, to copy them, and to output them
 on any device.

 ACCESS Grants ownership and group rights to a specified
 directory.

 APPEND Adds information from one or more source files
 to a new or existing disk file.

 ARCHIVE Marks a file for long-term off-line storage.

 BUILD Allows you to create, change, and delete
 subdirectories.

 CANCEL Removes files from any of several system queues.

 CLOSE Closes a file or files left open by a program.

 CONNECT Removes you from your current directory and
 connects you to a specified directory.

 COPY Duplicates a file in a destination file.

 CREATE Invokes your defined editor to create a file.

 DELETE Marks the specified file(s) for eventual
 deletion (disk files only).

 DEFINE Associates a logical name with one or more file,
 directory, or structure names.

 DIRECTORY Lists the names of files residing in the
 specified directory and information relating to
 those files.

 DISMOUNT Notifies the system that the given structure or
 magnetic tape is no longer needed.

 EDIT Invokes your defined editor to modify a file.

 EXPUNGE Permanently removes any deleted files from the
 disk.

 END-ACCESS Relinquishes ownership and group rights to a
 specified directory.

 FDIRECTORY Lists all the information about a file or files.

 MODIFY Changes and/or adds switches to a previously
 issued PRINT or SUBMIT command.

 A-2

 TOPS-20 COMMANDS

 MOUNT Requests that a structure or a magnetic tape be
 made available to the user.

 PERUSE Invokes your defined editor to read an existing
 file in read-only mode.

 PRINT Enters one or more files in the line printer
 queue.

 RENAME Changes one or more descriptors of an existing
 file specification.

 RETRIEVE Requests restoration of a file stored off-line.

 TDIRECTORY Lists the names of all files in the order of the
 date and time they were last written.

 TYPE Types one or more files on your terminal.

 UNDELETE Restores one or more disk files marked for
 deletion.

 VDIRECTORY Lists the names of all files, as well as their
 protection, size, and date and time they were
 last written.

 A.3 DEVICE HANDLING COMMANDS

 These commands allow you to reserve a device prior to using it, to
 manipulate the device, and to release it once it is no longer needed.

 ASSIGN Reserves a device for use by your job.

 BACKSPACE Moves a magnetic tape drive back any number of
 records or files.

 DEASSIGN Releases a previously assigned device.

 EOF Writes an end-of-file mark on a magnetic tape.

 REWIND Positions a magnetic tape backward to its load
 point.

 SKIP Advances a magnetic tape one or more records or
 files.

 UNLOAD Rewinds a magnetic tape until the tape is wound
 completely on the source reel.

 A-3

 TOPS-20 COMMANDS

 A.4 PROGRAM CONTROL COMMANDS

 The following commands help you create, run, edit, and debug your own
 programs.

 COMPILE Translates a source module using the appropriate
 compiler.

 CONTINUE Resumes execution of a program interrupted by a
 CTRL/C or the FREEZE command.

 CREF Runs the CREF program which produces a
 cross-reference listing and automatically sends
 it to the line printer.

 CSAVE Saves the program currently in memory so that it
 may be used by giving a RUN command. The
 program is saved in a compressed format.

 DDT Merges the debugging program, DDT, with the
 current program and then starts DDT.

 DEBUG Takes a source program, compiles it, loads it
 with the appropriate debugger and starts the
 debugger.

 DEPOSIT Places a value in an address in memory.

 ERUN Runs an executable program in an ephemeral
 (transitory) fork.
 EXAMINE Allows you to examine an address in memory.

 EXECUTE Translates, loads, and begins execution of a
 program.

 FREEZE Stops a running program.

 FORK Selects the fork to which TOPS-20 commands
 apply.

 GET Loads an executable program from the specified
 file into memory, but does not start it.

 KEEP Protects a fork from being cleared from memory.

 LOAD Translates a program (if necessary) and loads it
 into memory.

 MERGE Merges an executable program with the current
 contents of memory.

 A-4

 TOPS-20 COMMANDS

 POP Stops the current active copy of the TOPS-20
 command level and returns control to the
 previous command level.

 PUSH Preserves the contents of memory at the current
 command level and creates a new TOPS-20 command
 level.

 R Runs a system program.

 REENTER Starts the program currently in memory at an
 alternate entry point specified by the program.

 RESET Clears the current job.

 RUN Loads an executable program from a file and
 starts it at the location specified in the
 program.

 SAVE Copies the contents of memory into a file in
 executable format. If memory contains a
 program, you may now execute the program by
 giving the RUN command.

 SET Sets various parameters for your job, a
 directory, a file, or a device.

 START Begins execution of a program previously loaded
 into memory.

 TRANSLATE Translates a project-programmer number to a
 directory name or a directory name to a
 project-programmer number.

 UNKEEP Cancels the kept status of a fork.

 A.5 INFORMATION COMMANDS

 These commands return information about TOPS-20 commands, your job,
 and the system as a whole.

 DAYTIME Prints the current date and time of day.

 HELP Prints information about system features.

 INFORMATION Provides information about your job, files,
 memory, errors, system status, queue requests,
 and other parameters.

 A-5

 TOPS-20 COMMANDS

 SYSTAT Outputs a summary of system users and available
 computing resources.

 A.6 TERMINAL COMMANDS

 The terminal commands allow you to clear your video terminal screen,
 to declare the characteristics of your terminal, and to control
 linking to another user's terminal.

 ADVISE Sends whatever you type on your terminal as
 input to a job connected to another terminal.

 BLANK Clears the video terminal screen and moves the
 cursor to the first line.

 BREAK Clears a terminal links made with the TALK
 command.

 RECEIVE Allows your terminal to receive links and advice
 from other users.

 REFUSE Denies links and advice to your terminal.

 REMARK Allows you to type many lines of text when using
 the TALK command.

 SEND Sends a message to another user's terminal.

 SET Establishes certain job-wide characteristics for
 the terminal.

 SET HOST Connects the terminal to another system.

 TAKE Accepts TOPS-20 commands from a file, just as if
 you had typed them on your terminal.

 TALK Links two terminals so that each user can
 observe what the other user is doing, yet does
 not affect either user's job.

 TERMINAL Declares the type of terminal you have, and lets
 you inform TOPS-20 of any special
 characteristics of the terminal.

 A-6

 TOPS-20 COMMANDS

 A.7 BATCH COMMAND

 The TOPS-20 operating system also has a Batch System to which you may
 submit jobs for later execution.

 SUBMIT Enters a file into the Batch waiting queue.
 When it is your job's turn, the commands
 contained in the file are executed.

 A-7

 APPENDIX B

 STANDARD FILE TYPES

 Table B-1 lists the file types that have a specific meaning to the
 system or to certain programs. When you create a file for use with a
 particular program, you should assign the correct file type. If you
 do, the system has more information about the file and can attempt to
 perform the correct function after you type a minimum set of commands
 or switches. Normally, no penalty arises from assigning an undefined
 file type, but if you assign an incorrect file type, the system may
 incorrectly interpret the file, especially when you use the LOAD-class
 commands.

 Table B-1: Standard File Types

 __

 File Type Kind of File Meaning
 __

 68C Source Source file in the COBOL-68
 language

 74C Source Source file in the COBOL-74
 language

 A10 ASCII ASCII version of a
 DECSYSTEM-20 program loaded
 by the PDP-11

 A11 ASCII ASCII version of a PDP-11
 program loaded by the PDP-11

 ABS Object Absolute (nonrelocatable)
 program

 AID Source Source file in AID language

 ALG Source Source file in ALGOL
 language

 B-1

 STANDARD FILE TYPES

 ALP ASCII Printer forms alignment

 ATO ASCII PTYCON automatic command
 file

 ATR Binary Attribute file in SIMULA
 language

 AWT Binary Data for automatic wire
 tester

 BAK Source Backup file from TECO

 B10 Source Source file in the BLISS-10
 language

 B20 Source Source file in the
 BASIC-PLUS-2/20 language

 B36 Source Source file in the BLISS-36
 language

 BAS Source Source file in BASIC
 language

 BCM ASCII Listing file created by
 FILCOM (binary compare)

 BCP Source Source file in BCPL language

 BFR ASCII Copy of VTECO buffer

 BIN Binary Binary file

 BIX ASCII Output of the DSR program
 for input to the TCX program

 BLB ASCII Blurb file

 BLI Source Source file in BLISS-10
 language

 BOX ASCII Output of BOX program -
 picture for use in
 specifications and manuals

 BTC ASCII Output of the DSR program
 for input to the TOC program

 BUG Object Saved to show a program
 error

 B-2

 STANDARD FILE TYPES

 BWR ASCII Beware file listing warnings
 about a file or program

 C68 Source Source file in the COBOL-68
 language

 C74 Source Source file in the COBOL-74
 language

 CAL Object CAL data and program files

 CBL Source Source file in COBOL-68 or
 COBOL-74 language

 CCL ASCII Command file for LINK

 CDP ASCII, Binary Spooled output for card
 punch

 CED ASCII Input to COPYED

 CFL ASCII RUNFIL command file

 CKP Binary Checkpoint core image file
 created by COBOL operating
 system

 CHN Object CHAIN file

 CMD ASCII Command file

 COB ASCII COBOL Source File

 COR ASCII Correction file for SOUP

 CPY Binary Copy of a crash written by
 SETSPD

 CRF ASCII CREF (cross-reference) input
 file

 CTL ASCII Batch control file

 DAT ASCII, Binary Data (FORTRAN) file, output
 file with ANSI carriage
 control

 DCT ASCII Dictionary of words

 DIR ASCII Directory from DIRECTORY
 command

 B-3

 STANDARD FILE TYPES

 DMP ASCII COBOL compiler dump file

 DOC ASCII Listing of modifications to
 the most recent version of
 the software

 DRW Binary Drawing for VB10C drawing
 system

 ERR ASCII Error message file

 EXE Object Executable program

 FAI Source Source file in FAIL language

 FCL Source Source file in FOCAL
 language

 FLO ASCII English language flowchart

 FOR Source Source file in FORTRAN
 language

 FRM ASCII Blank form for handwritten
 records

 FTP Source FORTRAN test programs

 GND ASCII List of ground pins for
 automatic wirewrap

 HGH Object Nonsharable high segment of
 a TOPS-10 two-segment
 program

 HLP ASCII Help text files

 IDA ASCII, Binary COBOL ISAM data file

 IDX ASCII,SIXBIT Index file of a COBOL ISAM
 file

 INI ASCII, Binary Initialization file

 L36 Object LIBRARY object file for the
 BLISS-36 language

 LAP ASCII Output from the LISP
 compiler

 LIB ASCII COBOL source library

 B-4

 STANDARD FILE TYPES

 LOG ASCII Batch, PTYCON or LINK log
 file

 LOW Object Low segment of a TOPS-10
 two-segment program

 LPT ASCII Spooled output for line
 printer

 LSP Source Source file in LISP language

 LST ASCII Listing data created by
 assemblers and compilers

 MAC Source Source file in MACRO
 language

 MAN ASCII Manual (documentation) file

 MAP ASCII LINK map file

 MEM ASCII Formatted text file produced
 by the DSR program

 MID Source Source file in MIDAS (MIT
 Assembler) language

 MIM Binary Snapshot of MIMIC simulator

 MSB Object MUSIC compiler binary output

 MUS Source MUSIC compiler input

 N Source Source file in NELIAC
 language

 NEW All New version of a program or
 file

 OBJ Object PDP-11 relocatable binary
 file

 OLD Source, Object Backup source program

 OPR ASCII Installation and assembly
 instructions

 OVR Object COBOL overlay file

 P11 Source Source program in MACX11
 language

 B-5

 STANDARD FILE TYPES

 PAL Source Source file in PAL 10 (PDP-8
 assembler)

 PAS Source Source file in the PASCAL
 language

 PCO ASCII Program change order

 PL1 Source Source file in PL1 language

 PLM ASCII Program logic manual

 PLO Binary Compressed plot output

 PLT ASCII Spooled output for plotter

 PPL Source Source file in PPL language

 PTP ASCII, Binary Spooled output for
 paper-tape punch

 Qxx ASCII Edit backup file

 R36 Source LIBARY source file for the
 BLISS-36 language

 RAM ASCII DECSYSTEM-20 microcode

 REL Object Relocatable binary file

 REQ Source LIBARY source file for the
 BLISS-36 language

 RIM Object RIM loader file

 RNO ASCII Programming specifications
 in DSR input

 RSP ASCII SCRIPT response time log
 file

 RSX All Files for RSX-11

 RUN ASCII Command file for SYSJOB

 SAI Source Source file in SAIL language

 SAV Object Low segment from a
 one-segment TOPS-10 program

 SCD ASCII Differences in directory

 B-6

 STANDARD FILE TYPES

 SCM ASCII Listing file created by
 FILCOM (source compare)

 SCP ASCII SCRIPT control file

 SEQ ASCII, SIXBIT Sequential COBOL data file,
 input to ISAM program

 SHR Object A TOPS-10 sharable program

 SIM ASCII Source file in SIMULA
 language

 SMP Source Source file in SIMPLE
 language

 SNO Source Source file in SNOBOL
 language

 SPC ASCII Corrected file for SPELL
 program

 SPD ASCII Dictionary for SPELL program

 SPM ASCII File of mispelled words for
 SPELL program

 SPT ASCII SPRINT - created files

 SPU ASCII File of uppercase words for
 SPELL program

 SPX ASCII File of exception (error)
 lines for SPELL program

 SRC ASCII Source files

 STB Symbol table file

 STD ASCII Standards

 SYM Binary LINK symbol file

 SYS Binary Special system files

 TEC ASCII TECO macro

 TEM ASCII, Binary Temporary files

 TMP ASCII, Binary Temporary files

 B-7

 STANDARD FILE TYPES

 TPB ASCII Typeset input for producing
 a .BLB file

 TPC ASCII Typeset input for producing
 a .CCO file

 TPD ASCII Typeset input for producing
 a .DOC file

 TPE ASCII Typeset input for producing
 error message text

 TPH ASCII Typeset input for producing
 a .HLP file

 TPL ASCII Typeset input for producing
 a logic manual

 TPM ASCII Typeset input for producing
 a .MAN file

 TPO ASCII Typeset input for producing
 a programming specification

 TPP ASCII Typeset input for producing
 an .OPR file

 TSK Object An RSX-11 task image

 TST All Test data

 TV ASCII Command file for TV

 TXT ASCII Text file

 UPD ASCII Updates flagged in margin
 (FILCOM)

 WCH ASCII SCRIPT monitor (WATCH) file

 WRL ASCII Wirelist

 XOR Binary Module data for XOR tester

 XPN Object Expanded save file (FILEX
 and LINK)

 Zxx ASCII EDIT original file (all xx)

 B-8

 APPENDIX C

 CHANGING YOUR PROGRAM USING EDIT

 This appendix shows you how to enter, run, edit, rerun and print a
 FORTRAN program.

 C.1 ENTERING YOUR FORTRAN PROGRAM

 Type the FORTRAN program show below into a file called ADDTWO.FOR.
 (See Chapter 5, Section 5.1.1, EDIT.) This program contains errors
 that you will learn to correct in sections C.2.2 through C.2.6 of this
 appendix.

 @CREATE (FILE) ADDTWO.FOR
 Input: ADDTWO.FOR.1
 00100 C THIS PROGRAM ADDS TWO NUMBERS.
 00200 <TAB> TYPE 191
 00300 101<TAB>FORMAT ('TYPE TWO NUMBERS.')
 00400 <TAB> ACCEPT 102,X,Y
 00500 <TAB> Z=C+Y
 00600 <TAB> Z=X+Y
 00700 <TAB> TYPE 103,X,Y,Z
 00800 103<TAB>FIRMAT (' ADDING ',F,' TO ',F,' GIVES ',F)
 00900 <TAB> END
 00100 <ESC>
 *E

 [ADDTWO.FOR.1]
 @

 Now that your program is in the file, run it to find any errors.

 1. Type EXECUTE, and press the ESC key.

 2. The system prints (FROM).

 3. Type the filename and file type of your program.

 4. Press the RETURN key.

 C-1

 CHANGING YOUR PROGRAM USING EDIT

 The file type .FOR causes the FORTRAN compiler to translate your
 program.

 @EXECUTE (FROM) ADDTWO.FOR
 FORTRAN: ADDTWO
 00800 103 FIRMAT (' ADDING ',F,' TO ',F,' GIVES ',F)
 ?FTNNRC Line:00800 Statement not recognized

 Underlined labels

 103 102 191

 ?FTNFTL MAIN. 4 fatal errors and no warnings
 LINK: ?LNKSUP Loading suppressed

 EXIT
 @

 The program contained the following errors:

 1. In line 200, 191 should be 101.

 2. In line 800, the word FORMAT is misspelled as FIRMAT.

 3. Between lines 400 and 500, there should be FORMAT statement
 102.

 4. Line 500 should be deleted.

 C.2 EDITING YOUR FORTRAN PROGRAM

 You can remove the errors in your program by using the EDIT program.

 C.2.1 Starting EDIT

 You can start edit after you see the @ prompt:

 1. Type EDIT and press the ESC key.

 2. The system prints (FILE).

 3. Type the name of your file.

 4. Press the RETURN key.

 C-2

 CHANGING YOUR PROGRAM USING EDIT

 EDIT prints the word "Edit:"; repeats the name of your file, and then
 prints an asterisk.

 @EDIT (FILE) ADDTWO.FOR
 Edit: ADDTWO.FOR.1
 *

 NOTE

 If you type the name of a file that does not exist,
 EDIT prints:

 ?FILE NOT FOUND, CREATING NEW FILE INPUT:
 name,type,generation 00100

 This allows you to create a new file. If you mistyped
 the filename or file type, you should end this EDIT
 session and start over:

 1. Press the ESC key and type EQ (for End and Quit).

 2. Press the RETURN key.

 3. The system prints the @.

 4. Type a new EDIT command with an existing filename.

 After you see the asterisk, you can use any of the commands described
 in this chapter to change your file.

 C.2.2 Printing a Line

 The first error in ADDTWO.FOR occurs in line 200. To view the error,
 print line 200 on your terminal.

 To print a line:

 1. Type P.

 2. Type the number of the line that you want to print.

 3. Press the RETURN key.

 The command P200 prints line 200.

 *P200
 00200 TYPE 191
 *

 C-3

 CHANGING YOUR PROGRAM USING EDIT

 To check the other errors, you can print a group of lines:

 1. Type P.

 2. Type the number of the first line that you want to print.

 3. Type a colon.

 4. Type the number of the last line that you want to print.

 5. Press the RETURN key.

 The command P300:900 prints lines 300 through 900, inclusive.

 *P300:900
 00300 101 FORMAT (' TYPE TWO NUMBERS.')
 00400 ACCEPT 102,X,Y
 00500 Z=C+Y
 00600 Z=X+Y
 00700 TYPE 103,X,Y,Z
 00800 103 FIRMAT ('ADDING ',F,' TO ',F,' GIVES ',F)
 00900 END
 *

 C.2.3 Inserting a Line

 To insert a line into your file:

 1. Type I.

 2. Type the number that you want to give to your new line.

 3. Press the RETURN key.

 4. EDIT prints the line number.

 5. Type the line.

 6. Press the RETURN key again.

 The command I450 inserts the new line number 450 into you program.

 *I450
 00450 102<TAB> FORMAT (2F)
 *

 After you press the RETURN key at the end of the inserted line, EDIT
 may print another line number. You can then type another line. If
 you don't want to type another, press the ESC key. EDIT prints an
 asterisk; you can now give any EDIT command.

 C-4

 CHANGING YOUR PROGRAM USING EDIT

 *I1000
 01000 C THIS IS A COMMENT AT THE END OF A PROGRAM -
 01100 C WHEN EDIT PRINTS THE NEXT NUMBER, YOU CAN TYPE A LINE.
 01200 C TO STOP INSERTING, PRESS THE ESC KEY.
 01300<ESC>
 *

 C.2.4 Deleting a Line

 To delete a line in your file:

 1. Type D.

 2. Type the number of the line that you want to delete.

 3. Press the RETURN key.

 4. EDIT confirms that it deleted the line.

 Line 500 of ADDTWO.FOR should be deleted; the variable C should be an
 X. Line 600 contains the correction. The command D500 deletes line
 500 on page 1 of the file.

 *D500
 1 LINES (00500/1) deleted
 *

 To delete more than one line:

 1. Type D.

 2. Type the number of the first line.

 3. Type a colon.

 4. Type the number of the last line.

 5. Press the RETURN key.

 The command D1000:1200 deleted lines 1000 through 1200, inclusive.

 *D1000:1200
 3 LINES (01000/1:01200) deleted
 *

 C-5

 CHANGING YOUR PROGRAM USING EDIT

 C.2.5 Replacing a Line

 To replace a line:

 1. Type R.

 2. Type the number of the line that you want to replace.

 3. Press the RETURN key.

 4. EDIT prints the line number.

 5. Type the new line.

 6. Press the RETURN key.

 7. EDIT prints a message giving the line numbers of any deleted
 lines.

 The error in line 200 of ADDTWO.FOR occurs because 191 should be 101.
 The command R200 replaces line 200.

 *R200
 00200 <TAB> TYPE 101
 1 LINES (00200/1) deleted
 *

 C.2.6 Changing a Line Without Completely Retyping It

 To replace an existing group of characters on a line with a new group
 of characters:

 1. Type S.

 2. Type the existing group of characters.

 3. Press the ESC key (EDIT prints a $).

 4. Type the new characters.

 5. Press the ESC key.

 6. Type the line number that contains the existing group of
 characters.

 7. Press the RETURN key.

 8. EDIT prints the revised line on your terminal.

 C-6

 CHANGING YOUR PROGRAM USING EDIT

 In line 800 of ADDTWO.FOR, the word FIRMAT should be corrected to
 FORMAT. The command SFIRMANT<$>FORMAT<>800 replaces the word FIRMAT
 with FORMAT.

 *SFIRMAT<ESC>FORMAT<ESC>800<RET>
 00800 103 FORMAT (' ADDING ',F,' TO ',F,' GIVES ',F)
 *

 C.2.7 Saving a File

 To finish your EDIT session and save the edited file, type E and press
 the RETURN key. EDIT prints the name of your file and returns you to
 TOPS-20 command levels.

 *E

 [ADDTWO.FOR.2]
 @

 C.3 RERUNNING A FORTRAN PROGRAM

 After editing your program, run it again to find out if it works.

 To reexecute a FORTRAN program, type EXECUTE and press the RETURN key.
 You do not have to give the name of the file. If you omit the
 filename, TOPS-20 executes the file that you named in your last
 EXECUTE command. In this case, TOPS-20 executes ADDTWO.FOR.

 @EXECUTE
 FORTRAN: ADDTWO
 MAIN.
 LINK: Loading
 (LNKXCT ADDTWO execution)
 TYPE TWO NUMBERS.
 34,78
 ADDING 34.0000000 TO 78,0000000 GIVES 112,0000000
 CPU time 0.25 Elapsed time 10.03
 @

 C-7

 CHANGING YOUR PROGRAM USING EDIT

 C.3.1 Typing Out Your Program

 To see a final copy of your FORTRAN program printed on your terminal

 1. Type TYPE.

 2. Press the ESC key.

 3. The system prints (FILE).

 4. Type the filename and file type of your file.

 5. Press the RETURN key.

 @TYPE (FILE) ADDTWO.FOR
 00100 C THIS PROGRAM ADDS TWO NUMBERS.
 00200 TYPE 101
 00300 101 FORMAT (' TYPE TWO NUMBERS.')
 00400 ACCEPT 102,X,Y
 00450 102 FORMAT (2F)
 00600 Z=X+Y
 00700 TYPE 103,X,Y,Z
 00800 103 FORMAT (' ADDING ',F,' TO ',F,' GIVES ',F)
 09000 END
 @

 C-8

 APPENDIX D

 USING BASIC

 If you want to enter and run a BASIC program using BASIC-PLUS-2, type
 in your program directly to BASIC; you should not use EDIT. The
 following sections show how to start BASIC, and then how to enter,
 save, run, edit, rerun, and list your program. Section D.10 shows you
 how to leave BASIC.

 D.1 STARTING BASIC

 After you see the @, type BASIC, and press the RETURN key. BASIC
 prints READY.

 @BASIC

 READY

 Once BASIC prints READY, you can use any of the BASIC commands
 discussed in this section. You must not, however, use any TOPS-20
 command or recognition input.

 D.2 ENTERING YOUR PROGRAM

 1. After you see READY, type NEW to enter a new file into your
 working area in the computer. Press the RETURN key.

 READY
 NEW
 New Program Name--

 D-1

 USING BASIC

 2. After you see New Program Name--, type a name for your
 program, and press the RETURN key. The program name can have
 up to 39 letters and numbers. The following example shows
 using the name SQUARE for the new program name:

 New program name--SQUARE

 READY

 3. After you see READY, begin typing your program. Type line
 numbers at the beginning of each line of your program. Press
 the RETURN key at the end of each line.

 The example shows a BASIC program as it was originally entered; the
 program contains an error that is corrected later in this section.

 100!SQUARE.B20 - THIS PROGRAM CALCULATES A SQUAREROOT.
 200 PRINT "TYPE A NUMBER."
 300 INPUT X
 400 Y = SQR(X)
 500 PRINT "THE SQUAROOT OF ";X;" IS ";Y
 600 STOP
 700 END

 D.3 SAVING YOUR PROGRAM

 After you enter your program into your working area, type SAVE, and
 press the RETURN key. When you see READY, it means that BASIC saved
 the program you just typed into your storage area. By saving your
 program, you can run it at a later time without having to reenter it
 into the computer. (Refer to Section D.9).

 SAVE

 READY

 To see a list of the files saved in your storage area, type CATALOG,
 and press the RETURN key.

 CATALOG

 ADDTWO.FOR.2
 FACTOR.B20.1
 RANDOM.B20.2
 SQRT.ALG.2
 SQUARE.B20.1

 READY

 D-2

 USING BASIC

 D.4 RUNNING YOUR PROGRAM

 To run the program in your working area, type RUN, and press the
 RETURN key. You wil see the name of your program, the time, and the
 date. When you see READY, your program has finished running.

 RUN

 SQART.B20
 Friday, June 10, 1988 09:13:16

 TYPE A NUMBER.
 ? 45.668
 THE SQUAREOOT OF 45.668 IS 6,75781
 STOP at line 00600 of MAIN PROGRAM

 Compile time: 0.054 secs
 Run time: 0.138 secs Elapsed time: 0:00:08

 READY

 D.5 EDITING YOUR PROGRAM

 To edit the program in your working area:

 1. Type the number of the line that you want to change.

 2. Type the new contents of the line.

 3. Press the RETURN key.

 500 PRINT "THE SQUAREROOT OF ";X;" IS ";Y

 D.6 RENAMING YOUR PROGRAM

 To rename an existing BASIC program in your storage area:

 1. Type RENAME.

 2. Type the new program name.

 3. Press the RETURN key.

 RENAME SQART

 READY

 D-3

 USING BASIC

 D.7 RERUNNING YOUR PROGRAM

 Now that you have changed your program, run it to make sure that it
 works properly.

 RUN

 SQUARE.B20
 Friday, June 10, 1988 09:11:44

 TYPE A NUMBER.
 ? 45.668
 THE SQUAREROOT OF 45.668 IS 6.75781
 STOP at line 00600 of MAIN PROGRAM

 Compile time: 0:086 secs
 Run time: 0.229 secs Elapsed time: 0:00:10

 READY

 D.8 LISTING YOUR PROGRAM

 To get a final copy of your corrected program, type LIST, and press
 the RETURN key.

 LIST

 SQART.B20
 Tuesday, February 6, 1988 11:03:31

 00100!SQUARE.B20 - THIS PROGRAM CALCULATES A SQUAREROOT.
 00200 PRINT "TYPE A NUMBER."
 00300 INPUT X
 00400 Y = SQR(X)
 00500 PRINT "THE SQUAREROOT OF ";X;" IS ";Y
 00600 STOP
 00700 END

 READY

 To list a single line of your program, type LIST, type the line number
 of the line, and press the RETURN key.

 LIST 500

 SQART.B20
 Tuesday, February 6, 1988 11:03:40

 00500 PRINT "THE SQUAREROOT OF ";X;" IS ";Y

 READY

 D-4

 USING BASIC

 D.9 RUNNING AN EXISTING PROGRAM

 To run an existing BASIC program, you must do two things:

 1. Move a copy of the program from your storage area into your
 working area.

 2. Type the RUN command.

 To move a copy of an existing program into your working area and run
 the program:

 1. Type OLD.

 2. Type the program name.

 3. Press the RETURN key.

 4. Type RUN.

 5. Press the RETURN key.
 OLD FACTOR

 READY
 RUN<RET>

 FACTOR
 Tuesday, February 6, 1988 11:28:46

 FIND THE FACTORIAL OF:
 ? 6<RET>
 THE FACTORIAL OF 6 IS 720

 RUNTIME: 0.563 SECS ELAPSED TIME: 0:00:51

 READY

 D.10 LEAVING BASIC

 To leave BASIC, type MONITOR, and press the RETURN key. When you see
 the @, you can type any TOPS-20 command.

 MONITOR
 @

 To leave BASIC and log out automatically, type BYE.

 D-5

 INDEX

 -A- Character (Cont.)
 exclamation point, 2-12, 3-3
 Abbreviated input, 2-9 hyphen, 2-12
 combined with recognition, 2-11 percent sign, 4-9
 ACCESS command, 6-11 question mark, 2-5
 Accessing directories, 6-11 specifying special, 4-10
 Accounts, 1-15 wildcard, 4-9
 ALGOL programming language, 9-1 COBDDT program, 9-3
 APPEND command, 6-14 COBOL programming language, 9-1
 Appending files, 6-14 COMAND.CMD file, 1-17
 ARCHIVE command, 6-25 Command
 Archiving, 6-25 fields, 2-4
 archiving expired files Command file, 1-16
 automatically, 6-27 BATCH.CMD, 10-2
 cancelling requests for, 6-26 COMAND.CMD, 1-17
 deleting archived files, 6-27 indirect, 9-14
 listing archived files, 6-26 LOGIN.CMD, 1-16
 retrieving archived files, 6-26 Commands
 Assembler, 9-2 see also individual commands
 ASSIGN command, 7-3 components of, 2-1
 Assigning devices, 7-3 device handling, A-3
 Autobaud terminal line, 1-10 file system, A-2
 informational, A-5
 -B- program control, A-4
 system access, A-1
 Background fork, 8-16 terminal, A-6
 BASIC programming language, 9-2 COMPILE command, 9-2, 9-3, 9-15
 Batch control file, 10-1 Compiler, 9-2
 Batch job, 10-1 concatenating files for, 9-23
 cancelling, 10-7 defaults, 9-19
 checking status of, 10-4 CONNECT command, 6-9
 modifying, 10-6 Connecting to directories, 6-8
 Batch log file, 10-5 CONTINUE command, 8-12
 BATCH.CMD file, 10-2 Control character
 Baud rate, 1-10 CTRL/C, 8-7
 BLISS programming language, 9-1 CTRL/F, 4-11
 CTRL/H, 2-14
 -C- CTRL/O, 8-8
 CTRL/Q, 1-8, 1-9
 CANCEL ARCHIVE command, 6-26 CTRL/R, 2-14
 CANCEL BATCH command, 10-7 CTRL/S, 1-8, 1-9
 CANCEL MOUNT command, 7-2, 7-6 CTRL/T, 8-9
 CANCEL PRINT command, 6-18 CTRL/U, 2-14
 CANCEL RETRIEVE command, 6-25 CTRL/V, 4-10
 Character CTRL/W, 2-14
 asterisk, 4-9 Control file
 at sign in batch, 10-1 batch, 10-1
 colon, 4-3 Control key, 1-2

 Index-1

 COPY command, 6-13 -F-
 Copying files, 6-13
 CREATE command, 5-4 FILCOM program, 8-3, 9-14
 .CRF file, 9-7 File
 Cross-reference listing, 9-6 batch log, 10-5
 Current fork, 8-16 cross-reference, 9-7
 .EXE, 9-4
 -D- executable, 8-6
 expired, 6-28
 DAYTIME command, 2-2 generation number, 4-6, 4-7,
 DDT program, 9-3 4-11
 DEBUG command, 9-2, 9-16 indirect command, 9-14
 Debugging a program, 9-3 invisible, 6-29
 DECmail/MS program, 3-6, 3-7 library, 9-8, 9-11
 Defaults, 2-12 MIGRATION.ORDER, 6-23
 compiler, 9-20 name, 4-5
 DEFINE command, 4-13, 4-14, 4-15 protection code, 4-8, 6-5, 6-6
 DELETE command, 6-20 .REL, 9-1
 Delete key, 1-2, 2-14 specification, 4-1
 Deleting files, 6-20 structure, 6-2
 Device names, 4-2, 4-3 temporary, 4-8, 6-21
 Devices types, 4-6, B-1
 assigning, 7-3 visible, 6-29
 Directories File attributes, 4-8
 accessing, 6-11 Files
 connecting to, 6-8 appending, 6-14
 Directory archiving, 6-25
 log-in, 4-3, 6-2 comparing, 8-3, 9-14
 names, 4-3 copying, 6-13
 protection number, 6-4 creating, 5-1
 storage allocation, 6-22 deleting, 6-20
 DIRECTORY command, 2-11 editing, 5-1
 Disk storage allocation, 6-22 erasing, 6-20
 permanent, 6-22 migrating, 6-23
 working, 6-22 printing, 6-15
 DISMOUNT STRUCTURE command, 6-3 renaming, 6-14
 DISMOUNT TAPE command, 7-2 restoring deleted, 6-20
 DUMPER program, 4-7, 6-25, 7-1, retrieving archived, 6-26
 7-4 FORDDT program, 9-3
 Fork, 8-13
 -E- background, 8-16
 current, 8-16
 EDIT command, 5-4 kept, 8-15
 EDIT program, 5-1 FORK command, 8-16
 Editor programs, 5-1 FORTRAN programming language, 9-1
 EDT-20 program, 5-3
 Erasing files, 6-20 -G-
 Escape key, 1-2, 2-8, 4-11
 Executable program, 8-6 Generation number
 EXECUTE command, 9-2, 9-6, 9-16 file, 4-6, 4-7, 4-11
 Executing a program, 9-2, 9-6 Global switch, 10-4
 EXPUNGE command, 6-20 Group, 6-4

 Index-2

 Guidewords, 2-2, 2-8 Line speed
 terminal, 1-10
 -H- Line width
 terminal, 1-19
 HELP command, 8-5 LINK program, 9-2
 Links
 -I- terminal, 3-3
 Load average, 8-10
 INFORMATION commands LOAD command, 9-2, 9-8, 9-16
 ALERTS, 2-15 LOAD-class commands, 9-2
 ARCHIVE-STATUS, 6-25 default arguments, 9-22
 AVAILABLE-DEVICES, 7-2 saving arguments, 9-14
 BATCH-REQUESTS, 10-4 using, 9-15, 9-16
 DEFAULTS, 6-19 Loading a program, 9-17
 DISK-USAGE, 6-22 Local switch, 10-4
 FORK-STATUS, 8-17 Log-in directory, 6-2
 JOB-STATUS, 6-10 Logical names, 4-13, 4-15
 LOGICAL-NAMES, 4-14 LOGIN command, 1-12
 MOUNT-REQUESTS, 7-2, 7-5 LOGIN.CMD file, 1-16
 OUTPUT-REQUESTS, 6-16 define logical names in, 4-13
 RETRIEVAL-REQUESTS, 6-24 LOGOUT command, 1-18
 STRUCTURE, 6-3
 SYSTEM, 3-5
 TAPE-PARAMETERS, 7-3 -M-
 TERMINAL-MODE, 1-5, 1-7
 VOLUMES, 7-5 MACRO programming language, 9-1
 Magnetic tape
 -J- see tape
 MAKLIB program, 9-8, 9-10
 Job, 1-12 Memory
 see also batch job preserving contents of, 8-12,
 8-13
 -K- Messages
 CTRL/T status, 8-10
 KEEP command, 8-15 process termination, 8-11
 Kept fork, 8-15 system identification, 1-5
 Key Migration of files, 6-23
 Control, 1-2 MIGRATION.ORDER file, 6-23
 Delete, 1-2, 2-14 MODIFY BATCH command, 10-6, 10-7
 Escape, 1-2, 2-8, 4-11 MODIFY PRINT command, 6-18
 Return, 1-3 Modules
 Space, 1-3 programming, 9-5
 Tab, 1-3 Mount count, 6-3
 MOUNT STRUCTURE command, 6-3
 -L- MOUNT TAPE command, 7-2, 7-4
 Multiforking, 8-13
 Labelled tapes, 7-1
 using, 7-4
 Library file, 9-8
 creating a, 9-10 -N-
 subroutine, 9-8
 using a.LM0, 9-11 NUL: device name, 4-3

 Index-3

 -O- .REL file, 9-1
 REMARK command, 3-3
 Object program, 9-1, 9-2, 9-16 RENAME command, 6-14
 Off-line storage, 6-23 RESET command, 8-17
 On-line expiration date, 6-27 Restoring files, 6-20
 RETRIEVE command, 6-24, 6-26
 -P- Return key, 1-3
 RUN command, 8-6, 9-4
 Page length
 terminal, 1-19 -S-
 Passwords, 1-14
 protecting, 1-15 SAVE command, 9-13
 selecting, 1-14 SEND command, 3-8
 PERUSE command, 5-4 Session-Remark, 1-16
 PLEASE program, 3-9, 3-10, 7-3 SET ACCOUNT command, 4-8
 POBOX, 4-16 SET ALERT command, 2-15
 POP command, 8-12, 8-13 SET AUTOMATIC command, 2-16
 PRINT command, 6-15 SET DEFAULT COMPILER-SWITCHES
 Print requests command, 9-20
 cancelling, 6-18 SET DEFAULT PRINT command, 6-19
 Printing files, 6-15 SET DEFAULT SUBMIT command, 10-4
 Process, 8-13 SET DIRECTORY command, 6-27, 6-28
 Process termination messages, SET DIRECTORY PASSWORD command,
 8-11 1-15
 Programs SET FILE EXPIRED command, 6-28
 see also individual programs SET FILE INVISIBLE command, 6-29
 controlling, 8-7 SET FILE PROTECTION command, 6-8
 multi-module, 9-5 SET FILE RESIST command, 6-23
 object, 9-1, 9-2, 9-16 SET FILE VISIBLE command, 6-29
 relocatable object, 9-18 SET MAIL-WATCH command, 3-13
 running system, 8-1 SET SESSION-REMARK command, 1-16
 running user, 8-6 SET TAPE DENSITY command, 7-3
 saving, 9-13 SET TYPEOUT MODE command, 8-10
 source, 9-1, 9-2, 9-16 Source program, 9-1, 9-2, 9-16
 Project-programmer number, 4-4, Space bar, 1-3
 4-5 Special characters
 Protection code see characters
 directory, 6-4 START command, 9-2
 file, 4-8, 6-5 Storage allocation
 Public structure, 6-2 see Disk storage
 PUSH command, 8-12, 8-13 Structure
 file, 6-2
 -R- public, 6-2
 Subcommand, 2-3
 RECEIVE SYSTEM-MESSAGES command, SUBMIT command, 10-3
 3-10 Subroutines, 9-8
 Recognition input, 2-8 SYSTAT command, 3-1
 with file specifications, 4-11,
 4-12 -T-
 REFUSE LINKS command, 3-12
 REFUSE SYSTEM-MESSAGES command, Tab key, 1-3
 3-10 Tab stops, 1-3

 Index-4

 TALK command, 3-3 Terminal output
 Tape controlling, 1-8
 allocation, 7-1 TERMINAL PAUSE command, 1-8
 labelled, 7-1, 7-4 TERMINAL SPEED command, 1-10
 setname, 7-4 TERMINAL WIDTH command, 1-19
 setting parameters for, 7-3 TOPS-20 commands
 system backup, 2-16 components of, 2-1
 unlabelled, 7-1, 7-2 TRANSLATE command, 4-5
 volume identifier, 7-4 TV program, 5-3
 Terminal characteristics, 1-5
 line width, 1-19 -U-
 page length, 1-19
 speed, 1-10, 1-11 UNDELETE command, 6-20
 terminal type, 1-6 Unlabelled tapes, 7-1, 7-2
 TERMINAL command, 1-6, 1-7 UNLOAD command, 7-3
 TERMINAL INHIBIT command, 3-12 User names, 1-14
 Terminal input
 abbreviated, 2-9 -V-
 recognition, 2-8
 TERMINAL LENGTH command, 1-19 VOLID, 7-4
 TERMINAL NO FORMFEED command, Volume identifier, 7-4
 1-20
 TERMINAL NO INDICATE command, -W-
 1-20
 Wildcard characters, 4-9

 Index-5

