di gi tal

equi pnent corporation

TOPS- 20
Monitor Calls User's QGuide

El ectronically Distributed

Thi s manual describes the use of TOPS-20 nonitor

calls, which provide user prograns with system
services such as input/output, process control,

file handling, and device control.

Thi s manual supersedes the TOPS-20 Monitor Calls
User's @uide published in June 1988. The order
nunber for that docunent, AA- D859DM TM is
obsol et e.

Change bars in the margins indicate material that

has been added or changed since the previous
printing of this manual.

Operating System TOPS-20 Version 7.0

maynard, massachusetts

TOPS- 20 Software Update Tape No. 04, Novenber 1990

First Printing, May 1976
Revi sed, April 1982

Revi sed, Septenber 1985
Revi sed, June 1988

Revi sed, Novenber 1990

The information in this docunent is subject to change w thout notice
and should not be construed as a commtnent by Digital Equipnent
Corporation. Digital Equiprment Corporation assunes no responsibility
for any errors that may appear in this docunent.

The software described in this docunment is furnished under a |Iicense
and may only be used or copied in accordance with the terns of such
l'icense.

No responsibility is assunmed for the use or reliability of software on

equi pnrent that is not supplied by Digital Equipnent Corporation or its
affiliated conpanies.

Copyright C 1976, 1982, 1985, 1988, 1990 Di gital Equi prent
Cor por ati on.

Al Rights Reserved.

The followi ng are trademarks of Digital Equi pnent Corporation:

c DECt ape LA50 SITGO 10
DDCVP DECUS LNO1 TOPS- 10
DEC DECw i ter LNO3 TOPS- 20
DECmmi | DELNI MASSBUS TOPS- 20AN
DECnet DELUA PDP UNI BUS
DECnet - VAX HSC PDP- 11/ 24 UETP
DECser ver HSC- 50 Pri nt Server VAX
DECserver 100 KA10 Print Server 40 VAX/ VNB
DECserver 200 Ki Q bus VT50
DECsystem 10 KL10 Red S

DECSYSTEM 20 KS10 RSX di gi t al

PREFACE

CHAPTER

CHAPTER

CHAPTER

1

N

w

il
WNNN P

NN
POO~NOOOUTAWNR

0D 00 L) 00 W) 00 W) 00 W) 10 W) 10 W) 1O W O W 1
TOONTNG O R D OWOWON R

(=Y

el
WN P

CONTENTS

I NTRODUCTI ON

OVERVI EW .
MONI TOR CALLS
Cal i ng Sequence .
Error Returns
PROGRAM ENVI RONVENT

| NPUT AND OUTPUT USI NG THE TERM NAL

OVERVI EW .

PRI MARY |/ O DESI GNATCRS
PRI NTI NG A STRI NG

READI NG A NUMBER .

VRI TI NG A NUMBER

I NI TI ALI ZI NG AND TERM NATI NG THE PROGRAM .

RESET% Moni t or Cal |
HALTF% Moni t or Cal |
READI NG A BYTE .
WRI TI NG A BYTE . .
READI NG A STRI NG .
SUMVARY

USI NG FI LES

OVERVI EW. . .
JOB FI LE NUI\/BER Co
ASSOCI ATI NG A FI LE WTH A JFN
GITJFN% Monitor Call . .
Short Form of GIIFN% .
Long Form of GTJIFN%
Sunmary of GIJIFN%
OPENING A FILE . . .
OPENF% Moni tor Cal I
TRANSFERRI NG DATA
File Pointer .
Source and Desti natl on DeS| gnat ors .
Transferring Sequential Bytes
Transferring Strings . o
Transferring Nonsequenti aI Bytes .
Mappi ng Pages
Mapping File Pages to a Process
Mappi ng Process Pages to a File

w
=

il o
O WNBE

I\)I\)I\)I\)I\)II\)I\)I\)I\)I\)I\)

1
A OOOWOOWONUITAWNPE

CHAPTER

CHAPTER

N

al

W 00 W W LW W W W
CONNNNOO GG

el e el e e o ol ol il e

SESESESRORG RS RORORS
TORRNNNNN R

©COONOUARMRMAMWNER

WN P

A WNPE

. 6.

COURAWNNNR

3

Unnappi ng Pages in a Process .
Mappi ng File Sections to a Process .
CLCSING A FILE . . .
CLOSF% Moni t or Cal I
ADDI TI ONAL FILE 1/0 MONI TOR OALLS
GISTS% Moni tor Cal |
JFNS% Moni t or Cal |
G\NJFN% Moni t or Cal |
SUMVARY . .
FI LE EXAMPLES

USI NG THE SOFTWARE | NTERRUPT SYSTEM

OVERVIEW. . .
| NTERRUPT CONDI TI CNS

SCFTWARE | NTERRUPT CHANNEi_S AND PRI CRI TI ES

SCOFTWARE | NTERRUPT TABLES

Speci fying the Software Int er.rupt Tabl es

Channel Table .
Priority Level Table . . .
ENABLI NG THE SOFTWARE | NTERRUPT SYSTEM
ACTI VATI NG | NTERRUPT CHANNELS
GENERATI NG AN | NTERRUPT
PROCESSI NG AN | NTERRUPT
Di smissing an I nterrupt
TERM NAL | NTERRUPTS . . .
ADDI TI ONAL SOFTWARE | NTERRUPT I\/O\II T(R CALLS
Testing for Enabl enment
bt aining Interrupt Table Addresses
The RI R% Monitor Call .
The XRI R% Monitor Call
Di sabling the Interrupt System.
Deactivati ng a Channel .
Deassi gni ng Term nal Codes .
Clearing the Interrupt System
SUMVARY
SOFTWARE | NTERRUPT EXAI\/PLE

PROCESS STRUCTURE

USES FOR MJULTI PLE PROCESSES
PROCESS COVMUNI CATI ON

Direct Process Control

Software Interrupts . .

| PCF and ENQ DEQ Faci I|t|es

Menory Sharing . .o
PROCESS | DENTI FI ERS .
OVERVI EW OF MONI TOR CALLS F(R PROCESSES
CREATI NG A PROCESS .

Process Capabilities .

&
=

3-28
3-28
3-30
3-30
3-31
3-31
3-33
3- 36
3-40
3-40

-b-b-h-lb-lb-b-h-h-h
OCOVWOVWwO~NOOOA~DE

U1010'IU1(IJ1CJ'IU1(HU1
PO~NOOIORDMBDMWN

o
o

SPECI FYI NG THE CONTENTS OF THE ADDRESS SPACE OF A

PROCESS . . . - R A
5.6.1 GET% Moni t or Cal I - R A
5.6.2 PMAP% Monitor Call 514
5.7 STARTING AN INFERROR PROCESS b5-15
5.8 | NFERI OR PROCESS TERM NATION b5-16
5.9 | NFERI OR PROCESS STATUS 5-17
5.10 PROCESS COVMUNI CATION . . . e .« 519
5.11 DELETI NG AN | NFERI OR PRCX:ESS ..« 520
5.12 PROCESS EXAMPLES 521
CHAPTER 6 ENQUEUE/ DEQUEUE FACI LI TY
6.1 OVERVIEW. . . 6-1
6.2 RESOURCE Q/\NERSHI P 6-2
6.3 PREPARI NG FOR THE ENQ DEQ FACI LI TY 6-3
6.4 USING THE ENQ DEQ FACI LITY 6-6
6.4.1 Requesting Use of a Resource . 6-6
6.4.1.1 ENQ% Functions . . . 6-6
6.4.1.2 ENQ% Ar gunent Bl ock . 6-8
6.4.2 Rel easi ng a Resource . 6-12
6.4.2.1 DEQ% Functions 6-13
6.4.2.2 DEQ% Argunent Block 6-14
6.4.3 bt ai ning I nformati on About Resour ces 6-14
6.5 SHARER GROUPS . . . N T Y 4
6.6 AVO DI NG DEADLY EI\/BRACES N E
CHAPTER 7 | NTER- PROCESS COVMUNI CATI ON FACI LI TY
7.1 OVERVI EW . 7-1
7.2 QUOTAS . 7-1
7.3 PACKETS 7-2
7.3.1 Fl ags 7-3
7.3.2 PIDs 7-5
7.3.3 Length and Address of Packet Dat a BI ock 7-6
7.3.4 Directories and Capabilities . R 7-6
7.3.5 Packet Data Block . . 7-6
7.4 SENDI NG AND RECEI VI NG I\/ESSAGES 7-7
7.4.1 Sendi ng a Packet 7-7
7.4.2 Recei ving a Packet . . . 7-9
7.5 SENDI NG MESSAGES TO <SYSTEI\/I>I NFO 7-12
7.5.1 Format of <SYSTEM>I NFO Requests 7-13
7.5.2 Format of <SYSTEM>I NFO Responses . 7-14
7.6 PERFORM NG | PCF UTI LI TY FUNCTI ONS 7-15
CHAPTER 8 USI NG EXTENDED ADDRESSI NG
8.1 OVERVIEW . . . 8-1
8.2 ADDRESSI NG I\/EI\/L‘RY AND ACS 8-2

I NDEX

FI GURES

N

00000 ~NOO®

G0 00 G 00 G0 00 G 00 G 0O G 0O G 0O G 0O G0 0O G0 0O G0 0O G0 0O G0 0O G0 0O G0 00 0D 0O 0D 00 0O 0O QO
TARRPRRAWRWRWRWRWRWRWRWRINNNNNNNNNNNNNNN

1
WNEFPEFPNPE

NNNNOOOOTAR®WRWN R

ook asbboNERERERER

B e e
WN -

WN P

A wWN P WN P

WN B

WN P

I nstructi on Format
I ndexi ng .
I ndi rection

I nstruction Forrrat Indirect Wrd (IFIW

Ext ended Format Indirect Word (EFI W
Macros for Indirection . .
AC Ref erences . .
Ext ended Addressi ng Exarrpl es .
I mredi ate | nstructions .
XMOVEI
XHLLI .
O her | nst ruct| ons .
I nstructions that Affect the PC
Stack Instructions .
Byte I nstructions
USI NG MONI TOR CALLS
Mappi ng Menory . . .
Mappi ng File Sections to a Pr ocess .
Mappi ng Process Sections to a Process
Creating Sections
Unmappi ng a Process Sectl on
Starting a Process in Any Section
Setti ng the Entry Vector in Any Section
ot ai ning I nformati on About a Process
Mermory Access I nformation
Entry Vector Information .
Page- Failure Information .
Program Data Vectors . . .
Mani pul ating PDV Addresses .
PDV Names e
Version Nunmber . . .
MODI FYI NG EXI STI NG PROGRAI\/S
Data Structures
| ndex Words . .
I ndi rect Words .
Stack Pointers . .
VWRI TI NG MULTI SECTI ON PROGRAI\/S

Basi ¢ Oper ati onal Sequence of the Software
Interrupt System . . .

Deadly Enbrace Situation .

Use of Sharer G oups .

| PCF Packet . .

Program Count er Address F| eI ds .

I nstruction Wrd Address Fields
Instruction Format |ndirect Word .

@
[EEN

CDCDCDCDCIDCDCDCDCDCDCDCD
CoOowvwwowoo~NoOOoOoOUTuol bW

i

]]
GANDNOUTW

m@m\l

8-4 Extended Format Indirect Word 8-6

TABLES
2-1 NOUT% Format Option 2-6
2-2 RDTTY% Control Bits 2-10
3-1 St andard System Values for File Specifications . . 3-3
3-2 GIJFN% Flag Bits e 35
3-3 Bits Returned on GT.]FN% CaII e 310
3-4 Long Form GIJFN% Argunent Block 3-13
3-5 OPENF% Access Bits 3-17
3-6 PMAP% Access Bits 3-26
3-7 SMAP% Access Bits 3-29
3-8 CLOSF% Flag Bits . . . e e 3-30
3-9 Bits Returned on GTSTS% Cal I - T
3-10 JFNS% Format Options 3-34
3-11 G\JFN% Return Bits . . . < F Y 4
4-1 Software | nterrupt Channel Assignnments 4-5
4-2 Term nal Codes and Conditions 4-12
5-1 Process Handles 56
5-2 Inferior Process Character|st|c Blts 59
5-3 CET% Flag Bits b-12
5-4 CET% Argunment Bl ock b-13
5-5 CET% Argunent Bl ock Fl ags b-13
5-6 Process Status Wrd . . - T 4
5-7 RFSTS% St at us- Ret urn Bl ock .« +« b-18
6-1 ENQ% Functions . . e L
6-2 ENQ% Ar gurment Bl ock . e b-8
6-3 Lock Specification Flags 6-10
6-4 DEQ% Functions . . . e b-13
6-5 DEQ% Ar gurment Bl ock e e e 6-14
6-6 ENQC% Flag Bits 6-16
7-1 Packet Descriptor Block Flags 7-3
7-2 Fl ags Meani ngful on a MSEND% Call 7-8
7-3 Fl ags Meani ngful on a MRECV% Call 7-10
7-4 MRECV% Return Bits . . . e e ... T-12
7-5 <SYSTEM>I NFO Functi ons and Argument s T-14
7-6 <SYSTEM¢I NFO Responses 7-15
7-7 MUTI L% Functions 7-16

PREFACE

The TOPS-20 Monitor Calls User's Guide is witten for the assenbly
| anguage wuser who is unfamliar with the DECSYSTEM 20 nonitor calls.
The manual introduces the user to the functions that he can request of
the monitor from wthin his assenbly | anguage progranms. The nanua
al so teaches himhow to use the basic nmonitor <calls for perforning
t hese functions.

This manual is not a reference docunent, nor is it conpl ete
docunmentation of the entire set of nonitor calls. It is organized
according to functions, starting with the sinple and proceeding to the
nore advanced.

Each chapter should be read frombeginning to end. A user who skips
around in his reading will not gain the full benefit of this nmanual
Once the user has a working know edge of the nonitor calls in this
docunment, he should then refer to the TOPS-20 Monitor Calls Reference
Manual for the conplete descriptions of all the calls.

To understand the exanples in this manual, the user nust be famliar
with the MACRO |anguage and the DECSYSTEM 20 nachi ne instructions.
The TOPS-20 MACRO Assenbler Reference Mnual docunents the MACRO
| anguage. The TOPS-20 LINK Reference Manual describes the linking
| oader. The DECsystent 10/ DECSYSTEM 20 Processor Reference Mnua

contains the information on the machine instructions. These three
manual s shoul d be used together with the Monitor Calls User's Quide,
and should be referred to when questions arise on the MACRO | anguage
or the instruction set. Another useful reference is |Introduction to
DECSYSTEM 20 Assenbly Language Programming by Ralph E Cori n,
published by the Digital Press. It provides a thorough treatnent of
assenbly |anguage programm ng for the DECSYSTEM 20, enphasizing the
anal ysis of prograns and various met hods of program synthesis.

In addition, sone of the exanples in this manual contain macros and
synbols (MOVX, TMSG JSERR, or JSHLT, for exanple) fromthe MACSYM
systemfile. This fileis a universal file of definitions available

to the user as a neans of producing consistent and readabl e prograns.

Finally, the user should be famliar with the TOPS-20 Conmand Language
to enter and run the exanples. The TOPS-20 User's Qui de describes the
TOPS-20 commands and system prograns. The TOPS-20 Commands Ref erence

Manual describes all operating system conmands available to the
nonpri vil eged user of TOPS-20.

CHAPTER 1

I NTRODUCTI ON

1.1 OVERVI EW

A programwitten in MACRO assenbly | anguage consists of a series of
statenents, each statement wusually corresponding to one or nore
machi ne | anguage instructions. Each statenent in the MACRO program
may be one of the follow ng types:

1.

A MACRO assenbl er directive, or pseudo-operation (pseudo-op),
such as SEARCH or END. These pseudo-ops are comands to the
MACRO assenbler and are performed when the program is
assenbl ed. Ref er to the DECSYSTEM 20 MACRO Assenbler
Ref erence Manual for detailed descriptions of the MACRO
pseudo- ops.

A MACRO assenbler direct assignnment st at erment . These
statenents are in the form

synbol =val ue

and are used to assign a specific value to a synbol.
Assignment statements are processed by the MACRO assenbl er
when the program is assenbl ed. These statenents do not
generate instructions or data in the assenbl ed program

A MACRO assenbl er constant declaration statenent, such as
ONE: EXP 1
These statenments are processed when the programis assenbl ed.

An instruction menonic, or synbolic instruction code, such
as MOVE or ADD. These synbolic instruction codes represent
the operations performed by the central processor when the
program is executed. Refer to the DECsystem 10/ DECSYSTEM 20
Processor Reference Manual for detailed descriptions of the
synbolic instruction codes

I NTRODUCTI ON

5. A nonitor call, or JSYS, such as RESET or BIN These calls
are commands to the nonitor and are perforned when the
programis executed. This manual describes the comonly-used
nmonitor calls. However, the user should refer to the TOPS-20
Monitor Calls Reference Manual for detailed descriptions of
all the calls.

When t he MACRO programis assenbl ed, the MACRO assenbl er processes the
statenents in the program by

o translating synmbolic instruction codes to binary codes.
o relating synbols to nuneric val ues.
0 assigning relocatable or absolute nenory addresses.

The MACRO assenbl er al so converts each synbolic call to the nonitor
into a Junp-to-System (JSYS) instruction

1.2 MONITOR CALLS

Monitor calls are used to request nonitor functions, such as input or
output of data (1/0, error handling, and nunber conversions, during
the execution of the program These calls are acconplished wth the
JSYS instruction (operation code 104), where the address portion of
the instruction indicates the particular function.

Each nmonitor call has a predefined synbol indicating the particular
nmonitor function to be perfornmed (for exanple, OPENF%to indicate
opening a file). The synbols are defined in a system file called
MONSYM Monitor calls defined in Release 4 and later require a
percent sign (% as the final character in the call synbol. Moni t or
calls defined prior to Release 4 do not require the % but do accept
it. The current convention is that all nonitor calls use the % as
part of the call symbol. This nanual follows that convention. To use
the synbols and to cause themto be defined correctly, the wuser's
program nust contain the statenment

SEARCH MONSYM

at the beginning of the program During the assenbly of the program
the assenbler replaces the nonitor call synbol with an instruction
contai ning the operation code 104 in the left half and the appropriate
function code in the right half.

Argunents for a JSYS instruction are placed in accunulators (ACs).
Any data resulting from the execution of the JSYS instruction are
returned in the accunulators or in an address in menory to which an
accumul ator points. Therefore, before the JSYS instruction can be
executed, the appropriate arguments nmust be placed in the specific
accunul ators.

1-2

I NTRODUCTI ON

The system file MACSYM MAC contains a nunber of useful macros for the
assenbly | anguage programmer. To use MACSYM nmcros, the user's
program nust contain the statenents

SEARCH MACSYM
. REQUI RE SYS: MACREL ;include support routines

at the beginning of the program Since nost bits defined for use with
the nonitor have synbolic nanes, nmacros enable the programmer to
utilize these bits wi thout know edge of their exact position. Several
MACSYM macros that are especially valuable to the TOPS-20 assenbly
| anguage programmer are MOVX, TXnn (where nn indicates one of the 64
test instructions provided by the hardware), and FLD. MOVWX | oads an
AC with a constant using the proper MOVE instructions, depending on
the constant's position in the word. The TXnn nmacros expand to all ow
all conbinations of nodification and testing to be defined. For
exanpl e

TXNN AC1, GS%EOF

tests ACL for the presence of GS¥EOF, no nodification, and skip if not
equal to zero. This instruction will work regardl ess of the actua
bit position of GS%EOF. The FLD nacro causes a value to be right
justified in a field. For exanple

FLD(7, OFYBSZ)

pl aces the value 7 in position OfYBSZ, right justified at bit 5
(OFYBSZ is defined as bits 0-5). These macros wll be used
consi stently throughout this docunent.

1.2.1 Calling Sequence

Argurents for the calls are placed in accurmulators 1 through 4
(AC1- AC4) . If nore than four argunments are required for a particul ar
call, the argunents are placed in a list to which an accunulator
poi nts. The argunments for the calls are specific bit settings or
val ues. These bit settings and values are defined in MONSYM wth
synbol nanes, which can be used in the program |In fact, it is
recomended that the user wite his program using synbols whenever
possible. This nakes the programeasier to read by another user. Use
of synbols also allows the values of the synbols to be redefined
without requiring the program to be changed. |In this nmanual, the
argunents for the nonitor calls are described with both the bit
settings and the synbol nanes. All program exanples are witten using
the synbol nanes.

1-3

I NTRODUCTI ON

The set of instructions that place the arguments in the accunulators
is followed by one line of code giving the particular nonitor cal
synbol. During the program s execution, control is transferred to the
nonitor when this Iine of code is reached.

1.2.2 FError Returns

TOPS- 20 provides a consistent way to handle all JSYS errors. For nost
nmonitor calls upon a successful return, the instruction follow ng the
call is executed. |If an error occurs during the execution of the
call, the nonitor exanines the instruction following the call. |If the
instruction is a JUMP instruction with the AC field specified as
12-17, the nmonitor transfers control to a user-specified address. |If
the instruction is not a JUWP instruction, the nonitor generates an
illegal instruction trap indicating an illegal instruction, which the
user's program can process via the software interrupt system (refer to
Chapter 4). If the wuser's programis not prepared to process the
instruction trap, the program execution halts, and a nessage is output
stating the reason for failure

To place a JUW instruction in his program the user can include a
statenent using one of six predefined synbols. These synbols are

ERJIMPR address (= JUWP 12, addr ess)
ERCALR address (= JUWP 13, addr ess)
ERJIMPS address (= JUWP 14, address)
ERCALS address (= JUWP 15, addr ess)
ERJMP address (= JUWP 16, addr ess)
ERCAL address (= JUWP 17, addr ess)
and cause the assenbler to generate a JUWMP instruction. The JUWP

instruction is a non-operation instruction (that is, a no-op) as far
as the hardware is concerned. However, the nonitor executes the JUW
instruction by transferring control to the address specified, which is
normal |y the beginning of an error processing routine witten by the
user. If the user includes the ERIMP synbol, control is transferred
as though a JUWMPA instruction had been executed, and control does not
return to his program after the error routine is finished. |If the
user includes the ERCAL synmbol, control is transferred as though a
PUSH] 17, address instruction had been executed. |f the error routine
executes a POPJ 17, instruction, control returns to the user's program
at the location followi ng the ERCAL

I f the user includes the ERIMPR synbol, the nonitor behaves the sane
as it would if the ERIMP synbol had been included, except that the
| ast error encountered by the process is stored in the wuser's ACL.
(Refer to Appendix B of the TOPS-20 Mnitor Calls Reference Manual for
the list of error codes, mmenonics, and nmessage strings.) The ERCALR
synbol functions the same as ERCAL except the error code encountered
is returned in the user's ACl. ERIMPS and ERCALS function simlarly
except the nmonitor suppresses the storing of the error code in the

1-4

I NTRODUCTI ON

user's ACIL. Instead, ACl is preserved and contains either the
original contents fromwhen the nonitor call was given, or a partially
updat ed value prior to the error

Prior to the inplenentation of the ERIMP/ERCAL facilities, certain
nmonitor calls returned control to the wuser's programat various
| ocations after the calling address. Approximately one third of the
JSYSs return to the +1 address only on failure, and to the | ocation
i Mmediately following that (the +2 address) on successful execution of
the call. A few calls return +1, +2, or +3, dependent on varying
condi tions of success or failure (for exanples, see ERSTR% or GACTF%
in the TOPS-20 Monitor Calls Reference Manual); and sone calls do not
return at all (see HALTF% or WAITY%. Refer to Chapter 3 of the
TOPS-20 Monitor Calls Reference Manual for the possible returns for
each monitor call

When a failure occurs during the execution of a nonitor <call, the
nonitor stores an error code. The error code indicates the cause of
the failure. This error code is usually stored in the right half of
ACl, but <can also be stored in the nonitor's data base or a user's
data block. In either case, you can obtain the nessage associated
with the error by using the GETER% or ERSTR% cal |

The ERIMP/ERCAL facilities can also be wused following a nachine

instruction, and will trap for the follow ng conditions
o Illegal instruction
o Illegal nenory read
o Illegal nenory wite

0 Pushdown |ist overfl ow

The ERIMP/ ERCAL facilities can be used after all nonitor calls,
regardl ess of whether the call has one or two returns. To handle
errors consistently, users are encouraged to enploy either the ERIMPR
ERCALR, ERJMPS, or ERCALS synbol wth all calls. Al of the six
predefined junp synbols are no-ops, unless they immediately follow a
monitor call or instruction that fails. Error codes can be obtained
by the program and translated into their corresponding error menonic
and nessage strings with the GETER% and ERSTR% nonitor calls.

TOPS-20 provides convenient macros and subroutines for handling
nonitor call error routines. They can be found in the systemfile
MACSYM MAC. Two such macros are EJSERR and EJSHLT. EJSERR prints out
an error nessage and returns control to the next instruction follow ng
the failing nonitor call. EJSHLT prints out an error nessage and
hal ts processing of the program

The following is an exanpl e of executing the BIN% nonitor call (see
Chapter 3 for nmore information on this nmonitor call) that has a single

1-5

I NTRODUCTI ON

return. |f the execution of the call is successful, the program reads
and stores a character. If the execution of the call is not
successful, the programtransfers control to an error routine. Thi s

routi ne processes the error and then returns control back to the main
program sequence. Note that ERCALS stores the return address on the
st ack.

DA T: MOVE T1, | NJFN ;obtain JFN for input file
Bl N% ;input one character
ERCALS ERROR ;call error routine if problem
MOVEM T2, CHAR ;store character
JRST DOT ;and get anot her
ERROR: GISTS% ;read file status
TXNE T2, GS¥ECF ;end of file?
JRST ECF ;yes, process end-of-file condition

HRROI T1, [ASCl z/
?1 NPUT ERROR, CONTI NU NG

/] ;no, data error
PSOUT% ; print nessage
RET ;return to program (POPJ 17,)

The ASCl Z pesudo-op specifies a left-justified ASCII string term nated
with a null (that is, a byte containing all bits equal to zero) byte.

1.3 PROGRAM ENVI RONMENT

The user program environment in the TOPS-20 operating system consists
of a job structure that can contain nany processes. A process is a
runnabl e or schedul able entity capable of performng conmputations in
parallel wth other processes. This neans that a runnable programis
associated with at | east one process.

Each process has its own address space for storing its conmputations.
This address space is called virtual space because it is actually a
"wi ndow' into physical storage. The address space is divided into 32
(decimal) sections. Each section is divided into 512 (decinal) pages,
and each page contains 512 (deciml) words. Each word contains 36
bits.

A process can comuni cate with other processes in the follow ng ways:

o explicitly, by software interrupts or systemfacilities (the
i nter-process communication facility, or | PCF, for exanple).

o implicitly, by changing parts of its environnent (its address
space, for instance) that are being shared wth other
processes.

A process can create other processes inferior to it, but there is one
control process fromwhich the chain of creations begins. A process

1-6

I NTRODUCTI ON

is said to exist when a superior process creates it and is said to end
when a superior process deletes it. Refer to Chapter 5 for nore
informati on on the process structure.

A set of one or nore rel ated processes, nornally under control of a
single user, is a job. Each active process is part of sonme job on the
system A job is defined by a user name, an account nunber, some open
files, and a set of running and/or suspended processes. A job can be
conposed of several running or suspended prograns.

The following diagramillustrates a job structure consisting of four
processes.
I
| TOP PROCESS |
I I
|
|
I I
I I I
| PROCESS A | | PRCCESS B |
I I I |
I
|
| PRCCESS C |

Both process A and 1 process B are created by the TOP PROCESS and thus
are directly inferior toit. Process Cis created by process B and
thus is directly inferior to process Bonly. Process Cis indirectly
inferior to the TOP PROCESS.

In sumary, processes can be considered as independent virtual |obs

with well-defined relationships to other processes in the system and
a job is a collection of these processes.

1-7

CHAPTER 2

I NPUT AND OUTPUT USI NG THE TERM NAL

One of the nmain reasons for using monitor calls is to transfer data
from one location to another. This chapter discusses noving data to
and fromthe user's termnal.

2.1 OVERVI EW

Data transfers to and fromthe terminal are in the form of either
i ndi vidual bytes or text strings. The bytes are 7-bit bytes. The
strings are ASCI| strings ending with a O byte. These strings are
called ASCI Z strings.

To designate the desired string, the user's program nust include a
statenent that points to the beginning of the string being read or
witten. The MACRO pseudo-op, PO NT, can be wused to set up this
pointer, as shown in the followi ng sequence of statenents:

MOVE ACL, PTR

PTR PO NT 7, MSG
MBG ASCl Z/ TEXT MESSAGE/

Accunul ator 1 contains the synbolic address (PTR) of the pointer. At
the address specified by PTRis the pointer to the beginning of the
string. The pointer is set up by the PO NT pseudo-op. The general
format of the PO NT pseudo-op is:

PO NT deci nal - byt e-si ze, addr ess, deci mal - byt e- posi ti on

(Refer to the TOPS-20 MACRO Assenbler Reference Mnual for nore
information on the PO NT pseudo-op.) |In the exanple above, the PO NT
pseudo-op has been witten to indicate 7-bit bytes starting before the
left-nmost bit in the address specified by MsG

I NPUT AND OUTPUT USI NG THE TERM NAL

Anot her way of setting up an accunulator to contain the address of the
pointer is with the follow ng statenent:

HRRO AC1, [ASCl Z/ TEXT MESSAGE |

The instruction menonic HRRO causes a -1 to be placed in the left
half of accunulator 1 and the address of the string to be placed in
the right half. However, in the above statenment, a literal (enclosed
in square brackets) has been used instead of a synbolic address. The
literal causes the MACRO assenbl er to:

0 store data within brackets (the string) in a table.
0 assign an address to the first word of the data
0 insert that address as the operand to the HRRO instruction.

Literal s have the advantage of showing the data at the point in the
programwhere it will be used, instead of showing it at the end of the
progr am

As far as the I/O nonitor calls are concerned, a word in this format
(-1 inthe left half and an address in the right half) designates the
system s standard pointer (that is, a pointer to a 7-bit ASCIZ string
begi nning before the leftnost byte of the string). The result of the
HRRO statenent is interpreted by the nonitor as functionally
equi val ent to the word assenbled by the PO NT 7, address pseudo-op and
is the recomended statenent to use in preparation for a nonitor call
However, byte nmanipulation instructions (for exanple, |1LDB, |IBP
ADJBP) will not operate properly with this type of pointer.

After a string is read, the pointer is advanced to the character
following the ternminating character of the string. After a string is
witten, the pointer is advanced to the character following the |ast
non-nul | character witten.

Most TOPS-20 nonitor calls accept one-word gl obal byte pointers when
executed from a nonzero section (see Section 8.3). dobal byte
pointers are used with extended addressing and are fully explained in
Chapter 8 of this docunent. Unl ess specifically stated, TOPS-20
nonitor calls do not accept two-word gl obal byte pointers.

2.2 PRI MARY |/ O DESI GNATORS

To transfer data fromone location to another, the user's program nust
indicate the source from which the data is to be obtained and the
destination where the data is to be placed. By default, the wuser's
termnal is defined as the source and destination. The default can be
overridden by using the SPJFN% nonitor <call (refer to the TOPS-20
Monitor Calls Reference Manual). Exanpl es in this book assune the

2-2

I NPUT AND OUTPUT USI NG THE TERM NAL

user's ternminal to be the source (input) and destination (output)
device. Two designators are used to represent the user's termninal

1. The synbol .PRIINto represent the wuser's termnal as the
source (input) device.

2. The synbol .PRIQU to represent the wuser's terminal as the
destination (output) device.

These synbols are called the primary input and output designators and
by default are wused to represent the termnal running the program
They are defined in the systemfile MONSYM MAC and do not have to be
defined in the wuser's program as long as the program contains the
st at enent

SEARCH MONSYM

2.3 PRINTING A STRI NG

Many tines a programnay need to print an error nmessage or some ot her
string, such as a pronpt to request input fromthe user at the
termnal. The PSOUT% (Primary String Qutput) monitor call is used to
print such a string on the terminal. This call copies the designated
string fromthe program s address space. Thus, the source of the data
is the progranmis address space, and the destination for the data is
the termnal. The programneed only supply the pointer to the string
bei ng printed.

Accurmul ator 1 (ACl) is used to contain the address of the pointer.
After AClL is set up with the pointer to the string, the next |ine of

code is the PSOUT% call. Thus, an exanple of the PSQUT% call is:

HRRO AC1, [ASCI Z/ TEXT MESSAGE/] ;string to print

PSQUT% ; print TEXT MESSAGE
The PSQUT% call prints on the terminal all the characters in the
string wuntil it encounters a null byte. Note that the string is

printed exactly as it is stored in the program starting at the
current position of the termnal's print head or cursor and ending
with the last character in the string. |If a carriage return and line
feed are to be output, either before or after the string, these
characters should be inserted as part of the string. For exanple, to
print TEXT MESSAGE on one line and to output a carriage return-line
feed after it, the user's programincludes the cal

HRRO ACL, [ASCl Z/ TEXT MESSAGE

/]
PSOUT%

2-3

I NPUT AND OUTPUT USI NG THE TERM NAL

After the string is printed, the instruction followi ng the PSOUT% cal
in the wuser's program is executed. Al so, the pointer in ACl is
updated to point to the character following the Ilast non-nul
character witten

The macro TMSG, found in the systemfile MACSYM does the sane thing
as the exanple above. This macro offers the programmer a conveni ent
way for printing nmessages on the terminal. For exanple

TMBG <TEXT MESSAGE
>

caused the text nessage contained between the angle bracket s,
including the carriage return and line feed, to print on the termnal.
The TMSG nacro, along with others previously mentioned, will be used
consistently in exanples throughout this docunent. Refer to the
systemfile MACSYM MAC for further information on MACSYM nacr os.

Refer to Section 1.2.2 for information concerning error returns.

2.4 READI NG A NUMBER

The NI N% (Nunber Input) monitor call is used to read an integer. This
call does not assune the terninal as the source designator; therefore,
the user's program nust specify this. The N N¥% call accepts the

nunber from any valid source designator, including a string in nmenory.
This section discusses reading a nunber directly from the termnal
Refer to Section 2.9 for an exanple of using the NIN%call to read the
nunber froma string in nenory. The destination for the nunber s
AC2, and the NIN% call places the binary value of the nunber read into
this accurmul ator. The user's program al so specifies a nunber in AC3
that represents the radix of the nunber being input. The radix given
can be in the range 2-36.

Thus, the setup for the NIN% monitor call is the foll ow ng
MOVEI AC1,.PRIIN ; ACL contains the primary input designator
;(the user's termnal)
MOVEI AC3, ~D10 ; AC3 contains the radi x of the nunber being
;input (in this case a deci nal numnber)
NI N9% ; The call to input the nunber
After conpletion of the NIN% call, control returns to the program at
one of two places (refer to Section 1.2.2). |If an error occurs during
the execution of the <call, <control returns to the instruction
foll owi ng t he call. This instruction should be a junp-type

instruction to an error processing routine (see Section 1.2.2). Also,
an error code is placed in AC3 (refer to Appendi x B of the TOPS-20
Monitor Calls Reference Manual for the error codes). |If the execution

2-4

I NPUT AND OUTPUT USI NG THE TERM NAL

of the NIN% call 1is successful, control returns to the second
instruction following the call. The nunber input fromthe termnal is
pl aced i n AC2.

The NIN% call term nates when it encounters a nondigit character (for
exanple, a letter, a punctuation character, or a control character).
This neans that if 32X1 were typed on the terminal, on return AC
contains a 40 (octal) because the NIN%call terninated when it read
the X

The following programprints a nmessage and then accepts a decinal
nunber from the wuser at the termnal. Note that the NI N% call
ternm nates reading on any nondigit character; therefore, the user
cannot edit his input with any of the editing characters (for exanple,
DELETE, CTRL/W. The RDTTY%call (refer to Section 2.9) should be
used in prograns that read fromthe terninal because it allows the
user to edit his input as he is typing it.

SEARCH MONSYM
HRRO ACL, [AsCl z/
Enter # of seconds: /]

PSQUT% ;out put a pronpt message
MOVEI ACL, . PRIIN ;input fromthe term nal
MOVEI AC3, D10 ;use the decinal radix

NI N% ;input a deci mal nunber
ERIMP NI NERR ;error-go to error routine
MOVEM AC2, NUMSEC ; save nunber entered

NUMBEC: BLOCK 1

2.5 WRI TING A NUMBER

The NOUT% (Nunber CQutput) nonitor call is used to output an integer.
The wuser's program noves the number to be output into AC2. The
program nust specify the destination for the number in ACL and the
radix in which the nunber is to be output in AC3. The radix given
cannot be greater than base 36. |In addition, the user's program can
specify certain formatting options to be wused when printing the
nunber .

Thus, the general setup for the NOUT% nonitor call is as foll ows:
ACL: out put desi gnat or

AC2: nurmber bei ng out put
AC3: format options in left half and radix in right half

2-5

I NPUT AND OUTPUT USI NG THE TERM NAL

The format options that can be specified in the left half of AC3 are
described in Table 2-1.

Table 2-1: NOUT% Format Option

Bit Synbol Meani ng
0 NOWVAG Print the nunber as a positive 36-bit
number . For example, -1 would be printed

as 777777 777777 if radi x=8).

1 NOYSGN Print the appropriate sign (+ or -) before
the nunber. If bits NOAWAG and NOYSGN are
both on, a plus sign is always printed.

2 NOAFL Print leading filler. If this bit is not
set, trailing filler is printed and bit
NOZRO i s i gnored.

3 NOYZRO Use 0O's as the leading filler if the
speci fi ed nunber of colums allows filling.
If this bit is not set, blanks are used as
the leading filler if the nunmber of colums

allows filling.
4 NOYE©OOV Qut put on colum overflow and return an
error. If this bit is not set, colum

overflow is not output.

5 NOYAST Print asterisks when the colum overfl ows.
If this bit is not set, and bit 4 (NO¥OOV)
is set, all necessary digits are printed
when the col ums overfl ow.

6- 10 Reserved for Digital (must be 0).
11-17 NO/COL Print the nunber of colums indicated.
This value includes the sign colum. If

this field is 0, as nmany colums as
necessary are printed.

The followi ng instruction sequence is an exanple of the NOUT% nonitor
cal l. Thi s sequence prints a nunber, stored in location NUMB, on the
user's terninal. The nunber can be positive, negative or zero, wth
no special formatting.

2-6

I NPUT AND OUTPUT USI NG THE TERM NAL

MOVX ACL, . PRI QU ;use prinmary output
MOVE AC2, NUVB ;get nunber from |l ocati on NUVB
MOVX AC3, D10 ; ho special fornmat
; deci mal radi x
NOUT% ; print numnber
BEIJSHLT ;unexpected fatal error. Halt
;and print nessage.
Refer to Section 1.2.2 for information concerning error returns. The
following exanple illustrates the use of the three nonitor calls

described so far, as well as the TM5G macro. The RESET% and HALTF%
monitor calls are described in Section 2.6.

SEARCH MONSYM
SEARCH MACSYM
. REQUI RE SYS: MACREL

ACl==
AC2==2
AC3==3
START: RESET% ; prepare program envi ronment
HRRO AC1, [ASCl Z/ PLEASE TYPE A DECI MAL NUMBER: /]
PSOUT%
MOVEI ACL,.PRIIN ; sour ce desi gnat or
MOVEI AC3, ~D10 ; deci mal radi x
NI N%
ERIMPS ERROR ;if input error print nessage
;hal t.
TMSG <THE OCTAL EQUI VALENT | S >
MOVEI ACL, . PRI QU ; destinati on desi gnator
MOVEI AC3, ~D8 ;octal radix
NOUT%
EJSHLT ;fatal error.
; Same as ERJIMPS ERROR.
HALTF% ;return to command | anguage
JRST START ; begin again, if continued
ERROR. TMSG<
?ERROR- TYPE START TO BEG N AGAI N>
HALTF%
JRST START ;user types continue-start
;again
END START

2.6 INTIALI ZI NG AND TERM NATI NG THE PROGRAM

Two monitor calls that have not yet been described were used in the
above program - RESET% and HALTF%

2-7

I NPUT AND OUTPUT USI NG THE TERM NAL

2.6.1 RESET% Mbnitor Cal

A good progranming practice is to include the RESET% nonitor call at
the beginning of every assenbly |anguage program This call closes
any existing open files and rel eases their JFNs, kills any inferior
processes, clears the software interrupt system (see Chapter 4), and

perforns various other process initilization functions. For a
complete list of the functions provided by the RESET% nonitor call
refer to the description of the call in the TOPS-20 Monitor Calls
Ref erence Manual. The format of the call is

RESET%

and control always returns to the next instruction followi ng the call.

2.6.2 HALTF% Mbnitor Cal

To stop the execution of a programand return control to the TOPS-20
Command Language, the user must include the HALTF% nonitor call as the
| ast instruction performed in the program The user can then resune
execution of the programat the instruction follow ng the HALTF% cal |
by typing the CONTINUE comrand after control has returned to command
| evel

2.7 READI NG A BYTE

The PBIN% (Primary Byte Input) nmonitor call is used to read a single
byte (that s, one character) fromthe terminal. The user's program
does not have to specify the source and destination for the byte
because this call wuses the primary input designator (that is, the
user's terminal) as the source and accurmulator 1 as the destination.
After execution of the PBIN%call, control returns to the instruction
following the PBIN% |If execution of the call is successful, the byte
read fromthe terminal is right-justified in ACL. |f execution of the
call is not successful, an illegal instruction trap is generated, as
expl ained in Section 1.2.2.

2.8 WRITING A BYTE

The PBOUT% (Primary Byte Qutput) nonitor call is wused to wite a
single byte to the terminal. This call wuses the primary output
designator (that is, the user's ternminal) as the destination for the
byt e; thus, the wuser's program does not have to specify the
destination. The source of the byte being witten is accunulator 1;
therefore, the wuser's programnust place the byte right-justified in
ACl before the call

2-8

I NPUT AND OUTPUT USI NG THE TERM NAL

After execution of the PBOUT% call, control returns to the instruction
following the PBOUT% If execution of the call is successful, the
byte is witten to the user's termnal. |f execution of the call is
not successful, an illegal instruction trap is generated, as explai ned
in Section 1.2.2.

2.9 READING A STRI NG

Up to this point, nonitor calls have been presented for printing a
string, reading and witing an integer, and reading and witing a
byte. The next call to be discussed obtains a string from the
termnal and, in addition, allows the user at the ternminal to edit his
input as he is typing it.

The RDTTY% (Read from Ternminal) nonitor call reads input from the
user's termnal (that is, from .PRIIN) into the program s address
space. Input is read until the wuser <either types an appropriate
tern nating (break) character or inputs the nmaxi mum nunber of
characters allowed in the string, whichever occurs first. Qut put
generated as a result of character editing is printed on the user's
termnal (that is, output to .PRIQU).

The RDTTY% call handles the follow ng editing functions:

1. Delete the last character in the string if the wuser presses
t he DELETE key while typing his input.

2. Delete back to the last punctuation character in the string
if the user types CTRL/Wwhile typing his input.

3. Delete the current line if the user types CTRL/U while typing
his input.

4. Retype the current line if the user types CTRL/R while typing
his input.

Because the RDITY% call can handle these editing functions, a program
can accept input from the terminal and allow this input to be
corrected by the user as he is typing it. For this reason, the RDITY
call should be used to read input fromthe term nal before processing
that input with calls such as N N%

The RDTTY% call accepts three words of arguments in ACl through ACS3.

ACL: pointer to area in prograni s address space where input is
to be placed. This area is called the text input buffer.

AC2: control bits in the left half, and naxi mum nunber of bytes
in the text input buffer in the right half.

2-9

AC3:

The contro

which to terninate the input.

Tabl e 2-2:

pointer to buffer for text to be output before the

i nput
i nput

bits

I NPUT AND OUTPUT USI NG THE TERM NAL

user's

if the user types a CTRL/R, or O if only the user's

is to be output on a CTRL/ R

inthe left half of AC2 specify the

RDTTY% Control Bits

characters

on

These bits are described in Table 2-2.

Bi t

Synbol Meani ng

RDYBRK Termi nate input when user types

RDY OP

RDYPUN

CTRL/ Z or presses the ESC

the foll ow ng:

CTRL/ G
CTRL/ L

CTRL/ Z

ESC key
RETURN key

Li ne feed key

the foll ow ng:

CTRL/ A-CTRL/ F
CTRL/ H CTRL/ |
CTRL/ K
CTRL/ N- CTRL/ Q
CTRL/S-CTRL/ T

CTRL/ X-CTRL/ Y

ASCI | codes 34-36
ASClI | codes 40-57
ASCI | codes 72-100
ASCI | codes 133-140
ASCI | codes 173-176

The ASCI| codes |isted above represent
ers in the
ASClI | character set. Refer to the
ASCI I character set table in Appendix
A of the TOPS- 20 Mbni t or

t he punctuation charact

key.

Term nate i nput when user types one of

Term nate i nput when user types one of

Calls

Ref erence Manual for these characters.

RDYBEL Term nate i nput when user

RETURN or line feed key (
of line).

2-10

types the
that is, end

10

11

I NPUT AND OUTPUT USI NG THE TERM NAL

RDYCRF

RDYRND

RDYRI E

RDYBEG

RDY&RA

RDYSU

Store only the line feed in the input
buf f er when the wuser presses the
RETURN key. A carriage return wll
still be output to the terninal but
will not be stored in the buffer. |If
this bit is not set and the wuser
presses the RETURN key, both the
carriage return and the line feed will
be stored as part of the input.

Return to programif the user attenpts
to delete past the beginning of his
input. This allows the program to
take control if the wuser tries to
delete all of his input. |If this bit
is not set, the programwaits for nore
i nput .

Reserved for Digital (must be 0).

Return to program when there is no
input (that is, the text input buffer
is enpty). If this bit is not set,
the programwaits for nore input.

Reserved for Digital (must be 0).

Return to user program if the user
attenpts to edit beyond the begi nning
of the input buffer.

Convert |ower <case input to upper
case.

Suppress the CTRL/U indication on the
termnal when a CTRL/U is typed by the
user. This neans that if the user

types a CIRL/U, XXX wll not be
printed and, on display termnals, the
characters wll not be deleted from
the screen. |If this bit is not set

and the user types a CTRL/U, XXX will
be printed and, if appropriate, the
characters will be deleted fromthe
screen. In neither case is the CTRL/ U
stored in the input buffer.

2-11

I NPUT AND OUTPUT USI NG THE TERM NAL

15 RDYINED Disable editing characters in user
break mask. If this bit is set, then
any editing character ("R, ~U, "V, "W
and DELETE) in the user supplied break

mask does not have its editing
function.
If no control bits are set in the left half of AC2, the input will be

term nated when the user presses the RETURN or line feed key (that is,
term nated on an end-of-line condition only).

The count in the right half of AC2 specifies the nunber of bytes
available for storing the string in the program s address space. The
input is term nated when this count is exhausted, even if a specified
break character has not yet been typed

The pointer in AC3 is to the beginning of a buffer containing the text
to be output if the user types a CTRL/R When this happens, the text
in this separate buffer is output, followed by any text that has been
typed by the user. The text in this buffer cannot be edited with any
of the editing characters (that is, DELETE, CTRL/W or CITRL/U). | f
the contents of AC3 is zero, then no such buffer exists, and if the
user types CTRL/R, only the text in the input buffer will be output.

I f execution of the RDTTY%call is successful, the input is in the
specified area in the programis address space. The character that
termnated the input is also stored. (If the terminating character is

a carriage return followed by a Iline feed, the line feed is also
stored.) Control returns to the user's programat the second |I|ocation
following the call. The pointer in AClL is advanced to the character

following the | ast character stored. The count in the right half of
AC2 is wupdated to reflect the remuining bytes in the buffer, and
appropriate bits are set in the left half of AC2. The bits that can
be set on a successful return are:

Bit 12 RDYBTM The input was term nated because one of
t he specified break characters was
typed. This break character is placed
in the input buffer. If this bit is not
set, the input was term nated because
the byte count was exhausted

Bit 13 RDYBFE Control was returned to the program

because there is no nore input and
RDYRI E was set in the call

2-12

I NPUT AND OUTPUT USI NG THE TERM NAL

Bit 14 RDYBLR The limt to which the user can backup
for editing his input was reached.

For consistent handling of error returns refer to Section 1.2.2.

The followi ng exanple illustrates the recommended method for reading
data from the terminal. This exanple is essentially the same as the
one in Section 2.5; however, the RDTTY% call is used to read the
nunber before the N N¥% call processes it. This programstores the
| ast error encountered in location LASTER and therefore uses the
ERIJIMPR pseudo- op.

SEARCH MONSYM
SEARCH MACSYM
. REQUI RE SYS: MACREL

ACl==
AC2==2
AC3==3
START: RESET% ; prepare program environment
HRRO ACl, PROVPT
PSQUT% ; type pronpt
HRRO ACl, BUFFER ;location to store nunber
MOVElI AC2, BUFLEN*5 ;size of buffer
HRRO AC3, PROVPT ; pointer to pronpt
RDTTY% ;read nunber fromterm with editing

ERIMPR ERROR ;save error code, print nessage
HRRO AC1, BUFFER ;and halt source designator
MOVEI AC3, ~D10 ; deci mal radix
NI N%

ERIMPR ERROR ;if input error, print message
TMSG <THE OCTAL EQUI VALENT IS >
MOVEI ACL, . PRI QU ;and halt destination designator
MOVEI AC3, ~D8 ;octal radix
NOUT%

ERIMPR ERROR ; save error code, print nmessage
HALTF% ;and halt return to conmand
JRST START ; l anguage begin again, if continued

PROWPT: ASCl Z/ PLEASE TYPE A DECI VAL NUMBER: /
BUFLEN==10

BUFFER: BLOCK BUFLEN
LASTER. BLOCK 1

ERROR: MOVEM AC1, LASTER ;save error code
TMBG <
?ERROR- TYPE START TO BEA N AGAI N>; print general error nessage
HALTF% ;hal t
JRST START ;start over if continued
END START

2-13

I NPUT AND OUTPUT USI NG THE TERM NAL

2.10 SUMVARY

Data transfers of sequential bytes or text strings can be made to and
fromthe termnal. The nonitor calls for transferring bytes are PBI N%
and PBOUT% and for transferring strings are PSOUT% and RDTITY% The
NIN%6 and NOUT% nonitor calls can be used for reading and witing a

nunber. In general, the user's programnust specify a source from
which the data is to be obtained and a destination where the data is
to be placed. In the case of termnal 1/O the synbol .PRIIN

represents the wuser's termnal as the source, and the symbol .PRI QU
represents the user's termnal as the destination

2-14

CHAPTER 3

USI NG FI LES

3.1 OVERVI EW
Al information stored in the DECSYSTEM20 is kept in files. The
basic wunit of storage in a file is a page containing bytes from1l to
36 bits in length. Thus, a sequence of pages constitutes a file. In
nost cases, files have names. Although all files are handled in the
sane manner, certain operations are unavailable for files on
particul ar devi ces.
Programs can reference files by several nethods:

o In a sequential byte-by-byte manner.

o Inamltiple byte or string manner.

o In a random byte-by-byte nanner if t he particul ar
file-storage device allows it.

o |In a page-nmapping or section-mapping manner for files on
di sk.

Byte and string input/output are the nost common types of operations.

Generally, all programs performl|/O by noving bytes of data from one

location to another. For exanpl e, progranms can nove bytes from one
nmenory area to another, fromnenory to a disk file, and from the
user's terminal to nmenory. In addition, a programcan map nultiple

512-word pages or 512-page sections froma disk file into nenory or
vice versa

Data transfer operations on files require four steps:

1. Establishing a correspondence between a file and a Job File
Nurmber (JFN), because all files are referenced by JFNs.

2. Opening the file to establish the data node, access npde, and
byte size and to set up the nonitor tables that pernit data
to be accessed

3-1

USI NG FI LES

3. Transferring data either to or fromthe file.

4. Cosing the file to conplete any I/O to update the directory
if the file is on the disk, and to release the nonitor table
space used by the file.

Sonme operations on files do not require the execution of all four
steps above. Exanples of these operations are: deleting or renam ng
a file, or changing the access code or account of a file. Al t hough

these operations do not require all four steps, they do require that
the file has a JFN associated with it (step 1 above).

It is possible for disk files on the DECSYSTEM 20 to be sinul taneously
read or witten by any number of processes. To make sharing of files
possible, all instances of opening a specific file in a specific
directory cause a reference to the sane data. Therefore, data witten
into a file by one process can i nmrediately be seen by other processes
readi ng the file.

Access to files is controlled by the 6-digit (octal) file access code
assigned to a file when it is created. This code indicates the types
of access allowed to the file for the three classes of users: t he
owner of the file, the users with group access to the file, and all
other users. (Refer to the TOPS-20 User's Quide for nore information
on the file access codes.) If the user is allowed access to a file, he
requests the type of access desired when opening the file wth the
OPENF% nmonitor call (refer to Section 3.4.1) in his program |If the
access requested in the OPENF% call does not conflict with the current
access to the file, the wuser is granted access. Essentially, the
current access to the file is set by the first user who opens it.

Thus, for a user to be granted access to a specific file, two
condi tions must be net:

1. The file access code nust allow the user to access the file
in the desired manner (for exanmple, read, wite).

2. The file nust not be opened for a conflicting type of access.

3.2 JOB FI LE NUMBER

The Job File Nunber (JFN) is one of the nore inportant concepts in the
operating system because it serves as the identifier of a particular
file on a particular device during a process' execution. It is a
snmall integer assigned by the systemupon a request fromthe user's
program JFNs are usual ly assigned sequentially starting with 1.

USI NG FI LES

The JFN is valid for the job in which it is assigned and may be used
by any process in the job. The systemuses the JFN as an index into
the table of files associated with the job and always assigns a JFN
that is unique wthin the job. Even though a particular JFN within
the job can refer to only one file, a single file can be associated
with nmore than one JFN. This occurs when two or nobre processes are

using the same file concurrently. 1In this case, each of the processes
will probably have a different JFN for the file, but all of the JFNs
will be associated with the sane file.

3.3 ASSCCI ATING A FILE WTH A JFN

In order to reference a file, the first step the wuser program nust

conplete is to associate the specific file with a JFN Thi s
correspondence is established with the GIJFN% (Get Job File Nunber)
nonitor call. One of the argunents to this <call is the string

representing the desired file. The string can be specified within the
program (that is, come fromnenory) or can be accepted as input from
the user's terminal or fromanother file. The string can represent
the conplete specification for the file:

dev: <di rect ory>nane. typ. gen; T(t enporary); P(protection); A(account);
(devi ce dependent attributes)

If you onmit any fields of the specification, the system can provide
values for all except the nane field. Refer to the TOPS-20 User's
Quide for a conplete explanation of the specification for a file.

Table 3-1 lists the values the system will assign to fields not
specified by the input string.

Table 3-1: Standard System Values for File Specifications

Field Val ue

Devi ce DSK:

Directory Directory to which user is currently
connect ed.

Narme No default; this field nmust be
speci fi ed.

Type Nul | .

USI NG FI LES

Gener ati on nunber The hi ghest existing generation nunber
if the file is an input file. The
next hi gher generation nunmber iif the
file is an output file.

Protection Protection of next |ower generation of
file, i f one exists; otherw se,
protection as speci fi ed in the
directory.

Account Account specified when user |ogged in.

If the string specified identifies a single file, the nonitor returns
a JFN that remains associated with that file until either the process
rel eases the JFN or the job logs off the system After the assignnent
of the JFN is conplete, the wuser's program uses the JFNin all
references to that file.

The user's programcan set up either the short or the long formof the
GIJFN% nonitor call. The 1long formof the GIJFN% call requires an
argunent bl ock; the short formdoes not. The long formof GIJFN% has
functions and flexibility not available in the short formof the call.
The short formof GIJFN% allows a file specification to be obtained
froma string in nenory or froma file, but not fromboth. Fields not
specified by the input are taken fromthe standard system values for
those fields (refer to Table 3-1). This formis sufficient for nost
uses of the call. The long formallows a file specification to be
obtained from both a string in nenory and a file. |f both are given
as arguments, the string is used first, and then the file is wused if
nore fields are needed to conplete the specification. This formalso
allows the user's programto specify nonstandard val ues to be used for
fields not given and to request the assignment of a specific JFN.

3.3.1 GIJFN% Monitor Call

The GTJFN% rmonitor call assigns a JFN to the specified file. It
accepts two words of argunents. These argunment words are different
depending on the form of GIJFN% being used. The wuser's program
indicates the desired GTJFN% form by setting bit 17(&%SHT) of ACl to
1 for the short formor by clearing bit 17(&%SHT) for the long form

3.3.1.1 Short Formof GIJFN% - The short formof the GIJFN% nonitor
call requires the following two words of argunents.

USI NG FI LES

0 17 18 35
AC1 ! flag bits ! default generation nunmber !
| === ————————————————=—=—=I
0 35
AC2 ! source designator for file specification per !

! bit 16 (GI%NS) of ACL !

The flag bits that can be specified in ACL are described in Table 3-2.

Table 3-2: GIJFN% Flag Bits

Bi t Synbol Meani ng

0 GA%-QU The file specification givenis to be
assigned the next higher generation
number. This bit indicates that a new
version of a file is to be created and
is normally set if the file is for
out put use.

1 GIYINEW The file specification given must not
refer to an existing file (that is,
the file must be a new file).

2 &Y%0LD The file specification given nmust
refer to an existing file. This bit
has no effect on a parse-only JFN
(See bit GI%FG)

3 GI%NEG One of the appropriate nessages is to
be printed after t he file
speci fication is obt ai ned. The

nmessage is printed only if the user
types the ESC key to end his file
specification (that is, he is using
recognition input).

[NEW FI LE]
[NEW GENERATI ON|

[OLD GENERATI ON|

[OK] if GI%CFM (bit 4) is off
[CONFIRM if GI%CFM (bit 4) is on

3-5

4 GIYCFM
5 GJo%rMP
6 GIYNS

7 GIYACC
8 GIYOEL
9-10 GI%FN
11 GI% FG
12 GIYOFG

USI NG FI LES

Confirmation from the wuser wll be
required to verify that the file
specification obtained is correct. To
confirm the file specification, the
user can press the RETURN key.

The file specified is to be a
temporary file

Only the first file specification in a
mul ti ple | ogi cal name assignnent is to
be searched for the file.

The JFN specified is not to be
accessed by inferior processes in this
job. However, any process can access
the file by acquiring a different JFN
To prevent the file from being
accessed by other processes, the
user's program can set OFYRTD (bit 29)
in the OPENF call (refer to Section
3.4.1).

The file specified is not to be
considered as deleted, even if it is
mar ked as del et ed.

These bits are off in the short form
of the GIJFN call (refer to Section
3.3.1.2 for their description).

The file specification gi ven is
allowed to have one or nore of its
fields specified wth a wldcard
character (* or %. This bit is used
to process a group of files and is
generally wused for input files. The
nonitor verifies that at |[|east one
val ue exists for each field that
contains a wildcard and assigns the
JFN to the first file in the group

The nonitor also verifies that fields
not containing wldcards represent a
new or old file according to the
setting of GQIYNEW and QI%OLD.

The JFN is to be associated with the
given file specification string only
and not to the actual file. The
string may contain a wldcard
character (* or %9 in one or nore of

3-6

13

14

15

16

17

A%ULG

GIYPHY

GIYXTN

GIY%NS

G YSHT

USI NG FI LES

its fields. It is checked for correct
punctuation between fields, but is not
checked for the validity of any field.
This bit allows a JFN to be associ at ed
with a file specification even if the
file specification does not refer to
an actual file. The JFN returned
cannot be used to refer to an actua

file (for exanple, cannot be used in
an OPENF call) but can be used to
obtain the woriginal input string via
the JFNS nonitor call (refer to
Section 3.7.2).

Flags are to be returned in the left
hal f of ACl on a successful return

Logi cal nanes speci fi ed for t he
current job are to be ignored and the
physi cal device is to be used.

This bit is off in the short form of
t he GIJFN call (refer to Section
3.3.1.2 for its description).

The contents of AC2 are to be
interpreted as foll ows:

1. If this bit is on, AC2 contains an
input JFN in the left half and an
output JFN in the right half. The
input JFN is wused to obtain the
file speci fication to be
associ at ed with the JFN. The
output JFN is used to indicate the
destination for printing the nanes
of any fields being recognized.
To onmt either JFN, the user's
program nmust specify the synbol
. NULI O (377777).

2. If this bit is off, AC2 contains a
pointer to a string in nmenory that
specifies the file to be
associated with the JFN.

This bit nmust be on (set) for the
short formof the GIJFN%s call; it nust
be off for the long formof the call

18- 35

USI NG FI LES

The generation nunber of the file

(bet ween
fol | owi ng:

0(. GIDEF)

-1(. GINHG)

-2(. GILEG

-3(. GJALL)

1

and 377777) or one of the

to indicate that the next
hi gher generation nunber
of the file is to be used
if QQ%WOU (bit 0) is on
or to indicate that the
hi ghest exi sting
generati on nunber of the
file is to be wused if
AU is of f. (This
value is wusually used in
this field.)

to indicate that the next
hi gher generation nunber
of the file is to be wused
if no generation nunber is
suppl i ed

to i ndi cate t hat t he
| owest existing generation
nunber of the file is to
be used.

to i ndicate t hat al |
generation nunbers (*) of
the file are to be wused
and that the JFNis to be
assigned to the first file
in the group. (Bit Q% FG
nmust be set.)

USI NG FI LES

If the GTJFN% call is given with the appropriate flag bit set (&% FG
or QY%FG, the file specification given as input can have a w |l dcard
character (either an asterisk or a percent sign) appearing in the
directory, nane, type, or generation nunber field. (The percent sign
cannot appear in the generation nunber field.) The wildcard character
is interpreted as matching any existing occurrence of the field. For
exanpl e, the specification

<Ll BRARY>*. MAC

identifies all the files with the file type .MAC in the directory
named <Ll BRARY>. The specification

<Ll BRARY>MYFI LE. FO%

identifies all the files in directory <LIBRARY> with the nane MYFILE
and a three-character file type in which the first two characters are
. FO Upon completion of the GIJFN call, the JFN returned is
associated with the first file found in the group according to the
fol | owi ng:

0 in nunerical order by directory nunber

o in alphabetical order by fil enane

0 in alphabetical order by file type

0 in ascending nunerical order by generation number

The GNJFN% (Get Next JFN) nonitor call can then be given to assign the
JFN to the next file in the group (refer to Section 3.7.3). Normally,
a programthat accepts wildcard characters in a file specification
will successively reference all files in the group using the sane JFN
and not obtain another JFN for each one.

I f execution of the GIJFN% call is not successful because problens
were encountered in performing the call, the JFN is not assigned and
an error code is returned in the right half of ACL. The execution of
the program continues at the instruction follow ng the GIJFN% cal | .

I f execution of the GIJFN%bcall is successful, the JFN assigned is
returned in the right half of ACl and various bits are set in the |eft
half, if flag bits 11, 12, or 13 were on in the call. (The bits
returned on a successful call are described in Table 3-3.) If bit 11,
12, or 13 was not on in the call, the left half of AClL is zero. The
execution of the program continues at the second instruction after the
GIIFN% cal |

USI NG FI LES

Table 3-3: Bits Returned on GIJFN% Cal |
Bit Synbol Meani ng

0 GIYDEV The devi ce field of t he file
speci fication cont ai ns wi | dcard
characters.

1 GIY%UNT The unit field of t he file
speci fications cont ai ns wi | dcard
characters. This bit is never set
because wildcard characters are not
allowed in unit fields.

2 AWl R The directory field of t he file
speci fication cont ai ns wi | dcard
characters.

3 G YINAM The filename field of t he file
speci fication cont ai ns wi | dcard
characters.

4 QIYEXT The file type field of the file
speci fication cont ai ns wi | dcard
characters.

5 GIWER The generation nunber field of the
file specification contains wldcard
characters.

6 GJ%IHV The file used has t he hi ghest
generati on nunber because a generation
nunmber of O was given in the call.

7 GIYNHV The file wused has the next higher
generati on nunber because a generation
number of O or -1 was given in the
cal l.

8 GJ%LV The file used has t he | onest
gener ati on nunber because a generation
nunmber of -2 was given in the call.

9 GI%PRO The protection field of the file
speci fication was given.

10 GIYACT The account field of t he file

speci fication was given.

3-10

USI NG FI LES

11 GIYTFS The file specification is for a
temporary file.

12 GIYEND Files nmarked for deletion are not
consi der ed when assigning JFNs in
subsequent calls. This bit is set if
GIYEL was not set in the call.

13 GIYNOD The node nane field of the file
speci fication was given.

17 QAv3E Vv Invisible files were not considered
when assi gni ng JFNs.

Exanpl es of the short formof the GIJFN%% nonitor call are shown in the
foll owi ng paragraphs.

The foll owi ng sequence of instructions is used to obtain, from the
user's terninal, the specification of an existing file.

MOVX AC1, GJ%OLD+GJ %-NS+GJ %SHT
MOVE AC2,[.PRIIN,,.PR QU
GTIFN%

The bits specified for ACl indicate that the file specification given
must refer to an existing file (QJ%LD), that the file specification
is to be accepted fromthe input JFNin A2 (G&I%NS), and that the
short form of the GIJFN%call is being used (QJ%SHT). Because the
right half of ACl is zero, the standard generation nunber algorithm
will be used. In this GIJFN%call, the file with the highest existing
generation nunber is used. Because Q%NS is set in ACl, the contents
of AC2 are interpreted as containing an input JFN and an out put JFN.
In this exanple, the file specification is obtained fromthe term nal

(.PRIIN).

The foll owi ng sequence of instructions is used to obtain, from the
user's termnal, the specification of an output file and to require
confirmation fromthe wuser once the file specification has been
obt ai ned.

MOVX ACL, Gl %-OU+GI WEGHGI YCFM-GI %8-NS+GI %SHT
MOVE AC2,[.PRIIN,,.PR QU
GTIFN%
In this exanple, the bits specified for ACl indicate that
o the file obtained is to be an output file (QA%QU),
o after the file specification is obtained, a message is to be

typed (QWBG,

3-11

USI NG FI LES

o0 the user is required to confirmthe file specification that
was obtai ned (QJUCFM),

o the file specification is to be obtained fromthe input JFN
in AC2 (GI%NS),

o the short formof the GIJFN% call is being used (G¥SHT).

Because the right half of AClL is zero, the generation nunber given to
the file wll be one greater than the highest generation numnber
existing for the file. The contents of AC2 are interpreted as
containing an input JFN and an output JFN because GI%NS is set in
ACL.

The foll owi ng sequence of instructions is used to obtain the name of
an existing file froma location in the user's program

MOVX ACL, GJ%OLD+GI%SHT
MOVE AC2, [POl NT 7, NAVE]
GTJIFN%

NAME: ASCI Z/ MYFI LE. TXT/

The bits specified for ACl indicate that the file obtained is to be an
existing file (&A%LD) and that the short formof the GIJFN% call is
being used (J¥BHT). Since the right half of AClL is zero, the file
with the highest generation nunber will be used. Because GI%NS is
not set, the contents of AC2 are interpreted as containing a pointer
to a string in nenory that specifies the file to be associated with
the JFN. The setup of AC2 indicates that the string begins at
location NAME in the user's program The file specification obtained
fromlocation NAVE is MYFILE. TXT.

An alternate way of specifying the same file is the sequence
MOVX ACLl, GJ%OLD+GI¥SHT

HRRO AC2, [ASCl Z/ MYFI LE. TXT/]
GIIFN%

3.3.1.2 Long Formof GIJFN% - The long form of the GIJFN% nonitor
call requires the following two words of argunents:

USI NG FI LES

The argunent block for the long formis described in Table 3-4.

Table 3-4: Long Form GITJFN% Argurment Bl ock
Word Synbol Meani ng

0 . GIGEN Flag bits appear in the left half and
generati on nunber appears in the right
hal f.

1 . GJSRC An input JFN appears in the left half
and an output JFN appears in the right
half. To onmit either JFN, the wuser's
program nust specify the synbol .NULIO
(377777).

2 . GIDEV Pointer to ASCIZ string that specifies
the device to be used when none is
given. |If this word is 0, DSK will be
used.

3 .&D R Pointer to ASCIZ string that specifies
the directory to be used when none is
given. |If this word is O, the wuser's
connected directory will be used.

4 GINAM Pointer to ASCIZ string that specifies
the filenane to be used when none is
given. |If this word is 0, the input
must specify the fil enane.

5 . GIEXT Pointer to ASCIZ string that specifies
the file type to be used when none is
given. |If this word is 0, a null type
will be used.

6 . GJPRO Pointer to ASCIZ string or 3B2+octa

protection code. This word indicates
the protection to be used when none is

gi ven. | f this word is 0, the
protection as speci fied in the
directory will be used.

3-13

USI NG FI LES

7 . GJACT Pointer to ASCI Z string or 3B2+deci nal
account nunber. This word indicates
the account to be used when none is
given. If this word is O, the account
speci fi ed when the user logged in wll
be used.

10 . GJJFN The JFN to assign to t he file

specification if flag bit GQQ%WFNis
set in wrd .GGN (word 0) of the
argunent bl ock.

11-17 Addi tional words allowed if flag bit
GQYXTN (bit 15) is set in word . GIGEN
(word 0) of the argument block. These
addi ti onal wor ds are used when
perform ng conmand i nput parsing and
are described in the TOPS-20 Monitor
Cal I s Ref erence Manual

The flag bits accepted in the left half of .GIGEN (word 0) of the
argument bl ock are the same as those accepted in the short formof the
GIJFN% call. The entire set of flag bits is listed in Table 3-2.

The generation nunber val ues accepted in the right half of .GGEN
(word 0) of the argunent block can be 0, -1, -2, -3, or a specified
nunber, although O is the nornmal case. Refer to Bits 18-35 of Table
3-2 for explanations of these val ues.

I f execution of the GIJFN%bcall is successful, the JFN assigned is
returned in the right half of ACl and various bits are set in the |eft
half if flag bits 11, 12 or 13 were on in the call. Refer to Table

3-3 for the explanations of the bits returned. Execution of the
program conti nues at the second instruction followi ng the call.

I f execution of the GIJFN call is not successful, the JFN is not
assigned and an error code is returned in the right half of ACL. The
execution of the programcontinues at the instruction following the
GTJFN% cal |

The followi ng sequence of instructions obtains a specification for an
existing file from the user's terminal, assigns the JFN to the next
hi gher generation of that file, and specifies default fields to be
used if the user onmits a field when he gives his file specification

MOVEI AC1, JFNTAB

SETZ AC2,
GIIFN%

3-14

USI NG FI LES

JFNTAB: GI%-QU

XWD . PRIIN,.PR QU

0

PO NT 7, [ASCl Z/ TRAI N/] ;default directory
0

PO NT 7, [ASCl Z/ NEM] ;default file type
0

0

0

The address of the argunent table for the GIJFN% call (JFNTAB) is
given in the right half of ACL AC2 contains 0, which neans no
pointer to a string is given; thus, fields for the file specification
will be taken only fromthe user's termnal. The first word of the
argument bl ock contains a flag bit for the GIJFN% call. This bit
(&A%QU) indicates that the next higher generation nunber is to be
assigned to the file. The second word of the argument block indicates
that the file specification is to be obtained from the user's
terminal, and any output generated because of the wuser enploying
recognition is to be printed on his terminal. |If the user does not
supply a directory name as part of his file specification, the
directory <TRAIN> will be used. And if the user does not give a file
type, the type MEMwi Il be used. |If the user onmits other fields from
his specification, the systemstandard value (refer to Table 3-1) wll
be used.

3.3.1.3 Sunmmary of GIJFN% - The GIJFN% monitor call is required to
associate a JFNwith a particular file. In nost cases, the short form
of the GIJFN% call is sufficient for establishing this association.

However, the long formis nmore powerful because it provides the user's
program nore control over the file specification that is obtained.
The followi ng sunmary conpares the characteristics of the two forms of
the GIIJFN% nonitor call.

Short Form Long Form

Assigns a JFN to a file. Assigns a JFN to a file.
System deci des the JFN User program may request
to assign. a particular JFN

Accepts the file specification Accepts the file specification
froma string in nenory froma string in nenory
or a file. and a file.

Uses standard system val ues Al'l ows user-supplied val ues
for fields not given to be used for fields not
inthe file given in the file
speci fication. speci fication.

3-15

USI NG FI LES

3.4 OPENING A FILE

Once a JFN has been obtained for a file, the user's programnust open
the file in order to transfer data. The user's program supplies the
JFN of the file to be opened and a word of bits indicating the desired
byte size, data node, and access to the file.

The desired access to the file is specified by a separate bit for each
type of access. The file is successfully opened only if the desired
access does not conflict with the current access to the file (refer to
Section 3.1). For exanple, if the user requests both read and wite
access to the file, but wite access is not allowed, then the file is
not opened for this user. The allowed types of access to a file are:

0 Read access. The file can be read wth byte, string, or
random i nput .

0 Wite access. The file can be witten with byte, string, or
random out put .

0 Append access. The file can be witten only with sequenti al
byte or dunp output, and the current byte pointer (refer to
Section 3.5.1) cannot be changed. The initial position of
the file pointer is at the end of the file.

0 Frozen access. The file can be concurrently accessed by at
nost one user witing the file, but by any nunber of users
reading the file. This is the default access to a file.

o Thawed access. The file can be accessed even if other users
are reading and witing the file.

0 Restricted access. The file cannot be accessed if another
user already has opened the file.

0 Unrestricted read access. The file can be read regardl ess of
what other users night be doing with the file.

3.4.1 OPENF% NMbnitor Cal

The OPENF% (Open File) monitor call opens a specified file. It
requires the followi ng two words of argunents.

3-16

USI NG FI LES

0 17 18 35

I:::I

AC1 ! 0 I JFN of file to be opened !
0 56 9 18 30 31 35

AC2 I byte ldata ! 0 ! access hits ! 0 !

I size ! mode ! ! ! !

If the left half of ACL is not O, the contents of ACL is interpreted
as a pointer to a string, not as a JFN. If the user's program
requests bits returned in ACL fromthe GIJFN% call, these bits nust be
cl eared before executing the OPENF% cal | .

The byte size (OF¥BSZ) in AC2 specifies the number of bits in each
byte of the file and can be between 1 and 36 (decimal). |If this field
is O a byte size of 36 (decinmal) is assuned.

The file data node field (OF%OD) usual ly has one of two val ues:

Val ue Meani ng
0 Normal data node of the file (that is, byte
[/O. Dump I/Ois illegal.
17 Dump node (that is, wunbuffered word 1/0.
Byte 1/O is illegal and the byte size is
i gnor ed.

The access bits are described in Table 3-5.

Tabl e 3-5: OPENF% Access Bits

Bi t Synbol Meani ng

0-5 OFYBSZ Byte size (nmaximum of 36 decinal).

6-9 OF%vVOD Data node in which to open file.

18 OF%ER Halt on the occurrence of an 1/0O
devi ce or medi um error duri ng
subsequent /O to the file. If this

bit is not set, a software interrupt
is generated if a device or nedium
error occurs during subsequent I/Q

3-17

USI NG FI LES

Al l ow unrestricted read access

Al'l ow t hawed access. If this bit is
not set, the file is opened for frozen

Block (that is, tenporarily suspend)
the program until access to the file

Do not update the access dates of the
Return an error if access to the file
Al'l ow access to the file to only one
process (that is, restricted access).
Do not check for line nunbers in the
Suppress systemupdating of nodified
pages in nmenory to thawed files on
di sk unl ess CLOSF or UFPGS i ssued.
Open device even if off-line

Force update of .FBREF (last read) in
FDB and i ncrenment RH of . FBCNT (nunber

19 OF%:D Al l ow read access.
20 OF%\R Allow wite access.
21 OF%EX Al | ow execute access
22 OFYAPP Al'l ow append access.
23 OFYRDU
24 Reserved for Digital
25 OF%a HW

access.
26 OFYAWT

is permtted.
27 OF%PDT

file.
28 OF YN

cannot be pernitted.
29 OFY%RTD
30 OFY%LN

file.
31 OFY®DUD
32 OF%OFL
33 OF%-DT

of references).
34 OFY%RAR

Wit if file off-line

i f

If bits OF¥YAWI and OFYNWI are both off, an error code is returned

access to
i denti cal

the file cannot be permitted (that
to OFYMNW being on).

3-18

is,

the action taken is

USI NG FI LES

I f execution of the OPENF% nonitor call is successful, the file is
opened, and the execution of the programcontinues at the second
instruction after the OPENF% cal | .

I f execution of the OPENF% call is not successful, the file is not
opened, and an error code is returned in AClL. The execution of the
program continues at the next instruction after the OPENF% call .

Two sanpl es of the OPENF% call foll ow.
The sequence of instructions bel ow opens a file for input.

HRRZ ACL, JFNEXT
MOVX AC2, FLD(44, OFYBSZ) +OFYRD+OF%PLN
OPENF%

The JFN of the file to be opened is contained in the location
indicated by the address in ACL (JFNEXT). The bits specified for AC2
indicate that the byte size is one word FLD(44, OF9BSZ), that read
access 1is being requested to the file (OP¥RD), and that no check will
be made for line numbers in the file; that is, the line nunbers wll
not be discarded (OF%LN). Because bit OF%dHWis not set, the file
can be accessed for readi ng by any nunber of processes.

The foll ow ng sequence of instructions can be used to open a file for
out put .

MOVE ACL, JFN
MOVX FLD(7, OFYBSZ) +OF%HER+OF%AR+ OF %AW
OPENF%

The right half of ACL contains the address that has the JFN of the
file to be opened. The bits specified for AC2 indicate that the byte
size is 7-bit bytes FLD(7, OF¥BSZ), that the programis to be halted
when an 1/0O error occurs in the file (OF%ER), that wite access is
being requested to the file (OF®W\R), and that the program is to be
bl ocked if access cannot be granted (OF¥AW). Because bit OF%HWIi s
not set, if another user has been granted wite access to the file,
this user's programw || be blocked until access can be granted.

3.5 TRANSFERRI NG DATA
Data transfers of sequential bytes are the nost comon form of

transfer and can be used with any file. For disk files, nonsequential
bytes and entire pages can also be transferred.

3-19

USI NG FI LES

3.5.1 File Pointer

Every open file is associated with a pointer that indicates the |ast
byte read from or witten to the file. Wen the fileis initially
opened, this pointer is normally positioned before the beginning of
the file so that the first data operation will reference the first
byte in the file. The pointer is then advanced through the file as
data is transferred. However, if the file is opened for append-only
access (bit OF%APP set in the OPENF% call), the pointer is positioned
after the last byte of the file. This allows the first wite
operation to append data to the end of the file.

For disk files, the pointer may be repositioned arbitrarily throughout
the file, such as in the case of nonsequential data transfers. Wen
the pointer is positioned beyond the end of the file, an end-of-file
indication is returned when the programattenpts a read operation
using byte input. Wen the programperforns a wite operation beyond
the end of the file using byte output, the end-of-file indicator is
updated to point to the end of the new data. However, if the program
wites pages beyond the end of the file with the PMAP% nonitor cal
(refer to section 3.5.6), the byte count is not updated. Ther ef or e,
it is possible for a file to contain pages of data beyond the
end-of-file indicator. To allow sequential I/Oto be perforned |ater
to the file, the program shoul d update the byte count before closing
the file. (Refer to the CHFDB% nonitor call description in the
TOPS-20 Monitor Calls Reference Manual .)

3.5.2 Source and Destination Designators

Because |/ O operations occur by nobving data from one location to
anot her, the user's program nust supply a source and a destination for
any |/ O operation. The npst comonly-used source and destination
designators are the foll ow ng:

1. A JFN associated with a particular file. The JFN nust be
previously obtained with the GIJFNY% or GNJFN% nonitor cal
before it can be used.

2. The primary input and output designators .PRIIN and .PR QU
respectively (refer to Section 2.2). These designators
shoul d be used when referring to the term nal

3. A byte pointer to the beginning of the string of bytes in the
program s address space that is being read or witten. The
byte pointer can take one of two formns:

o Awrdwitha-1inthe left half and an address in the
right half. This formis used to designate a 7-bit ASCl Z
string starting in the left-nmost byte of the specified
addr ess. A word in this formis functionally equival ent
to a word assenbl ed by the PO NT 7, ADR pseudo- op

3-20

USI NG FI LES

o Afull word byte pointer with a byte size of 7 bits.

Most nmonitor calls dealing with strings deal specifically with ASClI
strings. Nornmally, ASCII strings are assuned to termnate with a byte
of O (that is, are assuned to be ASClI Z strings). However sone calls
optionally accept an explicit byte count and/or terninating byte.
These calls are generally ones that handl e non-ASCI| strings and byte
sizes other than 7 bits.

3.5.3 Transferring Sequential Bytes

The BI N% (Byte Input) and BOUT% (Byte Qutput) nonitor calls are used
for sequential byte transfers. The BIN%call takes the next byte from
the given source and places it in AC2. The BOUT% call takes the byte
fromAC2 and wites it to the given destination. The size of the byte
is that given in the OPENF% call for the file.

The BIN% nonitor call accepts a source designator in ACl, and upon

successful execution of the call, the byte is right-justified in AC2.
I f execution of the call is not successful, an illegal instruction
trap is generated. Control returns to the user's programat the
instruction following the BIN%call. If the end of the file is

reached, AC2 contains O instead of a byte. The program can process
this end-of-file condition if a junp style error return is the next
instruction following the BIN%call.

The BOUT% nmonitor call accepts a destination designator in ACl and the
byte to be output, right-justified in AC2. Upon successful execution
of the call, the byte is witten to the destination. |If execution of
the call is not successful, an illegal instruction trap is generated
Control returns to the user's programat the instruction follow ng the
BOUT% cal | .

The foll owi ng sequence shows the transferring of bytes from an input
file to an output file. The bytes are read fromthe file indicated by
I NJFN and witten to the file indicated by OUTJFN

LOOP: MOVE 1,1 NJFN ;get source designator from | NJFN
Bl N% ;read a byte fromthe source
ERJMP DONE ;check for end of file, if O
LOOP2: MOVE 1, QUTJFN ;get destination from QUTJFN
BOUT% ;wite the byte to the destination
JRST LOCP ;continue until O byte is found
DONE: GTISTS% ;obtain status of source
TXNN 2, GS¥%&EOF ;test for end of file
JRST NOTYET ;no, test for O in input file
: ;yes, process end of file condition
NOTYET: MOVElI 2,0 ;0 in input file
JRST LOOP2

3-21

USI NG FI LES

3.5.4 Transferring Strings
The SIN% (String Input) and SOUT% (String Qutput) nonitor calls are
used for string transfers. These calls transfer either a string of a
speci fied number of bytes or a string termnated with a specific byte.
The SIN% nmonitor call reads a string fromthe specified source into
the programi s address space. The call accepts four words of argunents
in ACL t hrough ACA4.

AC1: source desi gnat or

AC2: pointer to area in program s address space

AC3: count of nunber of bytes to read, or 0O

ACA: byte on which to termnate input (optional)

The contents of AC3 are interpreted as the nunber of characters to
read.

o If AC3is 0, then reading continues until a 0 byte is found
in the input.

o If AC3 is positive, then reading continues until either the
specified nunber of bytes is read, or a byte equal to that
given in AC4 is found in the input, whichever occurs first.

o If AC3 is negative, then reading continues wuntil nminus the
speci fi ed nunber of bytes is read.

The contents of AC4 needs to be specified only if the contents of AC3
is a positive nunber. The byte in AC4 is right-justified.

The input is term nated when one of the follow ng occurs:
o The byte count becones zero.
0 The specified term nating byte is reached.
o0 The end of the file is reached.

0 An error occurs during the transfer (for exanple, a data
error occurs).

Control returns to the user's programat the instruction follow ng the
SIN% call. If an error occurs (including the end of the file is
reached), an illegal instruction trap is generated. In addition
several |ocations are updated:

3-22

USI NG FI LES

1. The position of the file's pointer is updated for subsequent
I/Oto the file.

2. The pointer to the string in AC2 is updated to reflect the
last byte read or, if AC3 contained O, the last nonzero byte
read.

3. The count in AC3 is updated, if pertinent, by subtracting the
nunber of bytes actually read from the nunber of bytes
requested to be read (that is, the count is wupdated toward
zero). Fromthis count, the user's program can determ ne the
nunber of bytes actually transferred.

The SOUT% nonitor call wites a string from the programis address
space to the specified destination. Like the SINwcall, this call
accepts four words of argunments in ACl through ACA4.

AC1: destinati on designator

AC2: pointer to string to be witten

AC3: count of the nunber of bytes to wite, or O

ACA: byte on which to term nate output (optional)

The contents of AC3 and AC4 are interpreted in the same nanner as they
are in the SINSnonitor call.

The transfer is term nated when one of the follow ng occurs.
o The byte count becones zero.

0 The specified termnating byte is reached. This termnating
byte is witten to the destination.

0 An error occurs during the transfer.

Control returns to the user's programat the instruction follow ng the
SQUT% call. If an error occurs, an illegal instruction trapis
generated. In addition, the position of the file's pointer, the
pointer to the string in AC2, and the count in AC3, if pertinent, are
al so updated in the same manner as in the SIN¥% nonitor call.

The foll owi ng code sequence shows transferring a string froman input
file to an output file. The procedure is the sane as at the end of
Section 3.5.3, using SIN¥%and SOUT% cal | s i nstead of BI N% and BOUT%

LOOP: MOVE 1,1 NJEN ;get source from I NJFN

HRRO 2, BUF128 ;pointer to string to read into (128
;word buffer)

3-23

USI NG FI LES

MOVNI 3, ~D128*5 ;input a maxi mum of 640 bytes

Sl N% ;transfer until end of buffer or end of
file

ERCAL EOFQ ;error occurred

ADDI 3, "D128*5 ; det erm ne negative nunber of
; bytes transferred

MOVWN 3, 3 ;convert to positive

MOVE 1, QUTJFN ;get destination from QUTJFN

HRRO 2, BUF128 ;pointer to string to wite from

SQUT% ;transfer as many bytes as read

EOFQ MOVE 1,1 NJFN

GISTS% ;obtain status of source

TXNN 2, GS¥&EOF ;test for end of file

RET ; no, continue copying

3.5.5 Transferring Nonsequential Bytes

As discussed in Section 3.5.3, the BIN»and BOUT% cal | s transfer bytes
sequentially, starting at the current position of the file's pointer.
The RI N% (Random | nput) and ROUT% (Random Qut put) nonitor calls allow
the wuser's program to specify where the transfer wll begin by
accepting a byte nunber within the file. The size of the byte is the
size given in the OPENF% call for the file. The RIN%and ROUT% cal | s
can only be used when transferring data to or fromdisk files.

The RIN% nonitor call takes a byte fromthe specified location in the
file and places it into the accunulator. The call accepts the JFN of
the file in ACL and the byte nunber within the file in AC3. Upon
successful conpletion of the call, the byte is right-justified in AC2,
and the file's pointer is updated to point to the byte following the
one just read. If an error occurs, an illegal instruction trap is
generated. Control returns to the user's programat the instruction
following the RIN% call.

The ROUT% nonitor call takes a byte fromthe accunulator and wites it
into the specified location in the file. The call accepts the JFN of
the file in ACl, the byte to wite right-justified in AC2, and the
byte nunber within the file in AC3. Upon successful conpletion of the

call, the byte is witten into the specified byte in the file, and the
file's pointer is updated to point to the byte follow ng the one just
witten. If an error occurs, an illegal instruction trap is
gener at ed. Control returns to the user's programat the instruction

following the ROUT% cal |

3.5.6 Mapping Pages

Up to this point, nmonitor calls have been presented for transferring

3-24

USI NG FI LES

bytes and strings of data. The next call to be discussed is used to
transfer entire pages of data between a file and a process.

Both files and process address spaces are divided into pages of
512(decimal) words. A page within a file can be identified by one
word, where the JFN of the file is in the left half and the page
nunber wthin the file is in the right half. A page within a process
address space can also be identified by one word, where the identifier
of the process (refer to Section 5.3) is in the left half and the page
nunber within the process' address space is in the right half. Each
one-word identifier for the pages in the process address space is
placed in what is called the process page map. Wien identifiers for
file pages are placed in the process page nap, references to the
process page actually refer to the file page. The followi ng diagram
illustrates a process map that has identifiers for pages fromtwo
files.

File 1
I |
Process Map | |
I |
I | I |
I | I |
---mmmmmmm -		----------	
JFN1	Page 1	-------------- >	Page 1
---mmmmmmm -		----------	
I	I		
I	I		
---mmmmmmm -	[
I			
I			
	File 2		
I lf			
I	I		
I	I		
----mmmmmm -		----------	
JFN2	Page 2	-------------- >	Page 2
----mmmmmm -		----------	
I | I |
I | I |
I | I |
I |
I |
[|
The PMAP% (Page Mapping) nonitor call is used to nmap one or nore
entire pages froma file to a process (for input), froma process to a
file (for output), or from one process to another process. In

general, this call changes the entries in the process map by accepting

3-25

USI NG FI LES

file page identifiers and process page identifiers as argunents.
Mappi ng pages between a file and a process is described bel ow, mappi ng
pages between two processes is described in Chapter 5.

3.5.6.1 Mapping File Pages to a Process - This use of the PMAP% call
changes the map of the process so that references to pages in the
process reference pages in a file. This does not actually cause data
to be transferred; it sinply changes the contents of the map. Later
when changes are nmade to the actual page in the process, the changes
will also be made to the page in the file, if wite access has been
specified for the file.

Note that you cannot nmap file pages to pages in a process section that

does not exist in the the process map. |f you use PMAP% to input file
pages to pages in a nonexistent section of a process, the nonitor
generates an illegal instruction trap

In addition, you can map one or nore file sections (of 512 pages each)
into a process. See Section 8.3.1 for details.

The PMAP% cal |l accepts three words of arguments in ACl through AC3.

ACL: JFN of the file in the left half, and the page nunber in
the file in the right half

AC2: process identifier (refer to Section 5.3) in the Ileft
hal f, and page nunber in the process in the right half

AC3: repetition count and access
The repetition count and access bits that can be specified in AC3 are

described in Table 3-6.

Tabl e 3-6: PMAP% Access Bits

Bit Synbol Meani ng

0 PM/ECNT Repeat the mapping operation the nunber of
times specified by the right half of AC3. The
file page nunber and the process page nunber
are increnented by 1 each tine the operation
i s performed.

2 PM/RD Al'l ow read access to the page

3 PMAAR Allow wite access to the page.

3-26

USI NG FI LES

4 PM/EX Reserved
The synbol PMARWK can be used to set B2-4.

5 PMAPLD Prel oad page being mapped (nove the page
imediately instead of waiting until it is

ref erenced).

9 PMACPY Create a private copy of the page if the
process wites into the page. This is called
copy-on-wite and causes the map to be changed
so that it identifies the copy instead of the
original. Wite access is allowed to the copy
even if it was not allowed to the original
This allows a process to change a page of data
wi thout changing the data for other processes
that have al so mapped the page.

10 PW&EPN Bits 18-35 of AC2 contain extended (18-hbit)
process page nunber. | f t he section
contai ning the page does not exist, a private
section is created

11 PM/ABT Unnmap page and di scard (abort) changed
contents
18- 35 PM/ARPT The nunber of times to repeat the nmapping

operation if bit O(PMANT) is set.

Wth this use of the PMAP% call, the present contents of the page in
the process are renoved. If the page in the file is currently
nonexi stent, it will be created when it is witten.

This use of the PMAP% call is valid only if the file is opened for at
| east read access. |If wite access is requested in the PMAP% call, it
is not granted unless it was also specified in the OPENF% call when
the file was opened.

A file cannot be closed while any of its pages are mapped into any
process. Thus, before a file is closed, its pages nust be unmapped
(refer to Section 3.5.6.3).

After execution of the PMAP% call, control returns to the wuser's
programat the instruction following the call. |If an error occurs, an
illegal instruction trap is generated.

3.5.6.2 Mapping Process Pages to a File - This use of the PMAP% cal
actually transfers data by noving the specified page in the process to
the specified page in the file. The process map for the page is now

3-27

USI NG FI LES

enpty. Both the page in the process and the page in the file nust be
private; that is, no other process can have the page mapped into its
address space. The ownership of the process page is transferred to
the file page. The previous contents of the page in the file are
del et ed.

The three words of argunents are as foll ows:

AC1: process identifier (refer to Section 5.3) in the Ileft
hal f, and page nunber in the process in the right half

AC2: JFN of the file in the left half, and the page nunber in
the file in the right half

AC3: repetition count and access (refer to Section 3.5.6.1)

The access requested in the PMAP% call is granted only if it does not
conflict with the access specified in the OPENF% call when the file
was opened

This use of the PMAP% call does not automatically wupdate the files
byte count and the byte size. To allowthe file to be read later with
sequential I/O nonitor calls, the program should update the file's
byte count and the byte size. (Refer to the CHFDB% nonitor call in
the TOPS-20 Monitor Calls Reference Manual).

3.5.6.3 Unnapping Pages in a Process - As stated previously, a file
cannot be closed if any of its pages are mapped in any process. To
unmap a file's pages froma process, the program nust execute the
SMAP% cal |, or the following formof the PVMAP% cal | :

ACL: -1

AC2: process identifier in the left half, and page nunber in
the process in the right half.

AC3: the repeat count for the nunber of pages to renove from
the process (refer to Section 3.5.6.1).

3.5.7 Mapping File Sections to a Process

A section of nmenory is a unit of 512 pages of process address space.
File sections also contain 512 pages. The first page of each file
section has a page nunber that is an integral nmultiple of 512. Li ke
nmenory pages, sections can be mapped from one process to another, from
a process to itself, or froma file to a process. Chapter 8 describes
the SMAP% cal | conpletely.

3-28

USI NG FI LES

The SMAP% (Section Mapping) nmonitor call is simlar to the PMAPY% cal |
The SMAP% cal |l maps one or nore sections froma file to a process (for
input), or fromone process to another process. To map a process
section to a file, you nust use the PMAP% cal |l as described in Chapter
5 to map each page

Mapping a file section to a process section with SMAP% does not cause
data to nove from the disk to nmenory. |Instead, SMAP% changes the
contents of the process nenory nmap so that the process section pointer
points to a file section. The nonitor transfers data only when your
program references a nenory page to which a file page is mapped

To map a file section to a process section, SMAP% requires three
argunent s:

ACL: source identifier: a JFNin the left half, and a file
section number in the right half. |If several contiguous
sections are to be napped, the nunber in the right half is
that of the first section in the group of contiguous

sections.
AC2: destination identifier: process identifier in the left
hal f, and a process section nunber in the right half. |If

several contiguous sections are to be mapped, the nunber
in the right half is the nunber of the first section into
whi ch SMAP% maps a file section

AC3: flags that control access to the process section in the
left half, and, in the right half, the number of sections
to map into the process. The nunber of sections to nap
cannot be less than 1 nor nore than 32 (deciml).

The flags in the left half of AC3 are described in Table 3-7.

Table 3-7: SMAP% Access Bits

Bit Synbol Meani ng

2 SM/RD Al |l ow read access.

3 SMAAR Allow wite access.

4 SMAEX Al | ow execut e access.

6 SV ND Map the destination section using an indirect

section pointer.

3-29

USI NG FI LES

3.6 CLOSING A FILE

Once data has been transferred to or froma file, the wuser's program
nmust close the file. Wen a file is closed, the systemautomatically
perforns the foll ow ng:

1. Updates the directory infornation for the file. For exanple,
for a file to which sequential bytes had been witten, the
byte size and byte count are updated when the file is closed.

2. Releases the JFN associated with the file. However, the
user's programcan request to close the file, but retain the
JFN assignment. This is wuseful iif the program plans to

reopen the same file later, but does not want to execute
anot her GIIJFN% cal |l .

3.6.1 CLOCSF% Mbnitor Cal

The CLOSF% (O ose File) monitor call closes either the specified file
or all files that are opened for the process executing the call. The
CLOSF% cal | accepts one word of arguments in ACl1 - flag bits in the
left half and the JFN of the file to be closed in the right half. The
flag bits are described in Table 3-8.

Table 3-8: CLOSF% Flag Bits

Bi t Synbol Meani ng

0 CO/NRYJ Do not release the JFN fromthe file.

6 CZ¥%BT Abort any output operations currently being
done. That is, close the file but do not

perform normal cl eanup operations (for exanple,
do not output any data remaining in the
buffers). |If output to a new disk file that has
not been closed is aborted, the file is closed
and then del et ed.

7 CSYNUD Do not update the copy of the directory on the
disk (refer to the CHFDB% description in the
TOPS-20 Monitor Calls Reference Manual for nore
i nformation).

If the contents of ACl is -1, all files that are opened for this
process are cl osed.

3-30

USI NG FI LES

If the execution of the CLOSF% call is successful, the specified file
is closed, and the JFN associated with the file is released if CO/MRI
was not set in the call. The execution of the wuser's program

conti nues at the second |ocation after the CLOSF% cal | .

If the execution of the CLOSF% call is not successful, the file is not
closed and an error code is returned in the right half of AClL. The
execution of the user's programcontinues at the instruction follow ng
the CLOSF% call .

The followi ng sequence illustrates the closing of two files.
CLOSIF: HRRZ 1,1 NJFN ;obtain input JFN
CLOSF% ;close input file
ERIMP FATAL ;if error, print nmessage and stop
CLOSOF: HRRZ 1, QUTJFN ; obtain output JFN
CLOSF% ;close output file
ERIMP FATAL ;if error, print nmessage and stop

3.7 ADDI TIONAL FILE I/ O MONI TOR CALLS

3.7.1 GISTS% Monitor Call

The GISTS% (Get Status) monitor call obtains the status of a file.
This call accepts one argunent word - the JFN of the file in the right
hal f of the ACL. The left half of ACl is zero.

Control always returns to the wuser's program at the instruction
following the GISTS%call. Upon return, appropriate bits reflecting
the status of the specified JFN are set in AC2. These bits, and their
neani ngs, are described in Table 3-9. Note that if the JFNis illegal
or unassigned, bit 10 (GSYNAM will not be set.

Table 3-9: Bits Returned on GISTS% Cal |

Bi t Synbol Meani ng

0 GSY©OPN The file is open. If this bit is not
set, the file is not open.

1 GSYRDF If the file is open (for exanple,
GS¥PN is set), it is open for read
access.

3-31

10

11

12

13

14-16

17

18

19-31

32-35

GSOMRF

GSYXCF

GSYRND

GSYU.NG

GSY%EOF

GSYERR

GSYINAM

GSYAST

GSYASG

GS%UALT

GS%RK

GS%PLN

GS%voD

USI NG FI LES

If the file is open, it is open for
wite access.

File is open for execute access.

If the file is open, it is open for
non- append access (that is, its
poi nter can be reset).

Reserved for Digital

File has pages in existence beyond
page nunber 511

The |l ast read operation to the file
was at the end of the file.

The file may be in error (for exanple,
the bytes read nay be erroneous).

A file specification is associated
with this JFN. This bit will not be
set if the JFNis in any way illegal

One or nore fields of t he file
specification associated with this JFN
contain a wildcard character.

The JFN is currently being assigned
(that is, a process other than the one
executing the GISTS call is assigning
this JFN)

An I/Oerror is considered to be a
termnating condition for this JFN
That is, the OPENF% call for this JFN
had bit OF%ER set.
Reserved for Digital

Access to the file is restricted to
only one process.

If on, file line numbers are passed
during input; if zero, line nunbers
are stripped before input.

Reserved for Digital

The data node of the file (refer to
the OPENF% cal |).

3-32

USI NG FI LES

Val ue Synbol Meaning

0 .GSNRM Nornmal (sequential) I/0O
1 .GSSMB Smal | buffer node

10 .GSIMG Imge (binary) 1/0

17 .GSDMP Dunp I/0O

An exanple of the GISTS% call is shown in the first programin Section
3.9.

3.7.2 JFNS% Monitor Call

The JFNS% (JFN to String) nonitor call returns the file specification
currently associated wth the specified JFN. The call accepts three
words of argunents in ACL through ACS3.

AC1: destination designator where the file speci fication
associ at ed with t he JFN is to be witten. Thi s
specification is an ASCl Z string.

AC2: JFN or pointer to string (see bel ow)

AC3: format to be used when returning the specification (see
bel ow)

The contents of ACL can be any valid destination designator (refer to
Section 3.5.2).

The contents of AC2 can be one of two formats. The first format is a
word with either flag bits or 0 inthe left half and the JFN in the
right half. The bits that can be given in the left half of AC2 are
the ones returned fromthe GIJFN% call (refer to Table 3-3). Wen the
left half of AC2 is nonzero (that is, contains the bits returned from
the GTJFN% call), the string returned will contain wldcard characters
for appropriate fields and 0, -1, or -2 as a generation nunber if the
corresponding bit is onin the JFNS% call. Wen the left half of AC2
is 0, the string returned is the exact specification for the file (for
exanpl e, wildcard characters are not returned for any fields). |If the
JFN is associated only with a file specification and not wth an
actual file (that 1is, bit GY%FG was set in the GIJFN%call), the
string returned will contain null fields for wunspecified fields and
the actual values for specified fields. The second fornmat allowed for
AC2 is a pointer to the string in the program s address space that is
to be returned upon execution of the call. Refer to the TOPS- 20
Monitor Calls Reference Manual for the explanation of this format.

3-33

USI NG FI LES

The contents of AC3 specify the format in which the specification is
witten to the destination. Bits 0 through 20 are divided into 3-bit
bytes, each byte representing a field in the file specification. The
value of the byte indicates the format for that field. The possible
val ues are:

Val ue Synbol Meani ng

0 . JSNOF Do not return this field when returning the
file specification

1 . JSACOF Always return this field when returning the
file specification

2 . JSSSD Suppress this field if it is the standard
system value for this field (refer to Table
3-1).

If the contents of AC3 is zero, the file specificationis witten in
t he format

dev: <di rectory>nane. typ.gen; T
with fields the sane as the standard system val ue (see Table 3-1) not
returned and protection and account fields returned only if bit 9 and
bit 10 in AC2 are on, respectively. The tenporary attribute (;T) is
returned only if the file is tenmporary.

Tabl e 3-10 describes the bits that can be set in AC3.

Tabl e 3-10: JFNS% Fornmat Options

Bi t Synbol Meani ng

0 JSYANOD Print node name if node nane is
present.

1-2 JSYDEV Format for device field.

3-5 JSYDI R Format for directory field.

6-8 J SYNAM Format for filenane field. A value of
2 (that is, bit 7 set) for this field
is illegal

9-11 JSYrYP Format for file type field. A val ue
of 2 (that s, bit 10 set) for this
field is illegal

3-34

12-14

0-14

15-17

18- 20

21

22

23

24

25

26

27

28

29

30-31

32

33

JSYGEN

JS¥SPC

JSY%RO

JSYACT

J S VP

JSusl 2

JSYCDR

JSUVR

JS%.RD

JSUWTR

JSYATR

JSYAT1

J SYOFL

JSUPSD

JSYWIBR

USI NG FI LES

Format for generation nunber field.

Qutput for all file speci fication
fields named above. This field should
have the sane bits set as woul d be set
in t he fields above. (See B35
(JSUPAF) bel ow.)

Format for protection field.
Format for account field.

Return tenporary file indication ;T if
t he file specification is for a
tenporary file

Return size of file in pages (see
bel ow) .

Return creation date of file (see
bel ow) .

Return date of last wite operation to
file (see bel ow).

Return date of last read operation
fromfile (see bel ow).

AC2 contains a pointer to the string
containing the field to be returned
(refer to the TOPS-20 Monitor Calls
Ref erence WManual for a description of
this use of the JFNS%call).

Return file specification attributes
i f appropriate.

Ret urn specification attribute
referenced in ACA.

Return the "OFF-LINE" attribute.
Reserved for Digital

Punctuate the size and date fields
(see below) in the file specification
ret ur ned.

Place a tab before all fields returned
(that is, fields whose value is given
as 1 in the 3-bit field) in the file
specification, except for the first
field.

3-35

USI NG FI LES

34 JSYBP Place a tab before all fields that may
be returned (that is, fields whose
value is given as 1 or 2 in the 3-bit
field) in the file specification,
except for the first field.

35 JSUPAF Punctuate all fields (see bel ow)
returned in the file specification
fromthe device field through the ;T

field.
If bits 32 through 35 are not set, no
punct uati on is used bet ween the
fields.

The punctuation used on each field is shown bel ow

dev: <di rect ory>nane. t yp. gen; A(account); P(protection); T(tenporary)
,Size,creation date,wite date,read date

Refer to Section 1.2.2 for infornation on error returns.

3.7.3 G\JFN% Monitor Call

Cccasionally a programmay be witten to performsimlar operations on
a group of files instead of only on one file. However, the program
should not require the user to give a file specification for each
file. Because the GIJFN% cal |l associates a JFN with only one file at
a time, the program needs a nethod of assigning a JFNto all the files
in the group. By using the GTJFN% call to initially obtain the JFN
and the GNJFN% call to assign the same JFN to each subsequent file in
the group, a programcan accept a specification for a group of files
and process each file in the group individually. After the user gives
the initial file specification, the programrequires no additional
i nput .

Bef ore an exanpl e showing the interaction of these two calls is given,
a description of the GNJFN% (Get Next JFN) nonitor <call is
appropri ate.

The GNJFN% nmonitor call assigns a JFNto the next file in a group of
files that have been specified with wildcard characters. The next
file is deternmined by searching the directory in the order described
in Section 3.3.1.1 wusing the current file as the first item This
call accepts one argunment word in ACl - the flags returned from the
GIJFN% call in the left half and the JFN of the <current file in the
right half. |In other words, the information returned in ACl1L from the
GIJFN% call is given as an argunent to the GNJFN%ocall. Therefore,
the program nmust save this information for use with the GNJFN% cal | .

3- 36

USI NG FI LES

I f execution of the GNJFN% call is successful, the same JFN is
assigned to the next file in the group. The left half of ACL contains
various flags and the right half contains the JFN. The execution of
the program continues at the second instruction after the GNJFN% cal | .

Tabl e 3-11 describes the bits that can be returned in ACL on a
successful G\NJFN% cal | .

Table 3-11: GNJFN% Return Bits

Bi t

Synbol Meani ng

13

14

15

16

G\UBTR A change in structure occurred between
the previous file and this file.

G\l R A change in directory occurred between
the previous file and this file.

G\NYNAM A change in filenane occurred between
the previous file and this file.

G\VEXT A change in file type occurred between
the previous file and this file. |If
GNYNAM i s on, this bit will also be on
because the system considers two files
with different filenames but with the
sane file type as a change in both the
name and type.

I f execution of the GNJFN% call is not successful, an error code is
returned in the right half of ACL. Conditions that can cause an error
return are:

1.

The file currently associated with the JFN nust be closed,
and it is not. This neans that the program nmust execute a
CLOSF% call (with COMR] set to retain the JFN) before
executing a GNJFN% cal | .

There are no nore files in this group. This return occurs on
the first GNJFN% call after all files in the group have been
stepped through. The JFN is rel eased when there are no nore
files. (Not e: This error may occur if the file currently
associated with the JFN is del eted or renaned.)

3-37

USI NG FI LES

The execution of the program continues at the next instruction after
the GNJFN% cal | .

Consider the following situation. The user wants to wite a program

that wll accept from his termnal a specification for a group of
files and then performan operation on each file individually wthout
requiring additional input. Assume the wuser's directory <TRAI N>

contains the following files:
FI RST. MAC. 1
FI RST. REL. 1
SECOND. REL. 1
THI RD. EXE. 1
As discussed in Section 3.3.1.1, a group of files can be given to the
GIJFN call by supplying a specification that contains wldcard
characters in one or nore of its fields. Thus, the specification
<TRAI N>* *
would refer to all four files in the user's directory <TRAI N>.

In his program the user includes a GIJFN% call that will accept the
above specification.

The call is
MOVX ACl, GI%LD+GI U FG+G) %L G+GI %-NS+GJ ¥ESHT
MOVE AC2,[.PRIIN,,.PR QU
GTIFN%

and i ndi cates that

1. The file specification given nmust refer to an existing file
(Q%OLD) .

2. The file specification givenis allowed to contain wldcard
characters (GQ% FGQ .

3. Flags will be returned in ACL on a successful call (&A%LG.
The flags nmust be returned because they will be given to the
GNJFN% cal | as argunents.

4. The contents of AC2 will be interpreted as containing an
i nput and out put JFN (GI%-NS) .

5. The short formof the GIJFN%call is being used (G¥SHT).

6. The file specification is to be read fromthe user's term nal
(.PRIIN,,.PRIQU.

3-38

USI NG FI LES

When the user types the specification <TRAIN>*.* as input, the system
associates the JFN with one file only. This file is the first one
found when searching the directory in the order specified in Section

3.3.1. 1. Thus the JFN returned is associated with the file
FI RST. MAC. 1.
After the GIJFN% call is successfully executed, AC1 contai ns
appropriate flags in the left half and the JFN assigned in the right
half. The flags that will be returned in this particular situation
are:

GIYNAM (bit 3) A wi |l dcard character appeared in the nane

field of the file specification given.

GIYEXT (bit 4) A wildcard character appeared in the type
field of the file specification given.

QYEND (bit 12) Any files nmarked for deletion wll not be
consi der ed.

These flags informthe programof the fields that contained wldcard
characters. The wuser's program nust now save the contents of ACl
because this word will be used as the argunent to the GJFN% call.
The program then perforns its desired operation on the first file.
Once its processing is conpleted, the program is ready for the
specification of the next file. But instead of requesting the
specification fromthe user, the programexecutes the GNJFN% call to
obtain it. The argunment to the GNJFN%bcall is the contents of ACL
returned fromthe previous GIJFN% call. Thus, the call in this case
i s equivalent to:

MOVE ACL, [GJ9NAMGI YEXT+GIYGND, , JFN]|
GNIFN%

Upon successful execution of the GNJFN% call, the JFN is now
associated with the next file in the group (that is, FIRST.REL.1).
ACl contains appropriate flags in the left half and the same JFN in
the right half. |In this exanple, the flag returned is GNYEXT (bit 16)
to indicate that the file type changed between the two files.

After processing the second file, the user's program executes another

G\NJFN% call wusing the original contents of ACl returned fromthe
GIJFN% cal . The original contents nust be used because this word
indicates the fields containing wildcard characters. |[If the current

contents of ACl (that is, the flags returned fromthe GNJFN%% call) are
used, a subsequent GNJFN% call would fail because there are no fl ags
set indicating fields containing wldcard characters. This second
G\NJFN% call associates the JFN with the file SECOND. REL. 1. The fl ags
returned in ACL are GNONAM (bit 15) and G\NY&XT (bit 16) indicating
that the filename and file type changed between the two files.
(Renmenmber that a change in filenanme inplies a change in file type even
if the two file types are the sane.)

3-39

USI NG FI LES

After processing this third file, the user's program executes another
G\JFN% cal I using the original contents of ACL. Upon execution of the
call, the JFNis now associated with THRD EXE. 1, and the flags
returned are GNYNAM and G\YEXT, indicating a change in the fil enane
and file type.

After processing the file THI RD. EXE. 1, the user's program executes a
final GNJFN% call. Since there are no nore files in the group, the
call returns an error code and rel eases the JFN Execution of the
user's program continues at the instruction following the GNIJFN% cal | .

3.8 SUWARY
To read fromor wite to a file, the user's program nust:

1. Obtain a JFNon the file with the GIJFN® nonitor call (refer
to Section 3.3.1).

2. Open the file with the OPENF% nonitor call (refer to Section
3.4.1).

3. Transfer the data with byte, string, or page |/O nonitor
calls (refer to Section 3.5).

4. Cose the file with the CLOSF% nmonitor call (refer to Section
3.6.1).

3.9 FILE EXAVPLES

Exanple 1 - This program assigns JFNs, opens an input file and an
output file, and copies data fromthe input file to the output file.
Data is copied until the end of the input file is reached. Refer to
the TOPS-20 Mnitor Calls Reference Mnual for explanation of the
ERSTR% noni tor call.

; *** PROGRAM TO COPY | NPUT FILE TO OQUTPUT FI LE. ***
; (USI NG Bl N%% BOUT% AND | GNORI NG NULLYS)

TITLE FILEIO ; TITLE OF PROGRAM
SEARCH MONSYM ; SEARCH SYSTEM JSYS- SYMBCL LI BRARY
SEARCH MACSYM
. REQUI RE SYS: MACREL
; *** | MPURE DATA STORAGE AND DEFI NI TI ONS ***

I NDFN: BLOCK 1 ; STORAGE FOR | NPUT JFEN
OUTJFN:. BLOCK 1 ; STORAGE FOR QUTPUT JFN

3-40

USI NG FI LES

PDLEN=3 ; STACK HAS LENGTH 3
PDLST: BLOCK PDLEN ; SET ASI DE STORAGE FOR STACK
STDAC. ; DEFI NE STANDARD ACs. SEE MACSYM

; *** PROGRAM | NI TI LI ZATI ON ***

START: RESET% ; CLOSE FI LES, ETC
MOVE P, [| OAD PDLEN, PDLST] ; ESTABLI SH STACK

;*** GET INPUT FILE ***

I NFI L: ; PROVPT FOR | NPUT FI LE
TVEG <
I NPUT FILE: > ; ON CONTROLLI NG TERM NAL
MOVX T1, GJYOLD+GI%U-NS+GI%SHT ; SEARCH MODES FOR GTJFN
; EXISTING FILE ONLY, FILE-NRs IN B

; SHORT CALL
MOVE T2,[.PRIIN,,.PRROJ ;GIIJFN S |1/O WTH CONTROLLI NG TERM
GIIFN% ; GET JOB FI LE NUMBER (JFN)
ERIMPS [PUSH] P, WARN ;| F ERROR, d VE WARNI NG
JRST | NFI L] ; AND LET H M TRY AGAI N
MOVEM T1, | NJFN ; SUCCESS, SAVE THE JFN
; ¥** GET OUTPUT FI LE ***
QUTFI L: ; PRINT PROWPT FOR
TVEG <
QUTPUT FILE: > ; OUTPUT FI LE

MOVX T1, Q)% OUH+GWEGHGE YCFMGI Y-NS+GI ¥BHT ; GTJFN SEARCH MODES
; [DEFAULT TO NEW GENERATI ON, PRI NT
; MESSACGE, REQUI RE CONFI RVATI ON
; FILE-FNR' S I N T2, SHORT CALL]

MOVE T2,[.PRIIN,,.PRROJ ;I1/O WTH CONTROLLI NG TERM NAL

GIIFN% ; GET JOB FI LE NUMBER
ERIMPS [PUSH] P, WARN ;| F ERROR, d VE WARNI NG
JRST QUTFI L] ; AND LET H M TRY AGAI N
MOVEM T1, QUTJFN ; SAVE THE JFN

; NOW OPEN THE FI LES WE JUST GOT
; I NPUT
MOVE T1, 1 NJFN ; RETRI EVE THE | NPUT JEN

MOVX T2, FLD(7, OFYBSZ) +OF%RD ; MODES FOR OPENF
[7-BI T BYTES + | NPUT]

OPENF% ; OPEN THE FI LE
ERIMPS FATAL ; | F ERROR, G VE MESSAGE AND STOP
; OQUTPUT
MOVE T1, QUTJFN ; GET THE OUTPUT JFN

3-41

USI NG FI LES

MOVX T2, FLD(7, OFYBSZ) +OF9MR ; MODES FOR OPENF
[7-BI T BYTES + OUTPUT]
OPENF% . OPEN THE FI LE
ERIMPS FATAL | F ERROR G VE MESSAGE AND STOP

;*** MAIN LOOP: COPY BYTES FROM | NPUT TO OQUTPUT ***

LOCP: MOVE T1, 1 NJFN ; GET THE | NPUT JFN
Bl N% ; TAKE A BYTE FROM THE SOURCE
JUMPE T2, DONE ;1 F 0, CHECK FOR END OF FI LE
MOVE T1, QUTJFN ; GET THE OUTPUT JFN
BOUT ; OUTPUT THE BYTE TO DESTI NATI ON
ERCALS ERRCR
JRST LOCP ; LOOP, STOP ONLY ON A 0 BYTE

: (FOUND AT LOOP+2)

; *** TEST FOR END OF FILE, ON SUCCESS FINI SH UP ***

DONE: GTSTS% . GET THE STATUS OF | NPUT FI LE
TXNN T2, GSUECF . AT END OF FILE?
JRST LOOP ©NO, FLUSH NULL AND CONTI NUE COPY
CLOSI F: MOVE T1, | NJFN . YES, RETRI EVE | NPUT JFN
CLOSF% . CLOSE | NPUT FILE
ERIMPS FATAL | F ERROR, G VE MESSAGE AND STOP
CLOSOF: MOVE T1, QUTJFN . RETRI EVE OUTPUT JFN
CLOSF% - CLOSE QUTPUT FI LE
ERIMPS FATAL | F ERROR, G VE MESSAGE AND STOP
TMSG <
[DONE] > : SUCCESSFULLY DONE
JRST ZAP - STOP

; *** ERROR HANDLI NG ***

FATAL: TMSG <

?> ; FATAL ERRORS PRI NT ? FI RST
PUSH] P, ERROR ; THEN PRI NT ERROR MESSAGE
JRST ZAP ; AND STOP

WARN: TVEG <

% ; WARNI NGS PRI NT % FI RST
; AND FALL THRU ' ERROR
; BACK TO CALLER

ERROR MOVElI T1,.PRI QU ; DECLARE PRI NCI PAL QUTPUT DEVI CE
; FOR ERROR MESSAGE
MOVE T2, [. FHSLF,, - 1] ; CURRENT FORK,, LAST ERRCR
SETZ T3, ;NOLIMT,, FULL MESSAGE
ERSTR% ; PRINT THE MESSAGE

3-42

USI NG FI LES

JFCL ; | GNORE UNDEFI NED ERROR NUMBER
JFCL ; | GNORE ERROR DURI NG EXE OF ERSTR
POPJ P, ; RETURN TO CALLER
ZAP: HALTF% ; STOP
JRST START ; WE ARE RESTARTABLE
END START ; TELL LI NKI NG LOADER START ADDRESS

Exanple 2 - This program accepts input froma user at the terninal and
then outputs the data to the line printer. Refer to Section 2.9 for
expl anation of the RDITY% call.

TI TLE LPTPNT ; PROGRAM TO PRI NT TERM NAL | NPUT
; ON PRI NTER
SEARCH MONSYM ; SEARCH SYSTEM JSYS- SYMBCL LI BRARY

SEARCH MACSYM
. REQUI RE SYS: MACREL

STDAC. ; DEFI NE STANDARD ACs

BUFSI Z==200
PDLEN==50

COUNT: BLOCK 1
LPTIJFN. BLOCK 1
BUFFER: BLOCK BUFSI Z
PDL: BLOCK PDLEN

START: RESET% ; RESET I/ O, ETC
MOVE P, [1 OAD PDLEN, PDL] ; SET UP STACK
TMSG <ENTER TEXT TO BE PRI NTED (END W TH "Z):

> ; OUTPUT PROVPTI NG TEXT
HRRAO T1, BUFFER ; GET PO NTER TO BUFFER
MOVE T2, [RD¥BRK+BUFSI Z*5] ; GET FLAG AND MAX # OF CHARS TO READ
SETZM T3 ; NO RE- TYPE BUFFER
RDTTY% ; I NPUT TEXT FROM TERM NAL

EJSHLT ; ERROR, STOP

HRRZS T2 ; GET CHARS REMAI NI NG | N BUFFER
MOVEI T1, BUFSI Z*5 ; COMPUTE NUMBER OF CHARS READ =
SUB T1, T2 ; BUFFERSI ZE M NUS CHARS REMNAI NI NG
SCS T1 ; DON' T | NCLUDE "~Z
MOVEM T1, COUNT ; SAVE # OF CHARS | NPUT

; GET A JFN FOR THE PRI NTER AND OPEN THE PRI NTER

MOVX T1, GA¥SHT! G3%0U ; QUTPUT FI LE, SHORT CALL
HRRO T2,[ASCIZ /LPT:/] ; GET PO NTER TO NAME CF FI LE

GIIFN% ; GET A JFN FOR THE PRI NTER
ERIMPS JFNERR ; ERROR, PRI NT ERROR MESSACE
MOVEM T1, LPTJFN ; REMEMBER PRI NTER JFN

MOVX T2, FLD(7, OFYBSZ) +OF9R ; 7- BI T BYTES,
; WRI TE ACCESS WANTED

3-43

USI NG FI LES

OPENF% ; OPEN THE PRI NTER FOR OUTPUT
ERIMPS OPNERR ; ERROR, PRI NT ERROR MESSACE

; NOW QUTPUT THE TEXT THAT WAS | NPUT FROM THE TERM NAL

HRRAO T2, BUFFER ; GET PO NTER TO TEXT
; (PRINTER JFN STILL IN T1)
MOVN T3, COUNT ; GET NUMBER OF CHARS TO QUTPUT
SQUT% ; OUTPUT STRI NG OF CHARS TO
; THE PRI NTER
ERIMPS DATERR ; ERROR, PRI NT ERROR MESSACE
TVEG <
OUTPUT HAS BEEN SENT TO THE PRI NTER. ..
> ; OUTPUT CONFI RVATI ON MESSAGE
MOVE T1, LPTJFN ; GET PRI NTER JFN
CLOSF% yCLOSE I T
ERIMPS DATERR ; UNEXPECTED ERROR, PRI NT ERROR MESSAGE
HALTF% ; FI NI SHED
JRST START ; I F CONTI NUED, GO BACK TO START

; ERROR ROUTI NES

JFNERR: TMBG<
? COULD NOT CET A JFN FOR THE PRI NTER
>
HALTF%
JRST START ; I F CONTI NUED, GO BACK TO START

OPNERR: TMBG
? COULD NOT OPEN THE PRI NTER FOR QUTPUT
>
HALTF%
JRST START ; I F CONTI NUED, GO BACK TO START

DATERR: TMSG
? DATA ERROR DURI NG QUTPUT TO PRI NTER
>
HALTF%
JRST START ; I F CONTI NUED, GO BACK TO START

END START

3-44

CHAPTER 4

USI NG THE SOFTWARE | NTERRUPT SYSTEM

4.1 OVERVI EW

Program execution wusually occurs in a sequential nmanner, where
instructions are executed one after another. But sonetines a program
nust be able to receive asynchronous signals from termnals, the
nmonitor, or other programs, or as a result of its own execution. By
using the software interrupt system the user can specify conditions
that wll cause his programto deviate fromits sequential nethod of
execution.

An interrupt is defined as a break in the normal flow of contro
during a programis execution. The break, or interrupt, is caused by
the occurrence of a prespecified condition. By specifying the
condi tions that can cause an interrupt, the programhas the capability
of dynamically responding to external events and error conditions and
of generating requests for services. Because the program can respond
to special conditions as they occur, it does not have to explicitly
and repeatedly test for them In addition, the program s execution is
faster because the program does not have to include a special test
after the possible occurrence of the condition.

When an interrupt occurs, the systemtransfers control from the min
program sequence to a previously-specified routine that will process
the interrupt. After the routine has conpleted its processing of the
interrupt, the systemcan transfer control back to the programat the
point it was interrupted, and execution can continue. See Figure 4-1

USI NG THE SOFTWARE | NTERRUPT SYSTEM

I nterrupt [
Condi tion |
Cccurs |

/ Has \
/ Program
/ Enabl ed \
/for Condi- \

<tion on this >----------

\ Channel /

Perform Syst en
Defaul t Action|
(e.g., stops |
job, print |
nmessage) |

User Program |
Continues if |
Job Has Not |
Not Been |
Ter mi nat ed |

/
/

AN

\
\

/1s An\
[Inter- \
[rupt of \

/ Hi gher Pri-\ No

>< ority Being >------

\ Processed /

| Wit
| Hi gher

| Interrupt

Unti | |

Priority |
Fi ni shes |

| Execute
User's Inter- |

| rupt Routine |

USI NG THE SOFTWARE | NTERRUPT SYSTEM

Figure 4-1: Basic Operational Sequence of the Software Interrupt
System

USI NG THE SOFTWARE | NTERRUPT SYSTEM

4.2 | NTERRUPT CONDI TI ONS

Condi tions that cause the programto be interrupted when the interrupt
systemis enabled are

1. Conditions generated when specific termnal keys are typed.
There are 36 possible codes; each one specifies the
particular termnal character or condition on which an
interrupt is to be initiated. Refer to Table 4-2 for the
possi bl e codes.

2. Invalid instructions (for exanple, I/Oinstructions given in
user node) or privileged nonitor calls issued by a non
privil eged user.

3. Menory conditions, such as illegal nenory references.

4. Arithnetic processor conditions, such as arithnetic overfl ow
or underfl ow.

5. Certain file or device conditions, such as end of file.
6. Program generated software interrupts.

7. Termnation of an inferior process.

8. Systemresource unavailability.

9. Interprocess conmuni cation (1 PCF) and Enqueue/ Dequeue
i nterrupts.

4.3 SOFTWARE | NTERRUPT CHANNELS AND PRI ORI Tl ES

Each condition is associated with one of 36 software interrupt
channel s. Most conditions are pernmanently assigned to specific
channel s; however, the user's programcan associate sone conditions
(for exanple, <conditions generated by specific term nal keys) to any
one of the assignable channels. (Refer to Table 4-1 for the channe
assignnents.) Wen the condition associated with a channel occurs, and
that channel has been activated, an interrupt is generated. Contro
can then be transferred to the routine responsible for processing
interrupts on that channel

The user program assi gns each channel to one of three priority |evels.
Priority levels allow the occurrence of some conditions to suspend the
processing of other conditions. The levels are referred to as |evel
1, 2, or 3 with level 1 having the highest priority. Level 0 is not a
legal priority level.[1]

Tabl e

USI NG THE SOFTWARE | NTERRUPT SYSTEM

4-1: Software Interrupt Channel Assignnents

Channel Synbol Meani ng

0-5 Assi gnabl e by user program

6 . 1 CAOV Arithmetic overfl ow

7 . | CFOV Arithmetic floating point overflow
8 Reserved for Digital

9 . | CPOV Pushdown |ist (PDL) overfl ow
10 . | CEOF End of file condition

11 . | CDAE Data error file condition*

12 . | CQTA Di sk quota exceeded

13-14 Reserved for Digita

15 .1 CLl Illegal instruction*

16 .1 CIRD Il egal nmenory read*

17 .1 CIWR Illegal menory wite*

18 Reserved for Digital

19 JACFT Inferior process term nation
20 . | CMSE System resour ces exhaust ed*
21 Reserved for Digital

22 . | CNXP Nonexi st ent page reference
23-35 Assi gnabl e by user program

[1]

If an interrupt is generated in a process where the

level is 0, the

prepared to handle the interrupt.

priority

system considers that the process is not
The process is then suspended

or ternminated according to the setting of bit 17 (SC%#RZ) in its

capability word

USI NG THE SOFTWARE | NTERRUPT SYSTEM

* These channels (called panic channels) cannot be conpl etely
deacti vat ed. An interrupt generated on one of these channels
term nates the process if the channel is not activated.

The software interrupt system processes interrupts on activated
channels only, and each channel <can be activated and deactivated

i ndependently of other channels. Wen activated, the channel can
generate an interrupt for its associated priority level. An interrupt
for any priority level is initiated only if there are no interrupts in
progress for the sanme or higher priority levels. |If there are, the

systemrenenbers the interrupt request and initiates it after al
equal or higher priority level interrupts finish. This nmeans that a
hi gher priority |level request can suspend a routine processing a |ower
| evel interrupt. Thus, the user nmust be concerned with several itens
when he assigns his priority levels. He nust consider 1) when one
interrupt request can suspend the processing of another and 2) when
the processing of a second interrupt cannot be deferred wuntil the
compl etion of the first.

4.4 SOFTWARE | NTERRUPT TABLES

To process interrupts, the user includes, as part of his program

special service routines for the channels he will be using. He nust
then specify the addresses of these routines to the systemby setting
up a channel table. In addition, the wuser nust also include a

priority level table as part of his program Finally, he nust declare
the addresses of these tables to the system

4.4.1 Specifying the Software Interrupt Tables

Before using the software interrupt system the wuser's program nust
set up the contents of the channel table and the priority |evel table.
The program nmust then specify their addresses with either the SIR% or
XSl R% nmonitor calls.

These calls are sinmlar, but their differences are inportant. The
SIR% call can be used in single-section prograns, but the XSIR% cal
nust be used in prograns that use nore than one section of nenory.
The SIR% call works in non-zero sections only if the tables are in the
sane section as the code that nakes the call. The code that causes
the interrupt nmust also be in that section, as nmust the code that
processes the interrupt. Because of the linmtations of the SIR%call
you shoul d use the XSIR% cal |

The SIR% nonitor call accepts two words of argunments: the identifier

for the program (or process) in ACL, and the table addresses in AC2.
Refer to Section 5.3 for the description of process identifiers.

4-6

USI NG THE SOFTWARE | NTERRUPT SYSTEM

The foll owi ng exanpl e shows the use of the SIR¥%call.

MOVEI 1, . FHSLF ;identifier of current process
MOVE 2, [LEVTAB, , CHNTAB] ; addresses of the tables
Sl R%
The XSIR% call accepts the following argunents: in ACL, t he

identifier of the process for which the interrupt channel tables are
to be set; in AC2, the address of the argunent bl ock

The argunent block is a three-word block that has the follow ng
format:

i Length of the argunent bl ock, including this word
i Address of the interrupt |evel table i

i Address of the channel table i

Control always returns to the wuser's program at the instruction

following the SIR% and XSIR%calls. |If the call is successful, the
tabl e addresses are stored in the nonitor. If the call 1is not
successful, an illegal instruction trap i s generated.

Any changes nmade to the contents of the tables after the XSIR¥% or S| R%
calls have been executed wll be in effect at the time of the next
i nterrupt.

4.4.2 Channel Table

The channel table, CHNTAB,[2] contains a one-word entry for each

channel ; thus, the table has 36 entries. Each entry corresponds to a
particul ar channel, and each channel is associated at any given tine
with only one interrupt condition. (Refer to Table 4-1 for the

interrupt conditions associated with each channel.)

The CHNTAB table is indexed by the channel nunber (0 through 35). The
general format, for use with the XSIR¥% and XRI R% nonitor calls, can be
used in any section of nenory. The left half of each entry contains
the priority level (1, 2, or 3) in bits 0-5 (SI%EV) to which the
channel is assigned. Bits 6-35 (SI%DR) of each entry contain the
starting address of the routine to process interrupts generated on

[2] The user can call his priority channel table any nane he
desires; however, it is good practice to call it CHNTAB.

4-7

USI NG THE SOFTWARE | NTERRUPT SYSTEM

that channel. |If a particular channel is not used, the corresponding
entry in the channel table should be zero.

In the older format, for use with the SIR% and RIR¥% calls by any
single-section program the left half of each word contains the
priority level (1, 2, or 3) for that channel. The right half contains
the address of the interrupt routine that will handle interrupts on
that channel .

The following exanple is for use with the XSIR» nonitor call.

CHNTAB: FLID(2, Sl %.EV) +FLD(CHNOSV, S| %ADR) ; channel 0
FLD(2, SI %4.EV) +FLD(CHN1SV, SI %ADR) ; channel 1
FLD(2, SI %.EV) +FLD(CHN2SV, SI %ADR) ; channel 2
FLD(2, SI %.EV) +FLD(CHN3SV, SI %ADR) ; channel 3
0 ; channel 4
0 ; channel 5
FLD(1, Sl %4.EV) +FLD(APRSRV, S| %ADR) ; channel 6
0 ; channel 7
0 ; channel 8
FLD(1, Sl %.EV) +FLD(STKSRV, SI %ADR) ; channel 9
0 ; channel 10
0 ; channel 35

In this exanple, channels 0 through 3 are assigned to priority |evel
2, with the interrupt routine at CHNOSV servicing channel 0, the
routi ne at CHNLSV servicing channel 1, the routine at CH\N2SV servi ci ng
channel 2, and the routine at CHN3SV servicing channel 3. Channels 6
and 9 are assigned to priority level 1, with the routine at APRSRV
servicing channel 6 and the routine at STKSRV servicing channel 9.
Al'l remai ni ng channel s are not assi gned.

4.4.3 Priority Level Table

The priority level table, LEVTAB,[3] The priority level table, LEVTAB
[3] is a three-word table, containing a one-word entry for each of the
three priority levels. |In the general form each word contains the
30-bit address of the first word of the two-word block in the process
address space. The bl ock addressed by word n of LEVIAB is wused to
store the global PC flags and address when an interrupt of level n+l
occurs.

The PC flags are stored in the first word of the PC bl ock, and the PC

[3] The user can call his priority level table any name he desires;
however, it is good practice to call it LEVTAB.

4-8

USI NG THE SOFTWARE | NTERRUPT SYSTEM

address is stored in the second. This formof the table nust be used
with the XSIR% and XRIR% nonitor calls, and can be wused in any
section.

The older formof the interrupt Ilevel table can be wused in any
singl e-section program and nmust be used with the SIR%and R R¥%calls.
This table al so contains three words, indexed by the priority |eve

m nus 1. Each word contains zero in the left half, and the 18-bit
address of the word in which to store the one-word section-relative PC
in the right half. This address is assumed to be in the sane program
section that contained the SIR%bnonitor call. (For nore information
see Chapter 8.) The system nust save the value of the program counter
so that it can return control at the appropriate point in the program
once the interrupt routine has conpleted processing an interrupt. |f
a particular priority level is not used, its corresponding entry in
the level table should be zero

The following is a sanple of a |level table.

LEVTAB: 0,, PCLEV1 ; Addresses to save PC for interrupts
0,, PCLEV2 ;occurring on priority levels 1 and 2.
0,,0 ;No priority level 3 interrupts are
; pl anned

4.5 ENABLI NG THE SOFTWARE | NTERRUPT SYSTEM

Once the interrupt tables have been set up and their addresses defined

with the XSIR% nonitor call, the wuser's programmnust enable the
interrupt system \Wen the interrupt system is enabled, interrupts
that occur on activated channels are processed by the user's interrupt
routines. VWen the interrupt system is disabled, the noni t or

processes interrupts as if the channels for these interrupts were not
acti vat ed.

The EIR% monitor <call, used to enable the system accepts one
argument: the identifier for the process in AClL.

MOVEI 1, . FHSLF ;identifier of current process
El R%

Control always returns to the instruction follow ng the EIR call

4.6 ACTI VATI NG | NTERRUPT CHANNELS

Once the software interrupt systemis enabled, the channels on which
interrupts can occur nust be activated (refer to Table 4-1 for the
channel assignments). The channels to be activated have a nonzero
entry in the appropriate word in the channel table.

4-9

USI NG THE SOFTWARE | NTERRUPT SYSTEM

The AIC% nonitor call activates one or nore of the 36 interrupt
channel s. This call accepts two words of arguments - the identifier
for the process in ACl, and the channels to be activated in AC2.

The channels are indicated by setting bits in AC2. Setting bit n
indicates that channel n is to be activated. The AIC%call activates
only those channels for which bits are set.

MOVEI 1, . FHSLF ;identifier of current process
MOVE 2, [1B<. | CAOV>+1B<. | CPOV>] ;activate channels 6 and 9
Al C%

Control always returns to the instruction followi ng the Al C% call

Sone channels, <called panic channels, cannot be deactivated by
di sabling the channel or the entire interrupt system (Refer to Table
4-1 for these channels.) This is because the occurrence of the
condi tions associated with these channel s cannot be conpletely ignored
by the nonitor.

I f one of these conditions occurs, an interrupt is generated whether

the channel is activated or not. |f the channel is not activated, the
process is term nated, and usually a nmessage is output before contro
returns to the nonitor. |f the channel is activated, control is given

to the user's interrupt routine for that channel

4.7 GENERATI NG AN | NTERRUPT

A process generates an interrupt by producing a condition for which an
i nterrupt channel is enabled, such as arithnetic overflow, or by using
the C¥%monitor call. This call can generate an interrupt on any of
t he 36 interrupt channels of the process the calling process
specifies. See Section 5.10 for a description of the I1C%call.

4.8 PROCESSI NG AN | NTERRUPT

When a software interrupt occurs on a given priority level, the
nonitor stores the current program counter (PC) word in the address
indicated in the priority level table (refer to Section 4.4.3). The

nmonitor then transfers control to the interrupt routine associated
with the channel on which the interrupt occurred. The address of this
routine is specified in the channel table (refer to Section 4.4.2).

Since the user's program cannot determine when an interrupt wll
occur, the interrupt routine nust preserve the state of the program so
the program can be resumed properly. First, the routine stores the
contents of any wuser accunmulators for use while processing the
interrupt. After the accumulators are saved, the interrupt routine
processes the interrupt.

4-10

USI NG THE SOFTWARE | NTERRUPT SYSTEM

Cccasionally, an interrupt routine may need to alter locations in the
main section of the program For exanple, a routine may change the
stored PC word to resume execution at a location different from where

the interrupt occurred. O it my alter a value that caused the
interrupt. It is inmportant that care be used when witing routines
that alter data because any changes wll remain when control is

returned to the main program For exanple, if data is inadvertently
stored in the PC word, return to the nain section of the program woul d
be incorrect when the systemattenpted to use the word as the val ue of
the program counter.

If a higher-priority interrupt occurs during the execution of an
interrupt routine, the execution of the lower-priority routine is
suspended. The value of its programcounter is stored at the location
indicated in the priority level table for the new interrupt. Wen the
routine for this newinterrupt is conpleted, the suspended routine
resunes.

If an interrupt of the sanme or Ilower priority occurs during the
execution of a routine, the nonitor holds the interrupt until al
hi gher or equal level interrupts have been processed.

The system considers the user's program unable to process an interrupt
on an activated channel if any of the following is true:

1. The priority level associated with the channel is 0.

2. The program has not defined its interrupt tables by executing
an XSIR% or Sl R% nonitor call

3. The process has not enabled the interrupt system by executing
an EIR¥nonitor call, and the channel on which the interrupt
occurs is a panic channel

In any of these cases, an interrupt on a panic channel terninates the
user's program All other interrupts are ignored.

4.8.1 Disnissing an Interrupt

Once the processing of an interrupt is conplete, the interrupt routine
shoul d restore the user accunulators to their initial values. Then it

should return control to the interrupted code by using the DEBRK%
monitor call. This call restores the PC word and resunes the program

The call has no argunents, and nmust be the last statement in the
interrupt routine.

If the interrupt-processing routine has not changed the PC of the
user's program the DEBRK% call restores the programto the sane state

4-11

USI NG THE SOFTWARE | NTERRUPT SYSTEM

the programwas in just before the interrupt occurred. |f the program
was interrupted while waiting for 1/Oto conmplete, for exanple, the
programw || again be waiting for I/O to conplete when it resunes

execution after the DEBRK% cal |

If the PC word was changed, the programresunes execution at the new
PC | ocation. The state of the programis unchanged.

4.9 TERM NAL | NTERRUPTS

The user's program can associ ate channels 0 through 5 and channels 24
through 35 wth occurrences of various conditions, such as the
occurrence of a particular character typed at the ternminal or the
recei pt of an | PCF nessage. This section discusses ternna
interrupts; refer to Chapters 6 and 7 for other types of assignable
interrupts.

There are 36 codes used to specify term nal characters or conditions

on which interrupts can be initiated. These codes, along with their
associ ated conditions, are shown in Table 4-2.

Table 4-2: Term nal Codes and Conditi ons

Code Synbol Character or Condition
0 . TI CBK CTRL/ @ or break
1 . TI CCA CTRL/ A
2 . TI CCB CTRL/ B
3 . TI CCC CTRL/ C
4 . TI CCD CTRL/ D
5 . TI CCE CTRL/ E
6 . TI CCF CTRL/ F
7 . TI CCG CTRL/ G
8 . TI CCH CTRL/H
9 . TI CCl CTRL/ |

10 .TICAl CTRL/ J

4-12

USI NG THE SOFTWARE | NTERRUPT SYSTEM

11 . TI CCK CTRL/ K

12 . TI CCL CTRL/ L

13 . TI CCM CTRL/ M

14 . TI CCN CTRL/ N

15 . TI CCO CTRL/ O

16 . TI CCP CTRL/ P

17 . TI CCQ CTRL/ Q

18 . TICCR CTRL/ R

19 . TI CCS CTRL/ S

20 . TICCT CTRL/' T

21 . TI CCU CTRL/ U

22 . TICev CTRL/ V

23 . TI CCW CTRL/ W

24 . TI CCX CTRL/ X

25 . TI CCY CTRL/ Y

26 .TIccz CTRL/ Z

27 . TI CES ESC key

28 . TICRB Del ete (or rubout) key
29 . TI CSP Space

30 . TI CRF Dat aset carrier off
31 . TICTI Typein

32 . TICTO Typeout

33 . TITCE Two- char act er escape sequence
34-35 Reserved

To cause termnal interrupts to be generated, the user's program nust
assign the desired termnal code to one of the assignabl e channels.

4-13

USI NG THE SOFTWARE | NTERRUPT SYSTEM

The ATl % nonitor call is used to assign this code. This call accepts
one word of argunents: the terminal code in the left half of ACl and
the channel nunmber in the right half.

MOVE 1,[.TICCE,, | NTCHl] ;assign CTRL/E to channel | NTCHL
ATI %

Control always returns to the instruction following the ATI%call. |If
the current job is not attached to a terninal (there is no term na
controlling the job), the termnal code assignnents are renenbered
they will be in effect when a terminal is attached.

The monitor handles the receipt of a terminal interrupt character in
either inmmediate node or deferred node. In inmedi ate node, the
term nal character causes the systemto initiate an interrupt as soon
as the wuser types the character (that 1is, as soon as the system
receives it). |In deferred node, the term nal character is placed in
either inmrediate node or deferred node. In inmredi ate node, the
term nal character causes the systemto initiate an interrupt as soon
as the user types the character (as soon as the systemreceives it).
In deferred node, the terminal character is placed in the input stream
in sequence with other characters of the input, unless two of the same
character are typed in succession. |In this case, an interrupt occurs
at the tine the second one is typed. |If only one character enabled in
deferred nbde is typed, the systeminitiates an interrupt only when
the program attenpts to read the character. Deferred node allows
interrupt actions to occur in sequence with other actions specified in
the input (for exanple, when characters are typed ahead of the tine
that the program actually requests them. In either node, the
character is not passed to the programas data. The system assunes
that interrupts are to be handled i mediately unless a program has
issued the STIWo (Set Terminal Interrupt Word) nonitor call. (Refer
to TOPS-20 Monitor Calls Reference Manual for a description of this
call.)

4.10 ADDI TI ONAL SOFTWARE | NTERRUPT MONI TOR CALLS

Addi tional nonitor calls are available that allow the wuser's program
to check and to clear various parts of the software interrupt system
Also, there is a call useful for interprocess communication (refer to
the I1C»wcall in Section 5.10).

4.10.1 Testing for Enabl enent

The SKPI R% nmonitor call tests the software interrupt systemto see if
it is enabled. The call accepts in ACl the identifier of the process.
After execution of the call, control returns to the next instruction
if the systemis off, and to the second instruction if the systemis
on.

4-14

USI NG THE SOFTWARE | NTERRUPT SYSTEM

MOVEI 1, . FHSLF ;identifier of current process
SKPI R% ;test interrupt system

return ;systemis off

return ;systemis on

4.10.2 Obtaining Interrupt Tabl e Addresses

The RI R% and XRI R% nonitor calls obtain the channel and priority |evel
table addresses for a process. These calls are useful when severa
routines in one process want to share the interrupt tables.

4.10.2.1 The RIR% Mnitor Call - The RIR¥% nonitor call can be used in
any section of nenory, but is only wuseful for obtaining table
addresses if those tables are in the same section of nenory as the
code that mmkes the «call. Furthernore, it can only obtain table
addresses that have been set by the SIR call

The call accepts the identifier of the process in ACL. It returns the
tabl e addr esses in AC2. The left half of AC2 contains the
section-relative address of the priority level table, and the right
half contains the section-relative address of the channel table. |If
the process has not set the table addresses with the SIR¥% nonitor
call, AC2 contains zero.

Control always returns to the instruction followi ng the RI R¥% call

The follow ng exanple shows the use of the RIR%call

MOVEI 1, . FHSLF ;identifier of current process
Rl R% ;return the tabl e addresses
4,10.2.2 The XRIR%W Mnitor Call - This call obtains the addresses of

the interrupt tables defined for a process. The tables can be in any
section of nmenory. The code that nmakes the call can also be in any
section. This call can only obtain addresses that have been set by
the XSIR¥% call.

The call accepts the identifier of the process in ACL, and the address
of the argunent block in AC2. The argurment block is three words |ong,
word zero rmust contain the nunber 3. The call returns the addresses
into words one and two. The block has the followi ng format:

4-15

USI NG THE SOFTWARE | NTERRUPT SYSTEM

i Length of the argunment bl ock, including this word '
i Address of the interrupt |level table '

i Address of the channel table '

Control always returns to the instruction following the XRI R¥% call.
If the process has not set the table addresses with the XSIR¥% nonitor
call, words one and two of the argunent block contain zero.

4.10.3 Disabling the Interrupt System

The DI R% nonitor call disables the software interrupt system for the

process. It accepts the identifier of the process in ACL.
MOVEI 1, . FHSLF ;identifier of current process
Dl R% ; di sabl e system

Control always returns to the instruction follow ng the DI R¥%call.

If interrupts occur while the interrupt systemis disabled, they are
remenber ed until the system is reenabled. At that tine, the
interrupts take effect unless an intervening ClS% nonitor call (refer
to Section 4.10.6) has been issued.

Software interrupts assigned to panic channels are not conpletely
disabled by the DI R¥Wcall. These interrupts termnate the process,
and the superior process is notified if it has enabled channel .I1Cl FT.
In addition, if the term nal code for CTRL/C (. TICCC) is assigned to a
channel, it causes an interrupt that cannot be disabled by the DI R%
cal l. However, the CTRL/C interrupt can be disabled by deactivating
the channel assigned to the CTRL/C terninal code.

4.10.4 Deactivating a Channel

The DIC% nonitor call is used to deactivate interrupt channels. The
call accepts two words of arguments: the process identifier in ACl,
and the channels to be deactivated in AC2. Setting bit n in ACQ
i ndi cates that channel n is to be deactivated.

MOVEI 1, . FHSLF ;identifier of current process
MOVE 2, [1B<. | CAOV>+1B<. | CPOV>] ; deactivate channels 6 and 9
DI C%

Control always returns to the instruction follow ng the DI C%call.

4-16

USI NG THE SOFTWARE | NTERRUPT SYSTEM

When a channel is deactivated, interrupt requests for that channel are
ignored except for interrupts generated on panic channels (refer to
Section 4.6).

4.10.5 Deassigning Term nal Codes

The DTl % nonitor call deassigns a term nal code. This call accepts
one argunent word: the terminal code in ACl.

MOVEI 1, . Tl CCE ; deassi gn CTRL/E
DTl %

Control always returns to the instruction following the DTlI% call.

This monitor <call is ignored if the specified term nal code has not
been defined by the current job.

4.10.6 dearing the Interrupt System

The ClS% nonitor call clears the interrupt system for the current

process. This call <clears interrupts in progress and all waiting
interrupts. This call requires no argunents, and control always
returns to the instruction following the CIS call. The RESET% nonitor

call (refer to Section 2.6.1) perfornms these sane actions as part of
its initializing procedures.

4.11 SUMVARY
To use the software interrupt system the user's program nust:
1. Supply routines that will process the interrupts.
2. Set up a channel table containing the addresses of the
routines (refer to Section 4.4.2) and a priority level table
contai ning the addresses for storing the program counter (PC

val ues (refer to Section 4.4.3).

3. Specify the addresses of the tables with the XSIR% nonitor
call (refer to Section 4.4.3).

4. Enable the software interrupt systemwith the EIR¥% nonitor
call (refer to Section 4.5).

5. Activate the desired channels with the AIC% nonitor call
(refer to Section 4.6).

4-17

USI NG THE SOFTWARE | NTERRUPT SYSTEM

4.12 SOFTWARE | NTERRUPT EXAMPLE

Thi s program copies one file to another. It accepts the input and
output filenanmes from the user. The end of file is detected by a
software interrupt, and CTRL/E is enabl ed as an escape character.

TI TLE SOFTWARE | NTERRUPT EXAMPLE
SEARCH MONSYM

SEARCH MACSYM

. REQUI RE SYS: MACREL

STDAC. ; DEFI NE STANDARD ACs
I NTCH1=1

START: RESET% ; RELEASE FI LES, ETC
XHLLI T1, EOFI NT ; GET CURRENT PROCESS SECTI ON NUMBER
HLLZS T1 ; | SOLATE SECTI ON NUMBER ONLY
| ORM T1, CHNTAB+I NTCHL ; AND ADD I T TO SERVI CE ROUTI NE
| ORM T1, CHNTAB+. | CEOF ; ADDRESSES FOR OUR ROUTI NES
| ORM T1, LEVTAB+1 ; AND LEVTAB
MOVEI T1,.FHSLF ; CURRENT PROCESS
MOVEI T2, 3 ; NUMBER OF WORDS | N ARG BLOCK
MOVEM T2, ARGBLK ; PUT NUMBER | N WORD ZERO
XMOVElI T2, LEVTAB ; GLOBAL ADDRESS OF LEVEL TABLE
MOVEM T2, ARGBLK+1 y MOVE | T TO ARGBLK WORD ONE
XMOVElI T2, CHNTAB ; GLOBAL ADDRESS OF CHANNEL TABLE
MOVEM T2, ARGBLK+2 s MOVE | T TO ARGBLK WORD TWD
XMOVElI T2, ARGBLK ; GLOBAL ADDRESS OF ARGUMENT BLOCK
XSl R%
El R% ; ENABLE SYSTEM
MOVE T2, [1B<I NTCH1>+1B<. | CEOF>] ; ACTI VATE CHANNELS
Al C%
MOVE T1,[.TICCE,, | NTCH1] ; ASSI GN CTRL/E TO CHANNEL 1
ATl %

GETIF: TMSG <I NPUT FILE: >
MOVX T1, GJ%OLD+GJ 9VBGHGI UCFM-GJ %-NS+GJ %SHT
MOVE T2,[.PRIIN,,.PR OU
GTIFN% . GET FI LENAME FROM USER
ERJIMP ERRORL
MOVEM T1, | NJFN
GETOF: TMSG <OUTPUT FILE: >
MOVX T1, GJ9%OU+GJ 9VBGHGI UCFM-GJ %-NS+GJ %SHT
MOVE T2,[.PRIIN,,.PR OU
GTIFN% . GET FI LENAME FROM USER
ERIMP ERROR2
MOVEM T1, OUTJFN

4-18

OPNI F:

OPNCF:

CPYBYT:

DONE:

USI NG THE SOFTWARE | NTERRUPT SYSTEM

MOVE T1, | NJFN

MOVX T2, FLD(7, OF9BSZ) +OF%RD

OPENF% : OPEN | NPUT FI LE
ERIMP ERROR3

MOVE T1, OUTJFN

MOVX T2, FLD(7, OF9BSZ) +OF%/\R

OPENF% : OPEN QUTPUT FI LE
ERIMP ERROR3

MOVE T1, | NJFN

Bl N% . READ | NPUT BYTE
MOVE T1, OUTJFN

BOUT% :WRI TE QUTPUT BYTE

JRST CPYBYT : LOOP UNTIL EOF
MOVE T1, | NJFN

CLOSF% : CLOSE | NPUT FI LE
JFCL

MOVE T1, OUTJFN

CLOSF% : CLOSE QUTPUT FI LE
JFCL

HALTF%

; ROUTI NE TO HANDLE “"E - ABORTS OPERATI ON

CTRLE:

MOVEI T1,.PRI QU

CFOBF% ; CLEAR QUTPUT BUFFER
TMSG <ABORTED. > ; | NFORM USER

Cl S% ; CLEAR SYSTEM

JRST START

; ROUTI NE TO HANDLE EOF - COVWPLETES OPERATI ON NORMALLY

EOFI NT: MOVEM T1, | NTAC1 ; SAVE ACs
XMOVElI T1, DONE ; CHANGE PC
MOVEM T1, PC2+1 ; TO DONE
MOVE T1, | NTAC1 ; RESTORE ACs
DEBRK% ; DI SM SS | NTERRUPT
; LEVEL TABLE
LEVTAB: O
pC2
0
pC2: BLOCK 2

4-19

USI NG THE SOFTWARE | NTERRUPT SYSTEM

; CHANNEL TABLE

CHNTAB:

ARGBLK:

I NJFN:

OQUTJFN:
| NTACL:
ERROR1:

0

FLD(2, SI %.EV) ! FLD(CTRLE, S| %ADR)
REPEAT D8, <0>

FLD(2, SI %.EV) | FLD(EOFI NT, SI %ADR)
REPEAT ~D25, <0>

BLOCK 3

BLOCK 1

BLOCK 1

BLOCK 1

TVBG <

?1 NVALI D FI LE SPECI FI CATI ON>

ERRORZ:

HALTF%
TMSG <

?1 NVALI D FI LE SPECI FI CATI ON>

ERROR3:

HALTF%
TMSG <

?CANNOT OPEN FI LE>

HALTF%
LIT
END START

4-20

CHAPTER 5

PROCESS STRUCTURE

As stated in Chapter 1, the TOPS-20 operating systemallows each job
to have multiple processes that can run sinultaneously. Each process
has its own environnent called its address space. Associated with the
environment is the program counter (PC) of the process and a
wel | -defined relationship wth other processes in the |job. In
TOPS-20, the termfork is synonynous with the term process.

The TOPS-20 operating system schedul es the running of processes, not
entire jobs. A process can be scheduled independent of other
processes because it has a definite existence: its beginning is the
time at which it is created, and its end is the tine at which it is
killed. At any point in its existence, a process can be described by
its state, which is represented by a status word and a PC word (refer
to Section 5.9).

The rel ationshi ps anong processes in a job are showmm in the diagram
bel ow. Each process has one i medi ate superior process (except for
the top-level process) and can have one or nore inferior processes.
Two processes are parallel if they have the sane i nmedi ate superior.
A process can create an inferior process but not a parallel or
superi or process.

| Top-Level
| Process
|
...................... [2o
| | |
| Process 1 | | Process 2 | | Process 3 |
| |
| Process 4 | | Process 5

PROCESS STRUCTURE

Process 1 is the superior process of process 4, and process 3 is the
superior of process 5. Processes 4 and 5 are the inferiors of
processes 1 and 3, respectively. Process 2 has no inferior process.
Processes 1, 2 and 3 are parallel because they have the same superior
process (the top-level process). Processes 4 and 5, although at the
sane depth in the structure, are not parallel because they do not have
the same superior process. Process 1 created process 4 but could not
have created any other process shown in the structure above.

5.1 USES FOR MULTI PLE PROCESSES
A multiple-process job structure allows:

1. One job to have nore than one programrunnable at the sane
time. These programs can be independent prograns, each one
conpi | ed, debugged, and | oaded separately. Each program can
then be placed in a separate process. These processes can be
parallel to each other, but are inferior to the main process
that created them This use allows parallel execution of the
i ndi vi dual prograns.

2. One process to wait for an event to occur (for exanple, the
conpl etion of an |/O operation) while another process
continues its conputations. Conmunication between the two
processes is such that when the event occurs, the process
that is computing can be notified via the software interrupt
system This use allows two processes wthin ajob to
overlap I/Owith conputations

One application of a multiple-process job structure is the follow ng
situation: a superior process is responsible for accepting input from
various termnals. After receiving this input, the process sends it
to various inferior processes as data. These inferior processes can
then initiate other processes, for exanple, to wite reports on the
data that was received.

PROCESS STRUCTURE

		Process that		
TTY	------	Accepts input	-----	TTY
		from Termnals		

| | | | | | Processes that
| | | | | | Receive the
| | | | | | input as Data

| | | | | | Processes that
| | | | | | Wite Reports
| | I | | | on the Data

Anot her application is that wused for the wuser interface on the
DECSYSTEM 20. On the DECSYSTEM 20, the top-level process in the job
structure is the Command Language. This process services the user at
the terminal by accepting input. Wen the user runs a program (for
exanpl e, MACRO, FORTRAN), the Command Language process creates an
inferior process, places the requested programin it, and executes it.
The Command Language can then wait for an event to occur, either from
the program or fromthe user. An event fromthe programcan be its
conpl etion, and an event fromthe user can be the typing of a certain
termnal key (CTRL/C, for exanple).

5.2 PROCESS COVMUNI CATI ON

A process can comruni cate with or control other processes in the
systemin several ways:

o direct process control
o software interrupts
0o |PCF and ENQ DEQ facilities

o nmenory sharing

5-3

PROCESS STRUCTURE

5.2.1 Direct Process Control

A process can create and control other processes inferior to it within

the job structure. The superior process can cause the inferior
process to begin execution and then to suspend and later resune
executi on. After the inferior process has conpleted its tasks, the

superior process can delete the inferior fromthe job structure.

Sonme of the nonitor calls used for direct process control are:
CFORKY% to create a process; SFORKY% to start a process; WFORK% to
wait for a process to termnate; RFSTS% to obtain the status of a
process; and KFORK% to delete a process. Refer to the TOPS-20
Monitor Calls Reference Manual for descriptions of additional nonitor
calls dealing with process control.

5.2.2 Software Interrupts

The software interrupt facility enables a process to receive
asynchronous signals from other processes, the system or the terninal

user or to receive signals as a result of its own execution. For
exanpl e, a superior process can enable the interrupt systemso that it
receives an interrupt when one of its inferiors terninates. I'n

addition, processes wthin a job structure can explicitly generate
interrupts to each other for comunication purposes.

Sonme of the nonitor calls wused when comunication occurs via the
software interrupt systemare: SIR¥% to specify the interrupt tables;
EIR% to enable the interrupt system AICY% to activate the interrupt
channels; and [1C% to initiate an interrupt on a channel. Refer to
Chapter 4 and Section 5.10 for nore information.

5.2.3 | PCF and ENQ DEQ Facilities

The Inter-Process Conmmunication Facility (1PCF) enabl es processes and
jobs to conmmunicate by sending and receiving informational nessages.
The MSEND% call is used to send a nessage, the MRECV% call is used to
receive a nmessage, and the MJTIL%call is used to performutility
functions. Refer to Chapter 7 for descriptions of these calls.

The ENQ' DEQ facility allows cooperating processes to share resources

and facilitates dynam c resource allocation. The ENQ%bcall is used to
obtain a resource, the DEQ%bcall is used to release a resource, and
the ENQC% call is used to obtain status about a resource. Refer to

Chapter 6 for descriptions of these calls.

PROCESS STRUCTURE

5.2.4 Menory Sharing

Each page or section in a process' address space is either private to
the process or shared with other processes. Pages are shared anong
processes when the sane page is represented in nore than one process

address space. This neans that two or nore processes can identify and
use the sane page of physical storage. Even when several processes
have identified the sane page, each process can have a different
access to that page, such as access to read or wite that page.

A type of page access that facilitates sharing is the copy-on-wite
access. A page with this access renmains shared as long as al

processes read the page. As soon as a process wites to the page, the
system nakes a private copy of the page for the process doing the
witing. Oher processes continue to read and execute the origina

page. This access provides the capability of sharing as nuch as
possible but still allows the process to change its data wthout
changing the data of other processes. A nonitor call used when

sharing nenory is PMAP% Refer to Section 5.6.2 for nore information

5.3 PROCESS | DENTI FI ERS

In order for processes to comunicate with each other, a process nust
have an identifier, or handle, for referencing another process. Wen
a process creates an inferior process, it is given a handle on that
i nferior. This handle is a nunber in the range 400001 to 400777 and
is nmeaningful only to the process to which it is given (that 1is, to
the superior process). For exanple, if process A creates process B
process Ais given a handle (for exanple, 400003) on process B.
Process A then specifies this handle when it uses nonitor calls that
refer to process B. However, process Bis not known by this handle to
any other process in the structure, including itself. The handle
400003 may in fact be known to process B, but it would describe a
process inferior to process B. For this reason, process handles are
sonetines called "relative fork handl es" because they are relative to
the process that created them

There are several standard process handl es that are never assigned by
the system but have a specific neani ng when used by any process in the
structure. These handl es are used when a process needs to conmuni cate
with a process other than its inmediate inferior or with nultiple
processes at once. These handl es are described in Table 5-1.

PROCESS STRUCTURE

Table 5-1: Process Handl es
Nunber Synbol Meani ng
400000 . FHSLF The current process (or self).
400000+n Process n, relative to the current
pr ocess.
200000 FHY&PN Ext ended page nunber (see PME&PN in
PVAP% . Wien used in conjunction with
the above t wo forms, this bi t
indicates that addresses and/or page
nunbers are interpreted as absolute,
not relative to the PC section of the
program executing the JSYS. This bit
has no nmeaning for prograns that do
not use extended addressing.
-1 . FHSUP The i mredi ate superior of the current
pr ocess.
-2 . FHTOP The top-level process in the job
structure.
-3 . FHSAI The current process and all of its
inferiors.
-4 . FHI NF Al'l of the inferiors of the current
pr ocess.
-5 . FHIOB Al'l processes in the job structure.

Consi der the job structure bel ow

PROCESS STRUCTURE

A
|
............... |---------------
| | |
| B | | C | | D |
|
........ |-------
I I
| E | I F o
I
....... |--------
| |
| G | | H

The following indicates the specific process or processes being
referenced if process E gives the handl e:

. FHSLF refers to process E

. FHSUP refers to process D

. FHTOP refers to process A

. FHSAI refers to processes E, G and H
. FHI NF refers to processes G and H

. FHIOB refers to processes A through H

The process nust have the appropriate capability enabled in its
capability word to use the handles .FHSUP, .FHTOP, and .FHIOB (refer
to Section 5.5.1).

Process E can reference one of its inferiors (for exanple, G wth the
handle it was given when it created the inferior. Process E can
reference other processes in the structure (for exanple, F) by
executing the GFRKS% nonitor call to obtain a handle on the desired
process. Refer to the TOPS-20 Mnitor Calls Reference Mnual for a
description of the GFRKS% cal |

5.4 OVERVI EW OF MONI TOR CALLS FOR PROCESSES

Monitor calls exist for «creating, |l|oading, starting, suspending,
resunming, interrupting, and deleting processes. Wen a process is
created, its address space is assigned, and the process is added to
the job structure of the creating process. The contents of its

5-7

PROCESS STRUCTURE

address space can be specified at the tinme the process is created or
at a later tinme. The process can also be started at the time it is
creat ed. A process remains potentially runnable until it is
explicitly deleted or its superior is deleted.

A process may be suspended if one of the followi ng conditions occurs:
1. The process executes an instruction that causes a software
interrupt to occur, and it is not prepared to process the
i nterrupt.
2. The process executes the HALTF% nonitor call

3. The superior process requests suspension of its inferior.

4. The superior process is suspended. When a process is
suspended, all of its inferior processes are al so suspended.

5. A nonitor call is trapped. (Refer to TFORK% nonitor call in
the TOPS-20 Monitor Calls Reference Manual).

5.5 CREATI NG A PROCESS

A process creates an inferior process by executing the CFORK% (Create
Process) nmonitor call. This nonitor call allows the caller to specify
the address space, capabilities, initial contents of the ACs, and PC
for the inferior process and to start the execution of the inferior.

The CFORK% cal |l accepts two words of argunents in ACL and AC2.

AC1: characteristics for the inferior in the left half, and PC
address for the inferior in the right half.

AC2: address of a 20 (octal) word block containing the AC
val ues for the inferior

The characteristics for the inferior process are described in Table
5-2.

PROCESS STRUCTURE

Table 5-2: Inferior Process Characteristic Bits
Bit Synbol Meani ng

0 CRWAP Set the map of the inferior process to the

sane as the map of the superior (creating)
process. This nmeans that the superior and
the inferior wll share the sane address
space. Changes nmmde by one process will be
seen by the other process.
If this bit is not on in the <call, the
inferior's map will contain all zeros. |If
desired, the creating process can then use
PVAP or GET to add pages to the inferior's
map.

1 CRUCAP Set the capability word of the inferior
process to the sane as the capability word
of the superior process. (Refer to Section
5.5.1 for the description of the capability
word.)

If this bit is not on in the call, the
inferior will have no special capabilities.

2 Reserved for Digital (must be 0).

3 CRYACS Set the ACs of the inferior process to the
values beginning at the address given in
AC2.

If this bit is not on in the call, the
inferior's ACs will be set to zero, and the
contents of AC2 is ignored.

4 CRYST Set the PC for the inferior process to the
address given in the right half of ACl and
start execution of the inferior.

If this bit is not on in the call, the
right half of ACL is ignored, and the
inferior is not started. |If desired, the
creating process can then use SFORK% or
XSFRK% to start the newy created process.
18- 35 CRYPCV PC value for inferior process if CRUST is

on.

PROCESS STRUCTURE

I f execution of the CFORK% call is not successful, the inferior
process is not created and an error code is returned, as described in
Section 1.2.2.

I f execution of the CFORK% call is successful, the inferior process is
created and its process handle is returned in the right half of ACI.
This handle is then used by the superior process when comrmunicating

with its inferior process. The execution of the programin the
superior process continues at the second instruction following the
CFORK% call. The inferior begins execution at the |ocation contained

in bits 18-35 (CRMPCV) if CRYST is specified.

Assune that process A executes the CFORK% nonitor call twice to create
two parallel inferior processes. This is represented pictorially
bel ow.

| Process A |
| Creates Process B |
| by Executing a CFORK |

| Process Bis Created |
| and Its Handle is |

| Process A Executes |
| Another CFORK to |
| Create Process C |

		Process Cis Created
Process B		and Its Handl e
		Gven to Process A

Note that process A has been given two handles, one for process B and
one for process C. Process A can refer to either of its inferiors by
giving the appropriate handle or to both of its inferiors by giving a
handl e of -4 (.FH NF).

5-10

PROCESS STRUCTURE

5.5.1 Process Capabilities

When a new process is created, it is given the sane capabilities as
its superior, or it is given no special capabilities. This is
i ndi cated by the setting of the CRACAP bit in the CFORK% call. The
capabilities for a process are indicated by two capability words. The
first word indicates if the capability is available to the process,
and the second word indicates if the capability is enabled for the
process. This second word is the one being set by the CRACAP bit in
the CFORK% cal |

Types of capabilities represented in the capability words are |job,

process, and wuser capabilities. Each capability corresponds to a
particular bit in the capability words and thus can be activated and
protected independently of the other capabilities. Refer to the

TOPS-20 Monitor Calls Reference Manual for nore information on the
capability words.

5.6 SPECI FYI NG THE CONTENTS OF THE ADDRESS SPACE OF A PRCCESS

Once a process is created, the contents of its address space can be
speci fi ed. This can be acconplished in one of three ways. As
mentioned in Section 5.5, bit CRWVAP can be set in the CFORK% call to
indicate that the address space of the inferior process is to be the
sane as the address space of the creating process. In addition, the
creating process can execute the GET% nonitor call to map specified
pages froma file into the address space of the inferior process.
Finally, the creating process can execute the PMAP% nonitor call to
map specified pages from another process into the address space of the
inferior process.

If the creating process does not specify the contents of the
inferior's address space, the address space will be filled with zeros.

5.6.1 GET% Monitor Cal

The CET% nonitor call gets a save file, copying or mapping it into the
process as appropriate. It updates the nonitor's data base for the
process by copying the entry vector and the list of program data
vector addresses (PDVAs) fromthe save file. (See the .PQADD function
of the PDVOP% monitor call.)

This call can be executed for either sharable or nonsharable save
files that were created with the SSAVE% or SAVE% nonitor call
respectively. The file nmust not be open by any process in the wuser's
j ob. (Refer to the TOPS-20 Mnitor Calls Reference Manual for nore
i nformation regardi ng the PDVOP% SSAVEY and SAVE% nonitor calls.)

5-11

PROCESS STRUCTURE

The CET% nonitor call accepts two words of arguments in AClL and AC2.
The first word specifies the handle of the desired process, flag bits,
and the JFN of the desired file. The second word specifies where the
pages from the file are to be placed in the address space of the
process. Thus,

ACL: process handle,,flag bits and a JFN

AC2: | owest process page nunber in left half, and highest
process page nunber in right half; or the address of an
argunment block. |If this AC contains page nunbers, those

page nunbers control the parts of nmenory that are | oaded
when GTYADR is on in ACL.

Tabl e 5-3 describes the bits that can be set in ACL.

Table 5-3: GET% Flag Bits

Bi t Synbol Meani ng

19 GT%ADR Use the nmenory address limts given in AC2.
If this bit is off, all existing pages of
the file (according to its directory) are
mapped.

20 GT%PRL Prel oad the pages being nmapped (nove the
pages imediately.) If this bit is off, the
pages are read in fromthe disk when they
are referenced.

21 GTYNOV Do not overlay existing pages and do return
an error. If this bit is off, existing
pages will be overl aid.

22 GIYARG If this bit is on, AC2 contains the address

of an argunent bl ock.

24- 25 GT% FN JFEN of the save file

The format of the argunent bl ock is described in Table 5-4.

5-12

PROCESS STRUCTURE

Table 5-4: GET% Argunent Bl ock
Word Synbol Meani ng

0 . GFLAG Flags that indicate how the rest of the
argunent block is to be used.

1 . GLOW Nurber of the |owest page in the process
into which a file page gets |oaded. This
page must be within the section specified
by . GBASE.

2 . GH GH Nurber of the highest page in the process
into which a file page gets |oaded. This
page must be within the section specified
by . GBASE.

3 . GBASE Nurber of the section into which the file

pages are | oaded. You can specify the
section for single-section save files only;
use of this word with a nultiple-section
save file causes an error. The file pages
are loaded into this section of nenory
regardl ess of the section specified in the
save file.

Tabl e 5-5 describes the flag bits defined for use in . GFLAG

Table 5-5: GET% Argunent Bl ock Fl ags
Bi t Synbol Meani ng
0 GT%.OW .GLOWcontains the nunber of the |owest
page within the process to use.
1 GIYHCH .GH GH contains the nunber of the highest
page within the process to use.
2 GTYBAS . GBASE contains the nunber of the section

to use.

5-13

PROCESS STRUCTURE

When the pages of the file are mapped into pages in the process's
address space, the previous contents of the process pages are
overwitten. Any full pages in the process that are not overwitten
are unchanged. Any portions of process pages for which there is no
data in the file are filled with zeros.

For exanple, a GET% call executed for a file that contains 2 1/2 pages
sets up the process' address space as shown in the follow ng di agram

Pr ocess File
Page 1 | Data | / | Data | Page 1
I | I I I
I | I I I
I | 7/ CET I I
[---------- | \ Call [------- |
Page 2 | Data | | | Data | Page 2
I | I I I
|---------- | I | ------- I
Page 3 | Data | \ | Data | Page 3
|---------- I R I
I | | ECF |
I | I I
| O | I I
|---------- i
I |
Page 4 - | Unchanged
Page 512 | |
After execution of the GET% call, control returns to the wuser's
program at the instruction following the call. |If an error occurs, a

software interrupt is generated, which the program can process via the
software interrupt system

5.6.2 PMAP% Moni tor Cal

The PMAP% nmonitor call is used to nap pages fromone process to the
address space of a second process. Data is not actually transferred;
only the contents of the page map of the second (that is, destination)
process are changed

The PMAP% nonitor call accepts three words of arguments in ACl through
AC3. The first word contains the handl e and page number of the first
page to be mapped in the source process (that is, the process whose
pages are being mapped). The second word contains the handl e and page
nunmber of the first page to be mapped in the destination process (that
is, the process into which the pages are being mapped). The third

5-14

PROCESS STRUCTURE

word contains a count of the nunmber of pages to map and bits
indicating the access that the destination process will have to the
pages mapped. Thus,

ACl: source process handle in the left half, and page nunber in
the process in the right half.

AC2: destination process handle in the left half, and page
nunber in the process in the right half.

AC3: count of nunber of pages to map and the access bits.

The count and access bits that can be specified in AC3 are described
in Section 3.5.6. 1.

Upon successful execution of the PMAP% call, addresses in the
destination process actually refer to addresses in the source process.
The contents of the destination page previous to the execution of the
call have been deleted. The access requested in the PMAP% cal |l is
granted if it does not <conflict with the current access of the
destination page (that is, an AND operation is perfornmed between the

specified access and the current access). Control returns to the
user's program at the instruction following the PMAP% call. |If an
error occurs, an illegal instruction trap is generated, which the

program can process via the software interrupt systemor with an ERIMP
or ERCAL instruction.

5.7 STARTI NG AN | NFERI OR PRCCESS

A programin an inferior process can be started in one of two ways.
As nmentioned in Section 5.5, the superior process can specify in the
CFORK% call the PC for the inferior process and start its execution
Alternatively, the superior process, after executing the CFORK% cal |
to create an inferior process, can execute the SFORK% (Start Process)
nonitor call to start it.

The SFORK% nonitor call accepts two words of argunents in AClL and AC2.

ACl: flags,, process handl e
Fl ags:

SFYCON(1B0) Used to continue a process that has
previously halted. If SF¥%ON is set, the
address in AC2 is ignored, and the process
continues fromwhere it was halted.

AC2: the PC of the process being started. The PC contains flags
in the left half and the process starting address in the
right half. This call obtains the section nunber of the PC
fromthe entry vector of the process.

5-15

PROCESS STRUCTURE

There are two alternative ways to start processes: XSFRK% (see
Section 8.3.2) or SFRKV% (see the TOPS-20 Mnitor Calls Reference
Manual) .

The process handle given in AClL cannot refer to a superior process, to
nore than one process (for example, .FHINF), or to a process that has
al ready been started

After execution of the SFORK% call, control returns to the wuser's
program at the instruction following the call. |If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system

5.8 | NFERI OR PROCESS TERM NATI ON

The superior process has one of two ways in which it can be notified
when one or nore of its inferiors termnate execution: via the

software interrupt systemor by executing the WWORK% nonitor call. An
inferior process wll ternminate nornmally when it executes a HALTF%
monitor call. Alternatively, the process wll termnate abnormally
when it executes an instruction that generates a software interrupt,

such as an illegal instruction, and it has not activated the

appropri ate channel

By activating channel .ICIFT (channel 19) for inferior process
termnation and enabling the software interrupt system the superior
process wll receive an interrupt when one of its inferiors
term nat es. (Refer to Section 4.6 for information on activating
channel .ICIFT.) The interrupt occurs when any inferior process
term nat es. Use of the interrupt systemallows the superior to do
other processing wuntil an interrupt occurs, indicating that an

inferior process has term nated.

In some cases, however, the superior cannot do additional processing

until either a specific process or all of its inferior processes have
conpl eted execution. |If this is the case, the superior process can
execute the WFORK% (Wait Process) nmonitor call. This call blocks the

superior until one or all of its inferiors have term nated

The WFORK% rmoni tor call accepts one argunment in ACl, the handl e of the
desired process. This handle can be . FH NF (-4) to bl ock the superior

until all inferiors terminate, but cannot be a handle on a superior
process.

After execution of the WFORK% nmonitor call, <control returns to the
user's program at the instruction following the <call, when the
specified process or all of the inferior processes termnate. If an

error occurs, it generates a software interrupt, which the program can
process via the software interrupt system

5-16

PROCESS STRUCTURE

5.9 I NFERI OR PROCESS STATUS

The superior process can obtain the status of one of its inferiors by
executing the RFSTS% (Read Process Status) nonitor call. This call
returns the status and PC words of the given inferior process.

The short formof the RFSTS% nonitor call accepts one argunent in ACL,
the handle of the desired process. This handle cannot refer to a
superior process or to nore than one process. The long form accepts
two argument words: flags,, process handle in ACl and the address of
the status return block in AC2Z. In the long form RFWNG (bit 0) is
set in ACl and bits 1-17 are unused (nust be zero).

After execution of the short formof the RFSTS% call, control returns
to the wuser's programat the instruction following the call. |If the
RFSTS% cal | is successful, ACL contains the status word of the given

process and AC2 contains the PC word. The status word is shown in
Tabl e 5-6.

Tabl e 5-6: Process Status Wrd

Bi t Synbol Meani ng
0 RFY-RZ The process is suspended (that is, frozen).
If this bit is not on, the process is not
suspended.
1-17 RFYSTS The status of the process.
Val ue Synbol Meani ng
0 . RFRUN The process is
runnabl e.
1 .RFI O The process is halted
waiting for 1/0O
2 . RFHLT The process is halted
by a HFORK% or HALTF%
nonitor call or was
never started.
3 . RFFPT The process is halted

by the occurrence of a
software interrupt for
whi ch it was not
pr epar ed to handl e.

5-17

PROCESS STRUCTURE

The right half of the
status word cont ai ns
t he nunber of t he
channel on which the
i nterrupt occurred

4 . RFWAT The process is halted
wai ting for anot her
process to term nate

5 . RFSLP The process is halted
for a specified anount
of tine.

6 . RFTRP The process is

di smi ssed because it
was intercepted by its

superi or.

7 . RFABK The process is
di sm ssed because
addr ess br eak was

encount er ed.

18- 35 RFYSI C The channel nunmber on which an interrupt
occurred, which the process was not
prepared to handl e (see process status code
. RFFPT above).

The RFSTS% call returns with -1 (fullword) in AC3 if the specified
handle is assigned but refers to a deleted process. The cal
generates an illegal instruction interrupt if t he handl e is
unassi gned

In the long formof the RFSTS% nonitor call, RFANGis set in ACL and
AC2 contains the address of a status-return block. On the return, ACl
and AC2 are not nodified. The status-return block is described in
Tabl e 5-7.

Tabl e 5-7: RFSTS% St at us- Ret urn Bl ock

Wor d Synbol Meani ng

0 . RFCNT Count of words returned in this block in
the left half, and count of maxi mum nunber
of words to return in right half (including

5-18

PROCESS STRUCTURE

this word). The right half of this word is
specified by the user.

1 . RFPSW Process status word. This word has the
sane format as AClL on a return froma short
call. If a valid, but unassigned, process

handl e was specified in ACL, then this word
contains -1 and no ot her wor ds are

r et ur ned.

2 . RFPFL Process PC flags. These are the sane fl ags
returned in AC2 on a short call

3 . RFPPC Process PC. This is the address; no flags
are returned in this word

4 . RFSFL Status flag word.
Fl ags:

Bit Synbol Meani ng

BO RF¥YEXO Process is execute-only.

If an error occurs during execution of the RFSTS% call, a software
interrupt is generated which the program can process via the software
interrupt system

5.10 PROCESS COVMUNI CATI ON

A superior process can comunicate with its inferiors by sharing the
sane pages of nmenory. This sharing is acconplished with the CFORK%
(bit CRAVAP) or the PMAP% nmonitor call. When the superior executes
either of these calls, both the superior and the inferior share the
sane pages. Changes nmade to the shared pages by either process wll
be seen by the other process.

Al ternatively, processes can conmmunicate via the software interrupt
system The superior process can cause a software interrupt to be
generated in an inferior process by executing the [1C% (Initiate
Interrupt on Channel) nonitor call. For this type of comunication to
occur, the inferior's interrupt channels nust be activated and its
i nterrupt system enabl ed

The 1 C% nonitor call accepts two words of arguments in AClL and AC2.
The handle of the process to receive the interrupt is given in the
right half of ACL. AC2 contains a 36-bit wrd, wth each bit
representing one of the 36 software channels. |If a bit is on in AC2,

5-19

PROCESS STRUCTURE

a software interrupt is initiated on the corresponding channel. For
exanple, if bit 5is onin AC2, an interrupt is initiated on channe
5.

Thus,

ACl: process handle in the right half

AC2: 36-bit word, with bit n on to initiate a software interrupt
on channel n

The process handl e given cannot refer to a superior process or to nore
t han one process.

After execution of the 11C% call, control returns to the wuser's
program at the instruction following the call. |If an error occurs, it

generates a software interrupt which the programcan process via the
software interrupt system

5.11 DELETI NG AN | NFERI OR PROCESS

A process is deleted fromthe job structure when the superior process

executes the KFORK% (Kill Process) nonitor call. Wen a process is
deleted, its address space, its handle, and any JFNs acquired by the
process are released. If the process being deleted has processes
inferior toit, the inferiors are also deleted. For exanple, in the
structure:
| Process A
I
I
| Process B |
I
I
| Process C |
if process A deletes process B by executing a KFORK% call, process C

is also del eted.
The KFORK% rmonitor call accepts one argument in the right half of AC1,

the handle of the process to be deleted. This handle cannot refer to
a superior process, to nore than one process (for exanple, .FH NF), or

5-20

PROCESS STRUCTURE

to the process executing the call (that is, .FHSLF). The RESET%
nonitor call is used to reinitialize the current process; refer to
Section 2.6.1.

After execution of the KFORK% call, control returns to the wuser's
program at the instruction following the call. |If an error occurs, a
software interrupt is generated, which the program can process via the
software interrupt system

5.12 PROCESS EXAVPLES

Exanple 1 - This programcreates an inferior process to provide timng
interrupts.

TITLE TIMNT - AN I NFERI OR PROCESS PROVI DI NG TI M NG | NTERRUPTS
SEARCH MONSYM

SEARCH MACSYM
. REQUI RE SYS: MACREL

STDAC. ; DEFI NE STANDARD ACS
START: RESET% ; RELEASE FI LES, ETC
MOVE P, [1 OAD PDLSI Z, PDL] ;I NI TI ALI ZE STACK
MOVX T1, CRUWAP ; MAKE NEW PROCESS SHARE THI S
; PROCESS' S MEMORY
CFORK% ; CREATE A NEW PROCESS
EJSHLT ; UNEXPECTED FATAL ERROR
MOVEM T1, HANDLE ; SAVE PROCESS HANDLE

; HERE TO START THE | NFERI OR PROCESS

STPRCC: SETZB T4, FLAG ; NI TIALI ZE COUNTER AND FLAG
MOVE T1, HANDLE ; GET PROCESS HANDLE
MOVEI T2, SLEEP ; GET ADDRESS TO START PROCESS
SFORK% ; START THE NEW PROCESS
EIJSHLT ; UNEXPECTED FATAL ERROR

; MAI'N PROCESSI NG LOOP

LOCP: ACS T4 ; | NCREMENT COUNTER
SKI PN FLAG ; HAS TI ME ELAPSED YET?
JRST LOCP ; NO GO DO MORE PROCESSI NG

; HERE WHEN LOWER PROCESS HAS | NTERRUPTED

TMEG <

Count er has reached > ; OQUTPUT FI RST PART OF MESSAGE
MOVX T1, . PRI QU : GET PRI MARY OUTPUT DESI GNATOR
MOVE T2, T4 : GET VALUE OF COUNTER

5-21

PROCESS STRUCTURE

MOVEI T3, ~D10 ; USE DECI MAL RADI X
NOUT% ; OUTPUT CURRENT COUNTER VALUE
EJSERR ; PRINT ERROR MESSAGE AND CONTI NUE
TVEG <
> ; MOVE TO A NEW LI NE
JRST STPROC ; CONTI NUE COUNTI NG

; PROGRAM PERFCRMED BY | NFERI OR PROCESS TO WAI T FOR ONE- HALF M NUTE

SLEEP: MOVX T1, ~D30*~D1000 ; ONE- HALF M NUTE | N M LLI SECONDS
DI SM5% ; WAI T FOR SPECI FI ED TI ME
SETOM FLAG ; TELL SUPERI OR TI ME HAS ELAPSED
HALTF% ; FI NI SHED
; CONSTANTS AND STORAGE
PDLSI Z==50 ; SIZE OF THE STACK
PDL: BLOCK PDLSI Z ; STACK
HANDLE: BLOCK 1 ; | NFERI OR PROCESS HANDLE
FLAG BLOCK 1 ; | NTERRUPT FLAG
END START
Exanple 2 - This programillustrates how an inferior process nmay be
used as a source of tiner interrupts. The nmain programincrenents a
counter. It has an inferior process running for the sole purpose of

timng 10 second intervals. Each tinme the inferior process has tined
10 seconds, it stops and interrupts the mmin program The main
program then reports how many nore tinmes it has incremented the
counter since the last 10 second interrupt.

TITLE TRM NT - FORK TERM NATI ON | NTERRUPTS
SEARCH MONSYM

SEARCH MACSYM

. REQUI RE SYS: MACREL

STDAC. ; DEFI NE STANDARD ACS

START: RESET% ; RELEASE FI LES, ETC
MOVE P, [1 OAD PDLSI Z, PDL] ;I NI TI ALI ZE STACK

; SET UP THE | NTERRUPT SYSTEM

MOVX T1, . FHSLF ; GET PROCESS HANDLE FOR THI S FORK
MOVE T2, [LEVTAB, , CHNTAB] ; GET TABLE ADDRESSES
Sl R% ; SET | NTERRUPT TABLE ADDRESSES
EJSHLT ; UNEXPECTED FATAL ERROR
MOVX T2, 1B<. | Cl FT> ; GET PROCESS TERM NATI ON CHANNEL BI T
Al C% ; ACTI VATE PROCESS TERM NATI ON CHANNEL
EIJSHLT ; UNEXPECTED FATAL ERROR
El R% ; ENABLE | NTERRUPT SYSTEM
EJSHLT ; UNEXPECTED FATAL ERROR

5-22

PROCESS STRUCTURE

; CREATE AND START THE | NFERI OR PROCESS
MOVX T1, CRAVAP+CRYST+SLEEP
CFORK% ; CREATE AND START Tl MER AT SLEEP
EJSHLT ; UNEXPECTED FATAL ERROR
MOVEM T1, HANDLE ; SAVE PROCESS HANDLE
; NI TI ALI ZE THE COUNTER
STPRCC. SETZB T4, OLDT4 ; CLEAR COUNTER

; MAIN LOOP OF THE PROGRAM VWHI CH JUST KEEPS COUNTI NG. (REAL
; APPLI CATI ON WOULD PRESUMABLY HAVE A MORE USEFUL NMAI N PROGRAM)

LOCP: AQJA T4, LOCP ; JUST KEEP | NCREMENTI NG
; HERE WHEN LOWER PROCESS HAS | NTERRUPTED
PRO NT: MOVEM P, | ACS+P ; SAVE STACK PO NTER
MOVEI P, | ACS ; MAKE PO NTER FOR REST OF ACS
BLT P, | ACS+CX ; SAVE REST OF ACS
MOVE P, | ACS+P ; RESTORE P
TM5G <NUMBER OF COUNTS: >
MOVX T1,. PRI QU ; GET PRI MARY OUTPUT DESI GNATOR
EXCH T4, OLDT4 ; SAVE NEW COUNTER VALUE
SUB T4, OLDT4 ; FI ND NUMBER OF COUNTS SI NCE LAST TI ME
MOVM T2, T4 MAKE | T PCSI TI VE
MOVEI T3, ~D10 ; USE DECI MAL RADI X
NOUT% ; OUTPUT CURRENT COUNTER VALUE
EJSERR ; PRINT ERROR MESSAGE AND CONTI NUE
TVEG <
> ; MOVE TO A NEW LI NE
MOVE T1, HANDLE ; GET PROCESS HANDLE
MOVEI T2, SLEEP ; GET ADDRESS TO START PROCESS
SFORK% ; START THE NEW PROCESS
EJSHLT ; UNEXPECTED FATAL ERROR
MOVSI P, | ACS ; GET PO NTER TO SAVED ACS
BLT P, P ; RESTORE SAVED ACS
DEBRK% ; DI SM SS | NTERRUPT

; THE FOLLON NG | S EXECUTED AS A LOVNER PROCESS TO DO THE
; TIMNG | T SLEEPS FOR 10 SECONDS AND THEN STOPS.

SLEEP: MOVX T1, ~"D10*”~D1000 ; 10 SECONDS | N M LLI SECONDS
DI SM5% ; SLEEP
HALTF% ; STOP AND | NTERRUPT THE MAI N PROGRAM

; CONSTANTS AND STORACGE

PDLSI Z==50 ; SI ZE OF THE STACK

PDL: BLOCK PDLSI Z ; STACK

CHNTAB: REPEAT ~D19, <EXP 0> ; CHANNELS 0- 18 ARE NOT USED
1,, PRO NT ; LEVEL 1 PROCESS TERM NATI ON CHANNEL
REPEAT ~D15, <EXP 0> ; REMAI NI NG CHANNELS ARE NOT USED

5-23

PROCESS STRUCTURE

LEVTAB: RETPC1 ; RETURN PC STORED AT RETPCl FOR
 LEVEL 1
0 ; LEVEL 2 NOT USED
0 ; LEVEL 3 NOT USED
HANDLE: BLOCK 1 ; I NFERI OR PROCESS HANDLE
RETPC1: BLOCK 1 ; RETURN PC STORED HERE ON | NTERRUPTS
O.DT4: BLOCK 1 ; HOLDS TI MER VALUE AT LAST | NTERRUPT
I ACS: BLOCK 20 ; STORAGE FOR ACS DURI NG | NTERRUPTS
END START

Exanple 3 - This programcreates an inferior process which waits until
a line has been typed on the term nal.

TI TLE FRKDOC - AN I NFERI OR PROCESS WAI TS UNTIL A LINE IS TYPED
SEARCH MONSYM

SEARCH MACSYM
. REQUI RE SYS: MACREL

STDAC. ; DEFI NE STANDARD ACS
START: RESET% ; RELEASE FI LES, ETC
MOVE P, [1 OAD PDLSI Z, PDL] ;I NI TI ALI ZE STACK
MOVX T1, CRUWAP ; MAKE NEW PROCESS SHARE THI S
; PROCESS' S MEMORY
CFORK% ; CREATE A NEW PROCESS
EIJSHLT ; UNEXPECTED FATAL ERROR
SETZB T4, FLAG ; NI TIALI ZE COUNTER AND FLAG
MOVEI T2, GETCOM ; GET ADDRESS TO START PROCESS
SFORK% ; START THE NEW PROCESS
EJSHLT ; UNEXPECTED FATAL ERROR

; MAI'N PROCESSI NG LOOP

LOCP: ACS T4 ; | NCREMENT COUNTER
SKI PN FLAG ; HAS TI ME ELAPSED YET?
JRST LOCP ; NO GO DO MORE PROCESSI NG

; HERE WHEN | NFERI OR PROCESS HAS | NPUT A LI NE OF TEXT

TMEG <

Count er has reached > : OUTPUT FI RST PART OF MESSAGE
MOVX T1, . PRI QU : GET PRI MARY OUTPUT DESI GNATOR
MOVE T2, T4 : GET VALUE OF COUNTER
MOVEl T3, AD10 : USE DECI MAL RADI X
NOUT% : OUTPUT CURRENT COUNTER VALUE

EJSERR : PRI NT ERROR MESSAGE AND CONTI NUE

TMEG <

Echo Check: > : OUTPUT FI RST PART OF MESSAGE
HRRO T1, BUFFER : GET PO NTER TO BUFFER
PSOUT% : OUTPUT TEXT JUST ENTERED

5-24

PROCESS STRUCTURE

HALTF% ; STOP
JRST START ; I N CASE PROGRAM CONTI NUED

; PROGRAM PERFCORMED BY | NFERI OR PROCESS TO | NPUT A LI NE OF TEXT

GETCOM HRRO T1, BUFFER ; GET PO NTER TO TEXT BUFFER
MOVEI T2, BUFSI Z*5 ; GET COUNT OF MAX # OF CHARACTERS
SETZM T3 ; NO RETYPE BUFFER
RDTTY% ; READ A LI NE FROM THE TERM NAL
EJSERR ; UNEXPECTED ERROR
SETOM FLAG ; TELL SUPERI OR TI ME HAS ELAPSED
HALTF% ; FI NI SHED

; CONSTANTS AND STORAGE

PDLSI Z==50 ; SI ZE OF THE STACK
PDL: BLOCK PDLSI Z ; STACK

BUFSI Z==50 ; BUFFER SI ZE
BUFFER: BLOCK BUFSI Z
FLAG BLOCK 1 ; | NTERRUPT FLAG

END START

5-25

CHAPTER 6

ENQUEUE/ DEQUEUE FACI LI TY

6.1 OVERVI EW

Many tines users are placed in situations where they nust share files
with other users. Each user wants to be guaranteed that while reading
a file, other users are reading the sane data and while witing a
file, no users are also witing, or even reading, the sane portion of
the file.

Consider a data file used by nmenbers of an insurance conpany. When
many agents are reading individual accounts fromthe data file, they
can all access the file sinultaneously because no one is changing any
portion of the data. However, when an agent desires to nodify or
repl ace an individual account, that portion of the file should be
accessed exclusively by that agent. None of the other agents wants to
access accounts that are being changed until after the changes are
made.

By using the ENQ DEQ facility, cooperating users can insure that
resources are shared correctly and that one user's nodifications do
not interfere with another user's. Exanples of resources that can be
controlled by this facility are devices, files, operations on files
(for exanple, READ, WRI TE), records, and nenory pages. This facility
can be wused for dynamic resource allocation, conputer networks, and
internal nonitor queueing. However, control of sinultaneous updating
of files by multiple users is its nost comon application

The ENQ' DEQ facility insures data integrity among processes only when
the processes cooperate in their wuse of both the facility and the

physi cal resource. Use of the facility does not pr event
non-cooperating processes from accessing a resource wthout first
enqueueing it. Nor does the facility provide protection from

processes using it in an incorrect manner.

A resource is defined by the processes using it and not by the system
Because there is conpetition anmong processes for use of a resource,
each resource is associated with a queue. This queue is the ordering
of the requests for the resource. Wen a request for the resource is

6-1

ENQUEUE/ DEQUEUE FACI LI TY

granted, a |lock occurs between the process that nade the request and
the resource. For the duration of the |ock, that process is the owner
of the resource. Oher processes requesting access to the resource
are placed in the queue until the owner relinquishes the |ock
However, there can be nore than one owner of a resource at a tine;
this is called shared ownership (refer to Section 6.2). Processes
obtain access to a specific resource by placing a request in the queue
for the resource. This request is generated by the ENQ% nonitor call.
When finished with the resource, the process then issues the DEQ%

nonitor call. This call releases the |ock by renmoving the request
fromthe queue and nakes the resource available to the next waiting
process. This cycle continues until all requests in the queue have

been sati sfi ed.

6.2 RESOURCE OMNERSHI P

Omership for a resource can be requested as either exclusive or

shar ed. Excl usi ve ownership occurs when a process requests sol e use
of the resource. Wen a process is granted exclusive ownership, no
other process wll be allowed to use the resource until the owner

relinquishes it. This type of ownership should be requested if the
process plans on nodifying the resource (for exanple, the process is
updating a record in a data file). Shared ownership occurs when a
process requests a resource, specifying that it will share the use of
the resource with other processes. Wen a process is given shared
ownership, other processes also specifying shared ownership are
all owed to sinultaneously use the resource. Access to a resource
should be shared as long as any one process is not nodifying the
resour ce.

Two conditions deternmine when a lock to a resource is given to a
process:

1. The position of the process's request in the queue for the
resour ce.

2. The type of ownership specified by the process's request.

Because each resource has only one queue associated with it, requests
for both exclusive and shared ownership of the resource are placed in
the same queue. Requests are placed in the queue in the order in
which the ENQ facility receives them and the first request in the
queue will be the first one serviced (except in the case of single
requests for multiple resources; refer to Section 6.4.1). |In other
words, the ENQ facility processes requests on a first in, first out
basi s. If this first request is for shared ownership, that request
will be serviced along with all follow ng shared ownership requests up
to but not including the first exclusive ownership request. |If the
first request is for exclusive ownership, no other processes are
allonwed use of the resource until the first process has rel eased the
| ock.

6- 2

ENQUEUE/ DEQUEUE FACI LI TY

Consi der the follow ng queue for a particul ar resource.

Request 1 will be serviced first because it is the first request in
the queue. However, since this request is for shared ownership
request 2 can al so be serviced. Request 3 cannot be serviced unti
the processes with request 1 and request 2 release the lock on the
resource. Eventually the lock is released by the two processes, and
the first two requests are renoved fromthe queue. The queue now has
the follow ng entries:

Request 3 is now first in the queue and is given a lock on the
resour ce. Because the request is for exclusive ownership, no other
requests will be serviced. Once the process associated with request 3
releases the lock, both request 4 and request 5 can be serviced
because they both are for shared ownership.

6.3 PREPARI NG FOR THE ENQ DEQ FACI LI TY

Before using the ENQ DEQ facility, the user must obtain an ENQ quota
fromthe system adninistrator and nust obtain the name of the resource

6-3

ENQUEUE/ DEQUEUE FACI LI TY

desired, the type of protection required, and the |evel nunber
associated with the resource

The ENQ quota indicates the total nunber of requests that can be
outstanding for the wuser at any given tinme. Any request that woul d
cause the quota to be exceeded results in an error. The wuser cannot
use the ENQ facility if the quota is set to zero

The resource nane has a meaning agreed upon by all wusers of the
specific resource and serves as an identifier of the resource. The
system makes no associ ati on between the resource nane and the physica
resource itself; it 1is the responsibility of the user's process to
make that association. The systemnmerely uses the resource name to
process requests and handl es different resource nanes as requests for
di fferent resources.

The resource nanme has two parts. |In nost cases, the first part is the
JFN of the file being accessed. Before using the ENQ facility, the
user rmust initialize the file wusing the appropriate nonitor calls
(refer to Section 3.1). The second part of the name is a nodifier,
which is either a pointer to a string or a 33-bit wuser code. The
string uniquely identifies the resource to all users. The pointer can
either be a standard byte pointer or be in the form

-1,, ADR

where ADR is the location of the left-justified ASCIZ text string.
The 33-bit user code simlarly identifies the resource by representing

an itemsuch as a record nunmber or bl ock numnber. The ENQ facility
considers these nodifiers as logical strings and does not check for
cooperation anobng the users. Thus, users nmust be careful when

assigning these nodifiers to prevent the occurrence of two different
nodi fiers referring to the sanme resource

The type of protection desired for the resource is indicated by the
first part of the resource name. This part of the nane can be one of
four values. Wen the user specifies the JFN of the desired file, the
file is subject to the standard access protection of the system This
is the nost typical case. Wen the user specifies -1 instead of a
JFEN, it neans that resources defined within a job are to be accessed
only by processes of that job. Oher jobs requesting resources of the
sane nanme are queued to a different resource. When the user specifies
-2 instead of a JFN, it neans that the resource can be accessed by any
job on the system A process nust have bit SCYENQ enabled in its

capability word to specify this type of protection. If the user
specifies -3 instead of a JFN, it neans the sane type of protection as
that given when -2 is specified. However, this requires that the

process have WHEEL or OPERATOR capability enabled. Quotas are not
checked when -3 is given instead of a JFN

In addition to specifying the resource name and type of protection,
the wuser also assigns a level nunber to each resource. The use of

6-4

ENQUEUE/ DEQUEUE FACI LI TY

| evel numbers prevents the occurrence of a deadly enbrace situation

the situation where two or nore processes are waiting for each to
conpl ete, but none of the processes can obtain a | ock on the resource
it needs for conmpletion. This situation is represented by Figure 6-1.

| Process Ais |
| Waiting for a |
| Resource Process |-------------mmmmmmioon \
| B Has. |

| Process Bis |
| Waiting for a |
| Resource Process

| C Has. |

| Process Cis |
| Waiting for a |
I | Resource Process |<------- /
| A Has. |

Figure 6-1: Deadly Enmbrace Situation

Each process is in the queue waiting for the resource it needs, but no
request is bei ng serviced because the desired resources are
unavai |l abl e.

The use of |evel nunbers forces cooperating processes to order their
use of resources by requiring that processes request resources in an
ascendi ng nurerical order and that all processes assign the same |eve
number to a specific resource. This nmeans that the order in which
resources are requested is the same for all processes and therefore,
requests for the first resource will always precede requests for the
second one.

If both of the above requirements are not nmet, the process requesting
the resource receives an error, unless the appropriate flag bit is set
(refer to Section 6.4.1.2), and the request is not placed in the
queue. Thus, instead of waiting for a resource it will never get, the
process is informed i nmedi ately that the resource is not avail able.

6-5

ENQUEUE/ DEQUEUE FACI LI TY

6.4 USING THE ENQ DEQ FACI LI TY

There are three nonitor calls available for the ENQDEQ facility:
ENQ@%4 to request wuse of a resource; DEQ% to release a lock on a
resource; and ENQC% to obtain infornmation about the queues and to
specify access to these queues.

6.4.1 Requesting Use of a Resource

The user issues the ENQononitor call to place a request in the queue
associated with the desired resource. This call is used to specify
the resource nane, |evel nunber, and type of protection required.

A single ENQonmonitor call can be used to request any nunber of
resources. In fact, when desiring nultiple resources, the user should
request all of themin one call. This nethod of requesting resources
guarantees that the wuser gets either none or all of the resources
request ed because the ENQ DEQ facility never allocates only some of
the resources specified in one call. Because all resources in a
single call rmust be available at the same tinme, the first wuser
requesting a resource (that is, the first user in the queue for the
resource) may not be the first user obtaining it if other resources in
the request are currently not avail abl e.

A single call for nmultiple resources is not functionally the sane as a

series of single calls of those resources. 1In a single call, the
entire request is rejected if an error is returned for one of the
resources specified. In a series of single calls, each request that
did not return an error will be queued

The ENQ% nonitor call accepts two words of arguments in ACL and AC2.
The first word contains the code of the desired function, and the
second contains the address of the argunent bl ock. Thus,

ACl: function code

AC2: address of argunent bl ock

6.4.1.1 ENQ%Functions - The functions that can be requested in the
ENQ%4 call are described in Table 6-1

6- 6

ENQUEUE/ DEQUEUE FACI LI TY

Table 6-1: ENQ% Functions
Code Synbol Meani ng

0 . ENQBL Queue the requests and block the
process wuntil all requested | ocks are
acquired. This function returns an
error code only if the ENQocall is
not correctly specified

1 . ENQAA Queue the requests and acquire the
locks only if all requested resources
are imediately available. If the
resources are available, all will be
allocated to the process. |If any one
of the resources is not available, no
requests are queued, no |ocks are
acqui red, and an error code is
returned in ACL.

2 . ENQSI Queue the requests for all specified
resour ces. | f all resources are
available, this function is identica
to the .ENQBL function. If al
resour ces are not i medi atel y
avai l able, the requests are queued,
and a software interrupt is generated
when all requested resources have been
given to the process.

3 . ENQVA Change the ownership access of a

previ ousl y-queued request (refer to
bit ENYSHR bel ow). The access for
each lock in this request is conpared
with the access for each lock in the
request already queued. No action is
taken if the two accesses are the
sane. If the access in this request
is shared and the access in the
previous request is exclusive, the
owner shi p access is changed to shared
access. O herwi se, an error is
returned if:

1. There are processes which are
locking, or waiting on the sane
lock, and the process tries to
change the ownership access from
shared to exclusive. If this is

6-7

ENQUEUE/ DEQUEUE FACI LI TY

. ENECL

the case, the process should issue
a DEQononitor call for the shared
request and then issue another
ENQ% nonitor call for exclusive
owner shi p.

2. Any one of the specified |ocks
does not have a pending request.

3. Any one of the specified locks is
a pooled resource (refer to
Section 6.4.1.2).

Each | ock specified is checked, and

the access is changed for all |ocks
t hat wer e correctly gi ven. On
receiving an error, the process should
i ssue the ENQC% nonitor cal l to

determne the current state of each
lock (refer to Section 6.4.3).

Set cluster-wi de ENQ DEQ functionality
for all ENQ DEQ ENQC JSYSes perfornmed
by this process. The contents of AC2
are ignored as this function does not
requi re an argument bl ock

6.4.1.2 ENQ% Argunent Bl
described in Table 6-2.

ock - The format of the argunent block

is

Tabl e 6-2: ENQ% Argunent Bl ock
Wor d Synbol Meani ng

0 . ENQLN Nurber of | ocks being requested in the |eft
hal f, and | engt h of argurment bl ock
(including this word) in the right half.

1 . ENQ D Nurber of software interrupt channel in the
left half, and request ID in the right
hal f.

2 . ENQLV Fl ags and | evel nunber in the Ileft half,

and JFN, -1, -2 or -3 (refer to Section
6.3) in the right half.

6-8

ENQUEUE/ DEQUEUE FACI LI TY
3 . ENQUC Pointer to string or 5B2+33-bit user code
(refer to Section 6.3).
4 . ENQRS Nunmber of resources in the pool in the left
hal f, and number of resources requested in

the right half.

5 . ENQVS Address of a resource nask bl ock

Words . ENQV, .ENQUC, .ENQRS, and .ENQVWS (words 2 through 5) are
repeated for each |ock being requested. These four words are called
the | ock specification.

Software Interrupts

The software interrupt systemis used in conjunction with the .ENQS
function (refer to Section 6.4.1.1). |If all locks are not avail abl e
when the user requests them the .ENQSI function causes a software
interrupt to be generated when the | ocks beconme avail able. The user
specifies the software channel on which to receive the interrupt by
placing the channel nunmber in the left half of word .ENQ D in the
argunent bl ock.

When the user is waiting for nore than one lock to becone available,
he wll receive an interrupt when the last lock is available. |If he
desires to be inforned as each | ock becones available, he can assign
the locks to separate channels by issuing multiple ENQocalls. The
availability of each lock will then be indicated by the occurrence of
an interrupt on each channel

Wien the user requests the .ENQSI function, he nust initialize the
interrupt systemfirst or else an interrupt will not be generated when
the | ocks becone available (refer to Chapter 4).

Request I D

The 18-bit request IDis currently not used by the system but is
stored for use by the process. Thus, the process can supply an ID to
use as identification for the request. This ID is wuseful on the
.DEQ D function of the DEQ® nonitor call (refer to Section 6.4.2.1).

Fl ags and Level Numbers

Tabl e 6-3 describes the flags that can be used in the left half of the
first word of each | ock specification (.ENQV).

6-9

ENQUEUE/ DEQUEUE FACI LI TY

Tabl e 6-3: Lock Specification Flags
Bit Synbol Meani ng

0 ENYGHR Omership for this resource is to be
shar ed. If this bit is not on
ownership for this resource is to be
excl usi ve.

1 ENYBLN Ignore the |evel nunber associated
with this resource. If this bit is
set, sequencing errors in | eve
nunbers are not considered fatal, and
execution of the call continues.

On successful conpletion of the call
ACl contains either an error code if a
sequenci ng error occurred, or zero if
a sequencing error did not occur.
WARNI NG
A deadly enbrace situation may
occur when |evel nunbers are
not used. Use of t hese
nunbers guarantees that such a
situation cannot arise; for
this reason bit ENYBLN shoul d
not be set.

2 ENVINST Al'l ow ownership of this lock to be
nest ed.

3 ENUATL Allow a long-term |[|ock on this
resource.

4-8 Reserved for Digital

9-17 EN%A_ VL Level nunber associated with this

resource. This nunber is specified by
the user and nust be agreed upon by

all users of the resource. In order
to elimnate a deadly enbr ace
situation, users must request

resources in nunerically increasing
order.

6- 10

ENQUEUE/ DEQUEUE FACI LI TY
The request is not queued, and an error is given, if ENMBLN is not set
and
1. The user requests a resource with a | evel nunber |ess than or
equal to the highest nunbered resource he has requested so

far.

2. The level nunber of this request does not match the |evel
nunber supplied in previous requests for this resource.

Pool ed Resour ces

Word . ENQRS of each |ock specification is used to allocate nultiple
copies from a pool of identical resources. Bit ENYSHR, i ndicating
shared ownership, is nmeaningless for pooled resources because each
resource in the pool can be owned by only one process at a tine. A
process can own one or nore resources in the pool; however, it cannot
own nore than there are in the pool or nore than there are unowned in
t he pool .

The left half of word . ENQRS contains the total nunber of resources
existing in the pool. This nunber is previously agreed upon by al
users of the pooled resource. The first wuser who requests the
resource sets this nunber, and all subsequent requests must specify
the same nunber or an error is given.

The right half of word . ENQRS contains the nunber of resources being
requested by this process. This nunber nust be greater than zero if a
pool of resources exists and cannot be greater than the number in the
left half. This nmeans that if a pool of resources exists, the user
nmust request at |east one resource, but cannot request nmobre than are
in the pool.

Once the nunber of pooled resources is determined, the resources are
allocated until the pool is depleted or until a request specifies nore
resources than are currently available. |In the latter case, the user
maki ng the request is not given any resources until his entire request
can be satisfied. Subsequent requests from other wusers are not
granted wuntil this request is satisfied even though there may be
enough resources to satisfy these subsequent requests. As users
rel ease their resources, the resources are returned to the pool. Wen
all resources have been returned, they cease to exist, and the next
request conpletely redefines the nunber of resources in the new pool

The system assunes that the resource is in a pool if the left half of
word .ENQRS of the lock specification is nonzero. Thus the user
should set the left half to zero if only one resource of a specific
type exists. |If this is the case, then the right half of this word is
a nunber defining the group of users who can simultaneously share the
resource. This nmeans that when the resource is allocated to a user
for shared ownership, only other users in the sane group wll be
allonwed access to the resource. The use of sharer groups restricts

6-11

ENQUEUE/ DEQUEUE FACI LI TY

access to a resource to a set of processes smaller than the set for
shared ownership (which is sharer group 0) but larger than the set for
excl usive ownership. (Refer to Section 6.5 for nore information on
sharer groups).

6.4.2 Releasing a Resource

The user issues the DEQ® nonitor call to renmove a request from the
gueue associated wth a resource. The request is renmoved whether or
not the user actually owns a | ock on the resource or is only waiting
in the queue for the resource.

The DEQ@% nonitor call can be used to renove any nunber of requests

from the queues. If one of the requests cannot be renoved, the
dequeuei ng procedure continues until all |ock specifications have been
processed. An error code is then returned for the |ast request found
that could not be dequeued. The process can then execute the ENQC%
call (refer to Section 6.4.3) to determne the status of each |ock
Thus, unlike the operation of the ENQ®% call, the DEQ% call wll

dequeue as nmany resources as it can, even if an error is returned for
one of the lock specifications in the argunent block. However, when a
user attenpts to dequeue nore pooled resources than he originally
all ocated, an error code is returned and none of the resources are
dequeued.

The DEQ%w nonitor call accepts two words of arguments in ACL and AC2.
The first word contains the code for the desired function, and the
second word contains the address of the argunent block. Thus,

ACl: function code

AC2: address of argunent bl ock

6-12

ENQUEUE/ DEQUEUE FACI LI TY
2.1 DEQ@»Functions - The DEQ4ofunctions are described in Table

6. 4.
6- 4.

Tabl e 6-4: DEQ% Functions

Code Synbol Meani ng

0 . DEQDR Rermove the specified requests fromthe queues.
This function is the only one that requires an
argunent bl ock.

1 . DEQDA Rermove all requests for this process from the
gueues. This action is taken on a RESET
monitor call. An error code is returned if

this process has not requested any resources
(that is, if this process has not issued an

ENQS .
2 .DEQ D Renove all requests that correspond to the
speci fied request identifier. When this

function is specified, the user nust place the
18-bit request ID in AC2 on the DEQ®call.
This function allows the user to release a
class of locks in one call without item zing
each lock in an argunent block. The function
shoul d be used when dequeueing in one call the
sane | ocks that were enqueued in one call.
For example, wth this function the user can
specify the IDto be the same as the JFN used
in the EN@ocall and thus renpove all locks to
that file at once.

6- 13

ENQUEUE/ DEQUEUE FACI LI TY

6.4.2.2 DEQ%Argunent Block - The format of the argunent block for
function .DEQDR i s described in Table 6-5.

Tabl e 6-5: DEQ® Argunent Bl ock

Word Synbol Meani ng
0 . ENQLN Nurber of | ocks being requested in the |eft
hal f, and | ength of argunment bl ock

(including this word) in the right half.

1 . ENQ D Nurber of software interrupt channel in the
left half, and request ID in the right
hal f.

2 . ENQLV Flags and | evel nunber in the left half,

and JFN, -1, -2 or -3 (refer to Section
6.3) in the right half.

3 . ENQUC Pointer to string or 5B2+33-bit user code
(refer to Section 6.3).

4 . ENQRS Number of resources in the pool in the left
hal f, and number of resources requested in
the right half.

5 . ENQVB Address of a resource nask bl ock.

Words . ENQV, .ENQUC, .ENQRS, and .ENQVWS (words 2 through 5) are
repeated for each request being dequeued. These four words are called
the | ock specification.

6.4.3 Obtaining Information About Resources

The user issues the ENQC% nonitor call to obtain information about the
current status of the given resources. This call can also be used by
privileged users to performvarious utility functions on the queue
structure. The format of the ENQC% call is different for these two
uses. (Refer to the TOPS-20 Monitor Calls Reference Mnual for the
expl anation of the privileged use of the ENQC% cal | .)

The ENQC% nonitor call accepts three words of argunents in ACL through
AC3:

6- 14

ENQUEUE/ DEQUEUE FACI LI TY

ACl: function code (.ENQCS)

AC2: address of argunent bl ock

AC3: address of area to receive status information
The format of the argunent block is identical to the format of the
ENQ% and DEQ% argunent bl ocks. The area in which the status is to be
returned should be three tinmes as long as the nunber of |ocks
specified in the argunment bl ock.
On successful execution of the ENQC% call, the current status of each

lock specified is returned as a three-word entry. This three-word
entry has the follow ng format.

! Flag bits indicating status of |ock !

Tabl e 6-6 describes the flag bits that can be used in a ENQC% cal | .

6- 15

ENQUEUE/ DEQUEUE FACI LI TY

Table 6-6: ENQC% Flag Bits
Bit Synbol Meani ng

0 ENY6CE An error has occurred in the corresponding |ock
request . Bits 18-35 contain the appropriate
error code.

1 ENYQCO The process issuing the ENQC% call is the owner
of this |ock.

2 ENYCQ The process issuing the ENQC% call is in the
queue waiting for this resource. This bit wll
be on when ENYXCO is on because a request
remains in the queue until a DEQbcall is given.

3 ENYCX The lock has been allocated for excl usi ve
owner shi p. Wen this bit is off, there is no
way of determ ning the nunber of sharers of the
resource.

4 ENY6XCB The process issuing the ENQC% call 1is in the
queue waiting for exclusive ownership to the
resource. This bit will be off if ENMCQ is
of f.

5 ENYGXCC This is a cluster-w de | ock/request. This bit
exists in both a | ock-block and a g-bl ock.

6 ENYECN No future vote is required for this |ock. Thi s
bit exists in a | ock-bl ock.

7 ENYCS This lock requires a scheduling pass.

8 Reserved for Digital

9-17 EN%A_ VL The | evel nunber of the resource.

18- 35 EN%J OB The nunber of the job that owns the | ock. Thi s

value my be a job nunber on another system
within the cluster. For locks wth shared
ownership, this value will be the job nunber of
one of the owners. However, this value will be
the current job's nunber if the current job is
one of the owners. If this lock is not owned,
the value is -1. |If ENXE is on, this field
contains the appropriate error code.

6- 16

ENQUEUE/ DEQUEUE FACI LI TY

The 36-bit time stanp indicates the last time a process |ocked the
resource. The tine is in the universal date-time standard. |f no one
currently has a lock on the resource, this word is zero.

The request ID returned in the right half of the third word is either
the request ID of the current process if that process is in the queue
or the request I D of the owner of the lock

6.5 SHARER GROUPS

Processes can specify the sharing of resources by using sharer group
nunbers (refer to Section 6.4.1.2). The wuse of sharer groups
restricts the ownership for a resource to a set of processes snaller
than the set for shared ownership but Jlarger than the set for
excl usi ve owner ship

Sharer group nunber O is used to indicate the group of all cooperating
processes of the resource. This group nunber is assumed when no group
is specified in the EN@bcall. To restrict use of the resource, a
group nunber other than O rmust be explicitly specified in the call.

Consi der the follow ng exanple. The resource is the WR TE operation

on a file. There are four types of uses of this resource as shown in
Fi gure 6-2

6- 17

ENQUEUE/ DEQUEUE FACI LI TY

\ Pr ocess

I I I |
I I I |
\ Oan Use		
\ of the		
\ Resour ce		Not All owed
\	Wite	to Wite
I \ I I		
I \ I I		
Gher \		
Process'\		
Use of Vo		
Resource \		
I \ I		
- [----mmmmmem -	-	
I	1	2
Wite		
	Shared,	No Need to Use

I : Goup O : ENQ DEQ |
I | 3 | 4 |
| Not Allowed | | |
| to Wite | Exclusive | Shared, |
I I | Goup 1 |

Figure 6-2: Use of Sharer G oups

In block 1 of the figure, the process owning the | ock wishes to allow

all cooperating processes to also lock the resource (that is, to
performthe WRI TE operation). Therefore, in the ENQ% call, the
process specifies the resource can be |ocked by all cooperating
processes. |In block 2 of the figure, the process does not plan on

locking the resource and does not care if other processes lock it.
Thus, there is no need for the process to use the ENQDEQ facility.
In block 3 of the figure, the process desires to |l ock the resource
excl usively and does not want other processes to lock it. Thus, the
process obtains exclusive ownership for the resource. |In block 4 of
the figure, the process does not want to | ock the resource i medi ately
but also does not want other processes to lock it because it soon
plans to request a lock on the resource. |If the process were the only
one requesting this type of use, exclusive ownership would be
sufficient, because the resource would be wunavailable to others as
long as the process owned the Ilock. However, if other processes
desire this same type of use, exclusive ownership is not sufficient,
because once one process releases the |ock, another process with a
different type of use could obtain its own |ock. Thus, in this
exanple, sharer group 1 is defined to include all processes with the
sane type of use (that is, all processes who do not want to lock the
resource imediately but also do not want other processes to lock it).

6- 18

ENQUEUE/ DEQUEUE FACI LI TY

This elimtes the probl em of another user obtaining the resource for a
different type of use

Sharer group O should be sufficient for nobst uses of the ENQ DEQ
facility. Additional groups should only be needed in those situations
where a subset of the cooperating processes nust have a specific use
of a resource, as in the above exanple.

6.6 AVO DI NG DEADLY EMBRACES

Processes can interact in nmany undesirable ways if i mpr oper
conmmuni cati on occurs anong the processes or if resources are
incorrectly shared. An exanple of one undesirable situation is the
occurrence of a deadly enbrace: when two processes are waiting for
each other to conplete but neither one can gain access to the resource
it needs for conpletion. This situation can be avoi ded when processes
consi der the follow ng guidelines.

1. Processes should request resources at the time they need
them |f possible, processes should request resources one at
a time and rel ease each resource before requesting the next
one.

2. Processes shoul d request shared ownershi p whenever possible.
However, the process should not request shared ownership if
it plans on nodifying the resource

3. Wen a process needs nore than one resource, it should
request these resources in one ENQ®call instead of nultiple
calls for each resource. The process should al so rel ease the
entire set of resources at once with a single DEQ®% call.

4. \When the use of one resource depends on the use of a second
one, the process should define the two resources as one in
the ENQ and DEQ% calls. However, there is no protection of
the resources if they are al so requested separately.

5. Qccasionally processes use a set of resources and require a
lock on the second resource while retaining the ock on the
first. In this case, the order in which the locks are
obtained should be the same for all users of the set of
resources. The sanme ordering of |ocks is acconplished by the
processes assigning |evel nunbers to each resource. The
requi renents that processes request resources in ascending
nurmerical order and that all processes use the sane |eve
number for a specific resource ensure that a deadly enbrace
situation will not occur.

6- 19

CHAPTER 7

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

7.1 OVERVI EW

The Inter-Process Conmunication Facility (IPCF) allows conmmrunication
anong jobs and system processes. This conmuni cation occurs when
processes send and receive information in the formof packets. Each
sender and receiver has a Process |ID (PID) assigned to it for
identification purposes.

When t he sender sends a packet of information to another process, the
packet is placed into the receiver's input queue. The packet renains
in the queue until the receiver checks the queue and retrieves the
packet . Instead of periodically checking its input queue, the
receiver can enable the software interrupt system (refer to Chapter 4)
to generate an interrupt when a packet is placed in its input queue.

The <SYSTEM>INFO process is the i nformation center for t he
Inter-Process Comunication Facility. Thi s process perforns system
functions related to PIDs and nanes, and any process can request these
functions by sendi ng <SYSTEM>I NFO a packet .

7.2 QUOTAS

Before using | PCF, the user nust acquire the ability to use |PCF
privileges from the systemadmnistrator: a send packet quota and a
recei ve packet quota. These quotas designate, on a per process basis,
the nunber of sends and receives that can be outstanding at any one
time. For exanple, if the process has a send quota of two and it has

sent two packets, it cannot send any nore until at |east one packet
has been retrieved by its receiver. A send packet quota of two and a
receive packet quota of five are assuned as the standard quotas. |If

these quotas are zero, the process cannot use |PCF

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

7.3 PACKETS

Information is transferred in the formof packets. Each packet is
divided into two portions: a packet descriptor block of four to six
words and a packet data bl ock the | ength of the nessage. The format

of the packet is shown in Figure 7-1.

Packet Descriptor Bl ock

IPCFL ! flags !
Geors 1T b e e T i
dpor 1T e e ver T i
QPGP 1 lemgih of meseage 1 mbdress of message

| n ! ADR !
QPoD 1 sender- s somested 1 sender s logged in

! directory ! directory !
aeeee 1T ehabl od capabi 1111 66 of sender T :
deesp 1T conmected diresiory of sender T :
Geeas 1T rccount siring of senger T :
Gl 1T g eal oeation of senaer T :

ADR i nmessage word 1 i

Figure 7-1: | PCF Packet

7-2

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

7.3.1 Flags

There are two types of flags that can be set in word .IPCFL of the
packet descriptor block. The flags in the left half of the word are
instructions to | PCF for packet communication, and the flags in the
right half are descriptions of the data nessage. The flags in the
right half are returned as part of the associated variable (refer to
Section 7.4.2). The packet descriptor block flags are described in
Table 7-1.

Table 7-1: Packet Descriptor Block Flags

Bit Synbol Meani ng

0 | PUCFB Do not block the process if there are no
nmessages in the queue. |If this bit is on, the
process receives an error if there are no
messages.

1 | PYCFS Use the PID obtained fromthe address in word

.IPCFS of the packet descriptor block as the
sender's PI D

2 | PUCFR Use the PID obtained fromthe address in word
.IPCFR of the packet descriptor block as the
receiver's PID

3 | PYCFO Al'l ow the process one send above the send quot a.
(The standard send quota is two.)

4 | PO TL Truncate the nessage if it is longer than the
area reserved for it in the packet data bl ock
If this bit is not on, the process receives an
error if the nessage is too |ong.

5 | PUCPD Create a PID to use as the sender's PID. The
PID created is returned in word .|IPCFS of the
packet descriptor bl ock.

6 | PY%QWP Make the PID created be permanent until the job
logs out (if both bits |PXUPD and | PlIWP are
on). Mke the PID created be tenporary unti
the process executes a RESET% nonitor call (if
bit IPXPD is on and bit 1PWWP is not on). | f
bit IPXPD is not on, bit |PWWP is ignored

7 | PYNOA Do not allow other processes to use the PID
created when bit IP¥CPD is on. |If bit IP¥XCPD is
not on, bit I PYNOCA is ignored.

7-3

8- 17

18

19

20

21

22

23

24-29

30-32

| PYCFP

| PYCFV

| PYCFZ

| PYEPN

| PYCFE

| PYCFC

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

Reserved for Digital

The packet is privileged. This bit can be set
only by a process with WHEEL capability enabl ed.
Refer to the TOPS-20 Mnitor Calls Reference
Manual for a description of this bit.

The packet is a page of 512 (decimal) words of
dat a.

A zero-length nmessage was sent.
Reserved for Digital

Page nunber in word .IPCFP of the packet
descriptor block is 18 bits | ong

Reserved for Digital

Field for error code returned from <SYSTEM>
| NFO.

Code Synbol Meaning

15 .IPCPI insufficient privileges

16 .1 PCUF invalid function

66 .1 PCKM PID has been del eted

67 .1 PCSN <SYSTEM>I NFO needs nane

72 .| PCFF <SYSTEM+I NFO free space exhausted
74 .1 PCBP PID has no nane or is invalid

75 .1 PCDN duplicate nane has been specified
76 . I PCNN unknown name has been specified
77 .IPCEN invalid name has been specified

System and sender code. This code can be set
only by a process with WHEEL capability enabl ed,
but the nonitor wll return the code so a
nonprivil eged process can examine it.

Code Synmbol Meaning

1 .1 PCCC Sent by <SYSTEM-I PCF

2 . I PCCF Sent by systemw de <SYSTEM>I NFO

7-4

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

3 .1 PCCP Sent by receiver's <SYSTEM>| NFO
4 .1 PCCG Sent by monitor for QUEUE% JSYS

33-35 | PYCFM Field for special nessages. This code can be
set only by a process wth WHEEL capability
enabl ed, but the nonitor will return the code so
that a nonprivileged process can examne it.

Code Synbol Meaning
1 .IPCFN Process' input queue contains a

packet that could not be delivered
to intended PID.

7.3.2 PIDs

Any process that wants to send or receive a packet nust obtain a PID

The process can obtain a PID by sending a packet to <SYSTEM>I NFO
requesting that a PID be assigned. The process nust also include a
synbolic nanme that is to be associated with the assigned PID

The symbolic nane can be a maxi mum of 29 characters and can contain
any characters as long as it is termnated by a zero word. There
shoul d be mutual understandi ng anong processes as to the synbolic
names used in order to initiate comunication. Once the nanme is
defined, any process referring to that nane nust specify it exactly
character for character.

Before a process can send a packet, it nust know the receiver's
synbolic name or PID. If only the receiver's nane is known, the
sender nust ask <SYSTEM>INFO for the PID associated with the name,
since all communication is via PlDs.

The associ ati on between a PID and a nane is broken:
1. On a RESET% nonitor call
2. Wen the process is killed or the job logs off the system

3. Wien a request to disassociate the PID fromthe name is made
t o <SYSTEM>I NFO

<SYSTEMINFO wi I | not allow a nane already associated with a PID to be
assigned again unless the owner of the name makes the request. Nor
wi Il <SYSTEM>I NFO assign a PID once it has been wused. This action
protects against messages being sent to the wong receiver by
acci dent .

7-5

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

The PIDs of the sender and the receiver are indicated by words .IPCFS
and .| PCFR, respectively, of the packet descriptor bl ock.

7.3.3 Length and Address of Packet Data Bl ock

Wird .1 PCFP of the packet descriptor block contains the length and the
begi nning address of the nmessage. The length specified is one of two

types, depending on the type of nessage (refer to Section 7.3.5). | f
the nessage is a short-formnessage, the length is the actual word
| ength of the nessage. |If the nessage is a long-form nessage, the

length is 1000 (octal) words, that is, one page.

The address specified is either an address or a page nunber, depending
on the type of nessage (refer to Section 7.3.5). Wen a nessage is
sent, it is taken fromthis address. Wen a nessage is received, it
is placed in this address.

7.3.4 Directories and Capabilities

Words .| PCFD and .| PCFC describe the sender at the tinme the nessage
was sent and are used by the receiver to validate nessages sent to it.
These two words are not used when a nessage is sent, and if the sender
of the packet supplies them they are ignored. However, when a
nessage is received, if the receiver of the packet has reserved space
for these words in the packet descriptor block, the system supplies
the appropriate values of the sender of the packet. The receiver of
the packet does not have to reserve these words if it is not
interested in knowi ng the sender's directories and capabilities.

7.3.5 Packet Data Bl ock

The packet data bl ock contains the message being sent or received.
The nmessage can be either a short-form nessage or a | ong-form nessage.

A short-formnessage is one to n words |ong, where n is defined by the
installation. (Usually, n is assuned to be 10 words.) Wen a
short-form message is sent or received, word .IPCFP of the packet
descriptor block contains the actual word | ength of the nessage in the
left half and the address of the first word of the nessage in the
right half. A process always uses the short form when sending
nessages to <SYSTEM>I NFO.

A long-form message is one page in length (1000 octal words). Wen a
long-form nessage is sent or received, word .|PCFP of the packet
descriptor block contains 1000 (octal) in the left half and the page
nunber of the nmessage in the right half. To send and receive a

7-6

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

| ong-form nmessage, both the sender and receiver nust have bit |PUCFV
(bit 19) set in the first word of the packet descriptor block, or else
an error code is returned

7.4 SENDI NG AND RECEI VI NG MESSACES

To send a nmessage, the sending process nust set up the first four
words of the packet descriptor block. The process then executes the
MBEND% nonitor call. After execution of this call, the packet is sent
to the intended receiver's input queue

To receive a nmessage, the receiving process nust also set up the first
four words of the packet descriptor block. The last two words for the
directories and capabilities of the sender can be supplied, and the
systemwi Il fill in the appropriate values. The process then executes
the MRECV nonitor call. After execution of this call, a packet is
retrieved fromthe receiver's input queue. The input queue is enptied
on a first-nmessage-in, first-nmessage-out basis.

7.4.1 Sending a Packet

The MSEND% nonitor call is used to send a nessage via | PCF. Messages
are in the form of packets of information and can be sent to a
specified PID or to the system process <SYSTEM>I NFO. Refer to Section
7.5 for informati on on sendi ng nessages to <SYSTEM>I NFO

The MSEND% cal | accepts two words of argunents. The length of the
packet descriptor block is given in ACl, and the begi nning address of
t he packet descriptor block is given in AC2. Thus,

ACl: length of packet descriptor block. The Iength cannot be
| ess than 4.

AC2: address of packet descriptor bl ock

The packet descriptor block consists of the follow ng four words:

. | PCFL Fl ags

. | PCFS Sender's PID

. I PCFR Receiver's PID

. | PCFP Pointer to packet data bl ock containing the

nmessage being sent.

Refer to Section 7.3 for the details on the packet descriptor and
packet data bl ocks.

7-7

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

The flags that are neani ngful when sending a packet are described

in

Table 7-2. Refer to Table 7-1 for the conplete Iist of flag bits
Table 7-2: Flags Meaningful on a MSEND% Cal
Bit Synbol Meani ng

0 | PYCFB Do not bl ock process if no messages in queue;
if set, error return if no nessages.

1 | PUYCFS The sender's PIDis given in word .IPCFS of
t he packet descriptor bl ock

2 | PUCFR The receiver's PIDis given in word .1 PCFR of
t he packet descriptor bl ock

3 | PUYCFO Al l ow the sender to send one nessage above its
send quot a.

4 | POOTTL Truncate nessage if | ar ger t han space
reserved.

5 | PY%CPD Create a PID for the sender and return it in
word .IPCFS of the packet descriptor block
The PID created is to be permanent and useabl e
by ot her processes according to the setting of
bits | PlWP and | PYNCA.

6 | PO WP The PID created is to be job wde and
permanent until the job logs out. |If this bit
is not on, the PID created is to be tenporary
until the process executes the RESET nonitor
call.

7 | PYNCA The PID created is not to be wused by other
processes.

18 | PUYCFP The message being sent is privileged (refer to
the TOPS-20 Monitor Calls Reference Manual).

19 | PUYCFV The nessage being sent is a |long-form nessage
(that is, a page). The page the nessage is
bei ng sent to cannot be a shared page; it nust
be a private page.

22 | PY&EPN Page nunber in word .IPCFP of the packet

descriptor block is 18 bits | ong.

7-8

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

When bit IPUCFS is on in the flag word, the sender's PIDis taken from
word .IPCFS of the packet descriptor block. This word is zero if bit
IPYCPD is on in the flag word, indicating that a PIDis to be created
for the sender. In this case, the PID created is returned in word
. | PCFS.

When bit IPUCFR is on in the flag word, the receiver's PID is taken
from word .IPCFR of the packet descriptor block. |If this word is O,
then the receiver of the nessage is <SYSTEM>I NFO Refer to Section
7.5 for informati on on sendi ng nessages to <SYSTEM>I NFO.

On successful execution of the MSEND% nonitor call, the packet is sent
to the receiver's input queue. Word .| PCFS of the packet descri ptor
bl ock is updated with the sender's PID. Execution of the wuser's

program continues at the second |location after the MSEND% call
(MSEND%

I f execution of the MSEND% call is not successful, the nessage is not
sent, and an error code is returned in ACl. The execution of the
user's program continues at the instruction follow ng the MSEND% cal |

7.4.2 Receiving a Packet

The MRECV% nmonitor call is used to retrieve a nessage from the
process' input queue. Before a process can retrieve a nmessage, it
must know i f the nessage is a |ong-form message and al so nust set up a
packet descriptor bl ock.

The MRECV% nmonitor call accepts two words of argunments. The |length of
the packet descriptor block is given in ACl, and the begi nni ng address
of the packet descriptor block is given in AC2. Thus,

ACl: length of packet descriptor block. The Iength cannot be
| ess than 4.

AC2: address of packet descriptor bl ock

The packet descriptor block can consist of the following nine words.
The last five words are optional, and if supplied by the receiver, the

val ues of the sender will be filled in by the system

. | PCFL Fl ags

. | PCFS Sender's PID

. I PCFR Receiver's PID

. | PCFP Pointer to packet data bl ock where the nessage is
to be placed.

. 1 PCFD Connected and | ogged-in directories of the sender.

. 1 PCFC Enabl ed capabilities of the sender.

. 1 PCSD Nurber of sender's connected directory.

7-9

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

. | PCAS Account string of sender.
.1 PCLL Byte pointer for destination of sender's node

Refer to Section 7.3 for the details on the packet descriptor and
packet data bl ocks.

The flags that are neani ngful when receiving a packet are described in
Table 7-3. Refer to Table 7-1 for the conplete list of flag bits.

Table 7-3: Flags Meaningful on a MRECV% Cal

Bit Synbol Meani ng

0 | PYCFB If there are no packets in the receiver's
i nput queue, do not block the process and
return an error code if the queue is enpty.
If this bit is not on, the process waits unti
a packet arrives, if the queue is enpty.

1 | PYCFS Use PID referenced in word .| PCFS as sender's
PI D.

2 | PUCFR The receiver's PIDis given in word .1 PCFR of
t he packet descriptor bl ock

3 | PYCFO Al'l ow one send request above quot a. (Def aul t
send quota is 2.)

4 | POOrTL Truncate the nessage if it is larger than the
space reserved for it in the packet data
block. If this bit is not on and the nessage

is too large, an error code is returned and no
nmessage i s received

5 | PUCPD Create PID for sender and return in word
. | PCFS.

6 | PY%WP Make created PID job w de (ignored unless
| PYCPD set).

7 | PYNOA Do not allow other processes to use created

PI D (ignored unless | PYCPD set).

18 | PYCFP Packet is privileged (requires |PCF capability
enabl ed) .

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

19 | PUYCFV The message is expected to be a long-form
nmessage (that is, a page). The page the
nmessage is being stored into cannot be a
shared page; it nust be a private page

22 | PY&EPN Page nunber in word .IPCFP of the packet
descriptor block is 18 bits | ong.

The information in word . IPCFS is not supplied by the receiver when
the MRECV% call is executed. The systemfills in the PID of the
sender of the packet when the packet is retrieved.

Wrd .IPCFR is supplied by the receiver. |If bit IPKCFRis on in the
flag word, then the PID receiving the packet is taken fromword .| PCFR
of the packet descriptor block. If bit IPAKFR is not onin the flag
word, then word .|IPCFR contains either -1, to receive a packet for any
PID belonging to this process, or -2, to receive a packet for any PID
belonging to this |job. Wen -1 or -2 is given, packets are not
received in any particular order except that packets from a specific
PID are received in the order in which they were sent. Any other
values in this word cause an error code to be returned.

The information in words .IPCFD and . IPCFC is al so not supplied by the
receiver. |f these two words have been specified by the receiver, the
systemfills in the infornmati on when the packet is retrieved. Word
.IPCFD contains the sender's connected directory in the left half and
the sender's logged-in directory in the right half. wrd . IPCFC
contains the enabl ed capabilities of the sender. These words describe
the sender at the tinme the nessage was sent.

On successful execution of the MRECV% nmonitor call, the packet is
retrieved and placed into the packet data bl ock as indicated by word
.| PCFP of the packet descriptor block. ACl contains the length of the
next packet in the queue in the left half and flags fromthe next
packet in the right half (see below). This word returned in AClL is
called the associated variable of the next packet in the queue. |If
there is not another packet in the queue, ACl contains zero.
Execution of the wuser's programcontinues at the second instruction
after the MRECV% cal |

The flags returned in the right half of ACL on successful execution of
the MRECV% nonitor call are described in Table 7-4.

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

Table 7-4: MRECV% Return Bits

Bit Synbol Meani ng

30- 32 | PUCFC System and sender <code, set only by a
privileged process. The packet was sent by
<SYSTEM-I PCF if the code is 1(.I1PCCC). The
packet was sent by the systemwi de
<SYSTEM-INFO i f the code is 2(.IPCCF). The
packet was sent by t he receiver's
<SYSTEM-INFO i f the code is 3(.1PCCP).

33-35 | PYCFM Field for return of special nessages. | f
the field contains 1(.IPCFN), then the
process' input queue contains a packet that
was sent to another PID, but was returned
to the sender because it <could not be
del i ver ed.

I f execution of the MRECVWhbcall is not successful, a packet is not
retrieved, and an error code is returned in ACL. The execution of the
user's program continues at the instruction follow ng the MRECV% cal |

7.5 SENDI NG MESSAGES TO <SYSTEM:I NFO

The <SYSTEM:I NFO process is the central information utility for |PCF
It perforns functions associated with nanmes and PIDs, such as,
assigning a PID or a nane or returning a nane associated with a PID.

A process can request functions to be performed by <SYSTEM-INFO by
executing the MSEND% nonitor <call (refer to Section 7.4.1). The
nessage portion of the packet (that is, the packet data bl ock) sent to
<SYSTEM-I NFO contains the request being made. |n other words, the
total request to <SYSTEM>INFO is a packet consisting of a packet
descriptor block and a packet data bl ock containing the request.

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

Packet Descriptor Bl ock

Refer to Section 7.4.1 for the descriptions of the words in the packet
descriptor block. The receiver's PID (word .IPCFR) is 0 when sendi ng
a packet to <SYSTEM>I NFO

7.5.1 Format of <SYSTEM->I NFO Requests

As mentioned previously, the packet data block (that is, the nessage
portion) of the packet contains the request to <SYSTEM>I NFO

The first word (word .IPCI0O) contains a user-defined code in the Ileft
half and the function being requested in the right half. The
user-defined code is used to associate the response from <SYSTEM>-I NFO
with the correct request. The functions that the process can request
of <SYSTEM>I NFO are described in Table 7-5.

The second word (word .1PCI1) contains a PID associated with a process
that is to receive a duplicate of any response from <SYSTEM>I NFO. | f
this word is zero, the response from <SYSTEM>INFO is sent only to the
process maki ng the request.

The third word (word .IPCl2) contains the argument for the function
specified in the right half of word .1PCI0. The argunent is different
dependi ng on the function being requested. The arguments for the
functions are described in Table 7-5.

7-13

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

Table 7-5: <SYSTEM>I NFO Functions and Argunents

Functi on Ar gunent Meani ng

.1 PCIW name Return the PID associated with the
given nane (refer to Section 7.3.2 for
the description of the nane).

I PCG PI D Return the name associated wth the
gi ven PID.
.1 PClI nane in Assign the given name to the PID
ASCl Z associated with the process naking the
request. The PID is pernmanent if

| PRIWP was set in the flag word when
the PID was originally created (refer
to Table 7-1).

.1 PClJ name in Identical to .IPCIl function.

ASCl Z

7.5.2 Format of <SYSTEM>I NFO Responses

Responses from <SYSTEM>INFO are in the formof a packet sent to the

process that nmmde the request.

A copy of the response is sent to the

PID given in word .IPCI1, if any.

The nmessage portion (that is, the packet data block) of the packet
contains the response from <SYSTEM>I NFO. The format of this response

I'S

The first word (word .IPCI0O) contains the user-defined code in the

left half and the function

that was requested in the right half.

These val ues are copied fromthe values given in the request.

The second and third words (words .IPCI1 and .IPCI2) contain the
response fromthe function requested of <SYSTEM-I NFO. The response is

7-14

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

di fferent depending on the function requested. The responses fromthe
functions are described in Table 7-6.

Table 7-6: <SYSTEM:I NFO Responses

Functi on Request ed Response

.1 PCIW The PID associated with the name given in
the request is returned in word .1PCl 1.

I PCIG The nane associated with the PID given in
the request is returned in word .1PCl 1.

A PC No response is returned

7.6 PERFORM NG | PCF UTI LI TY FUNCTI ONS

A process can request various functions to be performed by executing
the MJTIL% nonitor «call. Some of these functions are enabling and
di sabling PIDs, creating and deleting PIDs, and returning quotas.
Several of the functions that can be requested are privileged
functions. These are described in the TOPS-20 Mnitor Calls Reference
Manual

The MJTI L% nonitor call accepts two words of argunent. The length of
the argument block is given in ACl, and the begi nning address of the
argunent block is given in AC2.

The argunent bl ock has the follow ng fornmat:

The argunents are different, depending on the function bei ng
request ed. Any values resulting from the function requested are
returned in the argunment bl ock, starting at the second word.

Tabl e 7-7 describes the functions that can be requested, the argunents
for the functions, and the values returned fromthe functions.

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

Table 7-7: MJTI L% Functi ons

Functi on Meani ng
. MUENB Allow the PID given to receive packets. [|f the
process executing the call is not the owner of

the PID, the process must be privileged.

Ar gunment
PI D

Val ue Ret ur ned
None

. MJUDI S Di sable the PID given from receiving packets.
If the process executing the call is not the
owner of the PID, t he process nmust be
privil eged.

Ar gunment
PI D

Val ue Ret ur ned
None

. MUGTI Return the PID associ ated w th <SYSTEM>I NFO

Ar gunment
PI D or job nunber

Val ue Ret ur ned
Pl D of <SYSTEM>| NFO

. MUCPI Create a private copy of <SYSTEM-INFO for the
specified job. The <caller must have |PCF
capabi lity enabl ed.

Ar gunment
PID to be assigned to <SYSTEM>I NFO
PID or nunmber of job creating private copy

. MUDES Del ete the PID given. The process executing the
call must own the PID being del eted.

Ar gunment
PID to be del eted

Val ue Ret ur ned
None

. MUSSQ

. MUFQJ

. MUFJP

. MUFSQ

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

Create a PID for the process or job given. | f
the job nunber given is not that of the process
executing the call, the process nmust be

privileged. The flag bits that can be specified
are | PWP and | PUNOA (refer to Table 7-1 for
their descriptions).

Ar gunment
flag bits in the left half, and process
handl e or job nunber in the right half

Val ue Ret ur ned
PI D t hat was created

Set send and receive quotas for the specified
PI D. The <caller nmust have |PCF capability
enabl ed. The new send quota is given in bits
18-26, and the new receive quota is given in
bits 27-35. The receive quota applies to the
specified PID, but the send quota applies to the
job to which that PID bel ongs.

Argunment s
PI D
new quot as

Return the nunber of the job associated with the
PI D gi ven.

Ar gunment
PI D

Val ue Ret urned
Job nunber associated with PID given

Return all PIDs associated with the job given.

Ar gunment
j ob nunber or PID belonging to the job

Val ues Ret ur ned

Two-word entries for each PID belonging to
the job. The first word of the entry is the
PID, and the second word has bits | Pl@WP and
| PMNOA set if appropriate (refer to Table
7-1 for the descriptions of these bits).
The Ilist of entries returned is term nated
by a zero word.

Return the send quota and the receive quota for
the PID given.

. MUFFP

. MUSPQ

. MUFPQ

. MUQRY

. MUAPF

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

Ar gunment
PI D

Val ues Ret ur ned
Send quota in bits 18-26 and receive quota
in bits 27-35.

Return all PIDs associated with the process of
the PID given.

Ar gunment
PI D

Val ues Ret ur ned

Two-word entries for each PID belonging to
the process. The first word of the entry is
the PID, and the second word has bits | Pl@WP
and | P¥WNOA set if appropriate (refer to
Table 7-1 for the descriptions of these
bits). The list of entries returned is
term nated by a zero word.

Set the maxi mum nunber of PIDs allowed for the
specified job. The <caller must have |PCF
capability enabl ed

Ar gunment
job number or PID
PI D quot a

Return the nmaxi mum nunber of PIDs allowed for
the job given.

Ar gunment
Job number or PID belonging to the job

Val ue Returned
Nurmber of PIDs allowed for the job given

Return the packet descriptor block for the next
packet in the queue of the PID given.

Ar gunent
PID, -1 to return the next descriptor block
for the process, or -2 to return the next
descriptor block for the job

Val ues Ret ur ned
Packet descriptor block of next packet in
queue.

Associate the PID given with the process given.

7-18

. MUPI C

. MURSP

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

Argunment s
PI D
process handl e

Val ue Ret ur ned
None

Pl ace the specified PID on a software interrupt
channel. An interrupt is then generated when

1. The MJPIC function is issued while the PID
has one or nobre nessages inits receive
qgueue.

2. The PID s receive queue changes its state
from enpty to cont ai ni ng a nmessage.
Subsequent entries to a queue that is not
enpty do not cause an interrupt.

I f the channel nunber is given as -1, the PIDis
renoved fromits current channel

The calling process and the process that owns
the specified PID nust belong to the sanme job.

Argunent s
PI D
channel nunber

Set the PID of <SYSTEMINFO. An error is given
if <SYSTEM>INFO already has a PID. The caller
must have | PCF capability enabl ed

Argunent s
PI D of <SYSTEM>I NFO

Return a PID fromthe systemPID table. The PID
is returned in word 2 of the argunent bl ock
The system PID table currently has the foll ow ng
entries:

0 .SPIPC Reserved for Digital
1 .SPINF PID of <SYSTEM>I NFO
2 .SP@R PID of QUASAR
3 .SPVMDA PID of QSRVDA
4 .SPOPR PID of ORION

Ar gunent

index into system PID table

| NTER- PROCESS COVMUNI CATI ON FACI LI TY

. MUMPS Return the maxi mum packet size for the PID
gi ven.

Ar gunment
PI D

Val ue Ret urned
Maxi mum packet size for PID

. MUSKP Set PID to receive deleted PID nessages. Allows
a controller task to be notified if one of its
subordi nate tasks crashes. After this function

is perforned, if the subordinate PIDis ever
deleted (via RESET or t he .MUDES MJTIL
function), the nonitor will send an | PCF nessage

to the controlling PID notifying it that the
subordinate PID has been deleted. This nessage
contains .1 PCKP in word O and the deleted PID in
word 1.

Ar gunment
Sour ce (subordinate) PID
oj ect (controller) PID

. MURKP Return controlling PID for this subordinate PID
Ar gunent

Sour ce (subordinate) PID
oject (controller) PID (returned)

On successful conpletion of the MJTIL% nonitor call, the function
requested is performed, and any value is returned are in the argunent
bl ock. Execution of the wuser's program continues at the second
| ocation followi ng the MJTI L% cal |

I f execution of the MJTIL% nonitor call is not successful, no
requested function is performed and an error code is returned in ACL.
Execution of the user's programcontinues at the |location follow ng
the MJTI L% cal |

7-20

CHAPTER 8

USI NG EXTENDED ADDRESSI NG

The term "extended addressing" refers to the size of the addresses
that TOPS-20 uses on the DECSYSTEM 20 Ext ended KL10 processor. d der
versions of TOPS-20 (Release 4.1 and before) wused 18-bit addresses;
newer versions (Release 5 and after) use 30-bit addresses.

This chapter discusses the two main activities associated wth using
TOPS-20 nonitor calls with extended addressing:

1. Witing new prograns for execution in sections of nmenory
ot her than section 0

2. Converting existing prograns so that they can be executed in
sections other than section O

This chapter also contains information on hardware instructions and
macros useful to MACRO progranmmers who use extended addressing.

The discussion in this chapter depends heavily on the material in the
DECsyst em 10/ DECSYSTEM 20 Processor Reference Manual. Refer to that
manual for a description of the format of 30-bit addresses, the
al gorithmthe processor uses to calculate effective addresses, and the
way that individual nmachine instructions work.

8.1 OVERVI EW

The TOPS-20 extended address space contains 32 (decinal) sections.
Each section contains 512 pages of 512 words each (256K words). An
18-bit address, called a |local address, can reference any word in a
gi ven section. A 30-bit, or global, address can reference any word in
any section of nenory.

In contrast, TOPS-20 V4.1 and earlier provided an 18-bit, 256K-word
address space. The Program Counter (PC) register was 18 bits. For
each instruction executed, the first action taken was the conputation
of an 18-bit effective address. The algorithmfor calculating the

8-1

USI NG EXTENDED ADDRESSI NG

ef fective address (including indexing and indirecting rules) was the
sane for all instructions.

Because the TOPS-20 virtual address space is limted to 32 sections,
and section nunbers longer than 5 bits are illegal, |egal addresses
are effectively limted to 23 bits. Wen addressing data, you can
view this 32-section address space as one |l arge nenory area.

Fromthe point of view of program execution, however, nenory is
divided into 32 discrete sections. A program can have code in nore
than one section of nmenory, and it can execute that code (assum ng the
constraints discussed bel ow), but it nust change sections explicitly,
as di scussed bel ow.

Conpatibility for existing prograns is provided by section O. A
program running in section O behaves as though it were being executed
on a system wthout extended addressing, except for certain
instructions such as XJRSTF. For nore information on the actions of
specific instructions, see the DECsystem 10/ DECSYSTEM 20 Processor
Ref er ence Manual .

8.2 ADDRESSI NG MEMORY AND ACS

The extended f or mat PC contains a section field and a
word-wi thin-section field. Wen an instruction is executed, only the
word field is increnented. Colum overflow is never carried from the
word field to the section field. |If the last word of a section is
executed, and it is not a junp instruction, then the next instruction
is fetched fromword O of the same section. Thus a program can only
change sections explicitly, by neans of a PUSHJ, JRST, XJRST or XJRSTF
instruction, and only an XJRST or an XJRSTF can change control from
section 0 to another section.

Because a whol e word cannot contain a 30-bit address and the program
flags, the PC and flags are a two-word entity. The flag bits are in
the first word, and the figure below represents the second word.
Figure 8-1 shows the format of the address fields of the PC

I un- ! section ! wor d-wi t hi n- !
I used ! nunber ! section !

Figure 8-1: Program Counter Address Fields

USI NG EXTENDED ADDRESSI NG

The word (word-within-section) field consists of 18 bits and thus
represents a 256K-word address space sinilar to the single-section
address space of release 4 and earlier. The section nunber field is
12 bits, of which only the right-hand five bits can be nonzero because
section nunbers greater than 31 are illegal. The |leftnpst seven bits
of the section nunber field nust be zero. This provides roomto
address 32 separate sections, each of 256K words.

Each section is further divided into pages of 512 words, just as in
earlier rel eases. The paging facilities allow the nonitor to
determ ne the existence and protection of each section

The PC section field determ nes what section a programis running in.
If the section field contains zero, the programis running in section
0. Most extended addressing features are not available to a program
running in section O. Al quantities (including addresses), when
cal cul ated fromsection 0, are considered to be local (18 bits).

1. A program executing in section O cannot address menory in any
ot her section. (One-word global byte pointers are an
exception to this rule. Refer to Chapter 1 of the TOPS-20
Monitor Calls Reference Manual for nore information.)

2. The program cannot junp fromsection O to another section
unless it wuses a nonitor call or the XJIRST or XJRSTF
i nstruction.

3. The programruns exactly as it would run on a machi ne without
ext ended addressi ng.

If the section field contains a nunber from 1 to 31 (decinal)
inclusive, the program is executing in a nonzero section (a section
ot her than section 0). The hardware considers addresses to be 30
bits, and the program can use extended addressing features.

A local address is defined as an 18-bit address in the sane section as
the program counter (PC) of the instruction. Local addresses are
relative to the PC section. A global address is a 30-bit address,
whi ch therefore supplies its own section nunber.

The foll owi ng paragraphs explain the way effective addresses are
calculated in nonzero sections. |In addition, see the description in
t he DECsystem 10/ DECSYSTEM 20 Processor Reference Manual

8.2.1 Instruction Format

The format of a machine instruction is the same as on an unextended
machi ne. The effective address calculation depends on the address
field (Y, 18 bits), the index field (X, 4 bits), and the indirect
field (I, 1 bit). Figure 8-2 shows these fields.

8-3

USI NG EXTENDED ADDRESSI NG

0 89 12 13 14 17 18 35

Figure 8-2: Instruction Wrd Address Fields

If | and X are 0, the instruction wuses neither indexing nor
indirection, so the effective address is Y (18 bits). The section
nunmber, since it is not specified in the address, is taken from the
section field of the PC. The PC section field contains the nunber of
the section fromwhich the instruction was fetched. Such an 18-bit
address is called a | ocal address.

The following is an exanple of an instruction whose I, X and Y fields
evaluate to an 18-bit effective address.

3,, 400/ MOVEM T, 1000
The effective address is word 1000 of the current section. The

section from which the instruction is fetched is section 3, so the
instruction noves the contents of register T into nemory word 3,, 1000.

8.2.2 Indexing

The first step in the effective address cal culation is indexing. | f
the X field is nonzero, indexing is used. The calculation of the
ef fective address then depends on the contents of the specified index
regi ster. Indexing may be |l ocal or global as follows:

o If the left half of the index register contains a negative
number or zero, the contents of the right half (bits 18-35)
are added to Y (fromthe instruction word) to yield an 18-bit
| ocal address.

This is the way indexing is done on an unextended nmachine.
It allows a programto use the usual AOBJN pointer and stack
pointer formats for tables and stacks that are in the sane
section as the program Note, however, that if the left half
of the index register contains a positive nunber, the results
are not the sane.

o If the left half of the index register contains a positive
number, the contents of bits 6-35 of the register are added
to Yto yield a 30-bit gl obal address.

USI NG EXTENDED ADDRESSI NG

This neans that instructions can reference 30-bit (global)
addresses by neans of an index register. |If the Y field is
0, the instruction refers to the address contained in X. The
Y field can contain a positive or negative offset of
magni tude | ess than 2717

8.2.3 Indirection

If the | field contains 1, the instruction specifies indirection. An
indirect word is fetched fromthe address deternined by Y and X. Two
types of indirect word exist, Instruction Format Indirect Word (IFI'W
and Extended Format Indirect Word (EFIW. They are described in the
foll owing section

8.2.3.1 Instruction Format Indirect Word (IFIW - This word contains
Y, X and | fields of the sanme size and in the sanme position as
instructions (in bits 13-35). Bit O nust be 1, and bit 1 nust be O0;
bits 2-12 are not used.

Figure 8-3 shows an instruction format indirect word.

012 12 13 14 17 18 35

(N P ! !

110! (not used) !l I X ! Y !

[P ! !
Figure 8-3: Instruction Format |ndirect Wrd

The effective address cal culation continues wth the quantities in
this word just as for the original instruction. |ndexing can be
speci fied and can be | ocal or global depending on the left half of the
index. Further indirection can also be specified.

Note that the default section for any local addresses produced from
this indirect word is the section fromwhich the word itself was
fetched. This neans that the default section can change during the
course of an effective address calculation that uses indirection. The
default section is always the section fromwhich the | ast address word
was fetched

USI NG EXTENDED ADDRESSI NG

8.2.3.2 Extended Format Indirect Wrd (EFIW - This wor d al so
contains Y, X, and | fields, but in a different format. Figure 8-4
shows an extended format indirect word.

Figure 8-4: Extended Format I|ndirect Word

If indexing is specified in this indirect word (bits 2-5 nonzero), the
contents of the entire index register are added to the 30-bit Y to
produce a global address. This type of indirect word never produces a
| ocal address. The type of address cal cul ati on used does not depend
on the contents of the index register specified in the X field.

Hence either Y or Y(X) can be used as an address or an offset wthin
the extended address space, just as is done in the 18-bit address
space. |If further indirection is specified (bit 1 set), the next
indirect word is fetched fromY as nodified by indexing (if any). The
next indirect word can be in instruction format or extended format,
and its interpretation does not depend on the format of the previous
i ndi rect word.

8.2.3.3 Macros for Indirection - The systemfile MACSYM MAC contains
several convenient nmacros for constructing indirect words. Macro
LFI WM generates local (instruction format) indirect words. Both the
macros EP. and GFl WM may be used to generate gl obal (extended format)
i ndi rect words.

8.2.4 AC References

A local address in the range 0-17 (octal) references the hardware ACs
as nmenory. This is true in every section of nenory.

A gl obal address in section 1 in the range 1,,0 to 1,,17 (octal) also
refers to the hardware ACs. A global address in any other section
refers to menory. This neans that the foll ow ng behavi or occurs.

1. Addresses in the range 0-17 reference ACs as expected. The
i nstruction

MOVE 2, 3

USI NG EXTENDED ADDRESSI NG
fetches the contents of hardware register 3 regardless of
what section the instruction executes in.

2. To make a global reference to an AC, the gl obal address nust
contain a section nunber of 0 or 1.

3. Arrays can cross section boundari es. d obal addr esses
specifying any section except section 1 always refer to
menory, never to the hardware ACs. For this reason

incrementing the address 6,,777777, for exanple, vyields
address 7,,000000, which is a nenory |ocation

4. The ACs are regarded as |l ocal to any section; a |ocal address
(0-17) references the ACs fromany section. Hence, a junp
instruction which yields a local effective address of 0-17 in
any section will cause code to be executed fromthe AGCs.

8.2.5 Extended Addressing Exanpl es

These instructions make |ocal references wthin the current PC
section:

3, , 400/ MOVE T, 1000
JRST 2000

; fetches from 3,, 1000
; junps to 3,, 2000

The followi ng instructions scan table TABL, which is in the current
section:

MOVS X, -SIZ
LP: CAMN T, TABL(X)
JRST FOUND
ACBIN X, LP

; TABL in current section

The followi ng instructions scan table TABL, which is in section TSEC,
by using a gl obal address:

MOVEI X, O
LP: CAMN T, @ GFl WM TSEC, TABL(X)] ; extended format
JRST FOUND
CAIGE X, Sl Z-1
AQJIA X, LP

Simlarly, the EP. nacro can be used for the sane purpose

MOVEl X, 0
LP: CAWN T, @ EP. <TSEC>B17! TABL(X)]
JRST FOUND
CAIGE X, Sl Z-1
AQIA X, LP

USI NG EXTENDED ADDRESSI NG

The followi ng exanples illustrate various aspects of indexing and
indirection in effective address cal cul ati on:

4/ 100

6, , 1000/ MOVE 1, @000
6, , 2000/ LFI W, @000

6, , 4000/ LFI WM 200(4)

Ef fecti ve address = 300 in section 6

6,,SUB/ MOVE 1, @LFI VW @ZzZ]

6,,27Z: LFI W @XX
XXX LFI WM ARRAY(4)

Ef fecti ve address = ARRAY+100 in section 6

6/ 14, , ADDRX
11, , ROU MOVE 1, @ LFI WM (6)]

14, , ADDRX: LFI VWM 100

Ef fecti ve address = 14,, 100

8.2.6 |Imediate |Instructions

Each effective address calculation yields a 30-bit address, defaulting
the section if necessary. I Mmediate instructions wuse only the
| ow-order 18 bits of this as their operand, however, and set the
hi gh-order 18 bits to 0. Hence instructions such as MOVEI and CA
produce identical results regardl ess of the section in which they are
execut ed.

Two i mmedi ate instructions retain the section field of their effective
addresses. These are:

o XMOVElI (opcode 415) Extended Mwve | medi ate

0 XHLLI (opcode 501) Extended Hal f Word Left to Left Inmediate

8.2.6.1 XMOVElI - The XMOVEl instruction loads the 30-bit effective
address into the AC, and sets bits 0-5to0 0. |If no indexing or
indirection is used, the nunmber of the current section is copied from
the PC to the AC. This instruction can replace MOElI when a gl oba

address is needed.

USI NG EXTENDED ADDRESSI NG

The foll owi ng exanpl e shows the use of the XMOVElI instruction in a
subroutine call. The subroutine is in section XSEC, but the argunent
list is in the sane section as the calling program

XMOVEl AP, ARGLI ST
PUSH] P, @ GFI WM XSEC, SUBR]

The subroutine can reference the argunents wth the fol | owi ng
i nstruction.

MOVE T, @ (AP)

To construct the addresses of argunents, the subroutine can use the
followi ng instruction.

XMOVEI T, @(AP)

The last two instructions assune that register AP contains the
argument list pointer. |If the address the calling program placed in
AP is an IFIW the section nunber in the effective address is that of
the calling program |f the address the calling program placed in AP
is an EFIW the section nunber in the effective address of the
argument block is determined by the section nunber the calling program
pl aced in AP.

The argunent list would be found in the caller's section because of
the global address in AP. The section of the effective address is
determined by the caller, and is inplicitly the same as the caller if
an |FIW is used as the arglist pointer, or is explicitly given if an
EFIWis used.

8.2.6.2 XHLLI - The XHLLI instruction replaces the left half of the
accumul ator with the section nunber of the PC, and places zero in the
right half of the AC. This instruction is wuseful for constructing
gl obal addresses.

8.2.7 Oher Instructions

The instructions discussed here are affected by extended addressing,
but not necessarily in the way that their effective addresses are
calculated. In addition to the material presented here, see the
DECsyst em 10/ DECSYSTEM 20 Processor Reference Manual regarding the
following instructions: LUUGs, BLT, XBLT, XCT, XJRSTF, XJEN, XPCW
SFM

USI NG EXTENDED ADDRESSI NG

8.2.7.1 Instructions that Affect the PC - These instructions are
PUSHIJ, POPJ, JRST. PUSH] stores a 30-bit PC address, but stores no
flags. It sets bits 0-5 of the destination word to O

POPJ restores a 30-bit PC address fromthe stack, but does not restore
the flags. It also sets bits 0-5 of the destination word to O.

The JSA and JRA instructions can be used only within a section. In
section 0 the JSP and JSR instructions can store flags,,PC but then
cannot transfer out of section 0. The JSP and JSR instructions can
store flags,,PC in nonzero sections and then can transfer into any
other section (if the address is specified wth i ndexi ng or
i ndirection).

8.2.7.2 Stack Instructions - PUSHJ, POPJ, PUSH POP, and ADISP.
These instructions use a local or global address for the stack

according to the contents of the stack pointer. Whet her the stack
address is local or global depends on the sanme rules as those that
govern indexing in effective address calculation. (See section
8.2.2.) It is always best to use the ADJSP instructi on when worKki ng
with stacks. This instruction works in any section and will indicate

when a pushdown overfl ow error occurs.

In brief, if the left half of the stack pointer is zero or negative
(prior to increnmenting or decrenenting), the pointer references a
| ocal address and the address in its right half is the address of the
current item in the stack. The stack pointer is increnmented or
decrenented by adding or subtracting one from both si des,
respectively.

If the left half of the stack pointer is positive, the entire word is
taken as a global address. The stack pointer is increnented by adding
1, and decrenented by subtracting 1.

A stack that contains global addresses can be used the sane way a
|l ocal stack is used. The global stack, however, can contain pointers
to routines in other sections.

To protect agai nst stack overflow and underfl ow, nake the pages before
and after the stack inaccessible. This nethod nust be used because a
gl obal stack has no roomfor a count in the left half of the pointer.

8.2.7.3 Byte Instructions - To reference a byte in another section,
you nust use either a one-word, or a two-word, gl obal byte pointer.
Both global and |ocal byte pointers are legal argunents to nonitor
calls fromnonzero sections but there are sone restrictions on the use
of one-word gl obal byte pointers fromsection 0. See Section 8.3 for
further information.

8- 10

USI NG EXTENDED ADDRESSI NG

Chapter 1 of the TOPS-20 Mnitor Calls Reference Mnual describes
one-word gl obal byt e poi nters. The DECsyst em 10/ DECSYSTEM 20
Processor Reference Manual describes two-word gl obal byte pointers.

8.3 USING MONI TOR CALLS

If a programruns in a single section, even though that section is not
section 0, nobst nonitor calls execute exactly the way they do in
section 0. This is because when no section nunber is specified, the
current section is the default.

The GITFDB% call, for exanple, requires that AC3 contain the address of
the block in which to store the data it obtains fromthe file data
bl ock. This address can be an 18-bit address regardless of what
section the nmonitor call is made from Wen the nonitor sees that the
address is local, it obtains the section nunber from the PC of the
process that nakes the call.

The same is true of calls that accept page nunbers. |If a 9-bit page
nunmber s passed as an argunent, the nonitor obtains the section
number fromthe PC of the process that nade the call. Monitor calls

arguments are discussed in Chapter 1 of the TOPS-20 Monitor Calls
Ref er ence Manual

It is sonetines desirable to specify addresses in section 0 when
executing a JSYS froma nonzero section. The bit PM&PN for PMAP%
and FHYEPN for JSYSs that accept fork handles, prevent the current
section (the section in which a programis running) frombeing the
target section for the nonitor call's argunents.

Anot her restriction on argunments passed to nonitor calls executed in
sections other than section O concerns universal device designators,
which have the format 5xXXXX,,XXXXXX Or BXXXXX,,XXXXxX (. DVDES)
Uni versal device designators are not |egal except in section 0. This
i s because of the existence of one-word global byte pointers, which
can have the sane format.

Thus nonitor calls that accept either a device designator or a byte
pointer when called from section 0O do not accept universal device
designators in any other section. Oher device designators, such as
.TTDES (O0,, 4xxxxx), can be wused in any section. Conversely, these
nonitor calls that can accept either universal device designators or
byte pointers do not accept one-word gl obal byte pointers in section
0.

The calls SIR¥% and R R% should not be used in sections other than
section O. These calls work in other sections only if all the code
associated with these calls exists in the sane section as the code
that makes the call

8-11

USI NG EXTENDED ADDRESSI NG

For exanple, if an SIR%call is executed in section 4, it executes
correctly if and only if the code that generates the interrupts, the
interrupt-processing routines, and all associated tables are also

| ocated in section 4. Thus, in prograns intended to run in a section
other than section 0, the XSIR¥% and XRI R% calls, described in Chapter
4, should be wused in place of SIRwand RIR% |In general, it is
reconmended that the extended form of monitor calls be used since this
formworks in any section, including section O.

8.3.1 Mapping Menory

The PMAP% nmonitor call accepts an 18-bit page nunber, half of which is

a section nunber. Thus PMAP% can be used to map a page from one
section to another. |f the destination section does not exist, that
section will be created

The SMAP% nonitor call naps one or nore sections of menory. It works
like the PMAP call, but maps sections instead of pages. |If the

destinati on section does not exist, SMAP% creates the section.

Access to the sections in a process map is deternined by the sane
algorithmthat determ nes access to a page within a given section. |f
a process section and a page in that section have different accesses,
the access privileges are ANDed together. The process requesting
access to the page gains access only if it has access rights at |east
equal to the ANDed protections

For exanple, if a process has read access to a section and maps a page
into that section for which the process has read and wite access, the
page i s mapped, but the process gets only read access to the mapped

page.

The foll owi ng sections describe the SMAP% functi ons.

8.3.1.1 Mapping File Sections to a Process - This function naps one
or nore sections of a file to a process. Al pages that exist in the
source sections are mapped to the destination sections. Access to the
mapped pages is determined by ANDi ng the access allowed to the file
and the access specified in the SMAP% cal | .

Al though files do not actually have section boundaries, this nonitor
call views them as having sections that consist of 512 contiguous
pages. Each file section starts with a page nunber that is an integer
mul ti ple of 512.

This call cannot map a process nenory section to a file. To map a

process section to a file, wuse the PMAP% nonitor call to map the
section page- by- page.

8-12

USI NG EXTENDED ADDRESSI NG

This function of the SMAP% call requires three words of argunments, as
foll ows:

ACl: source identifier: JFN,,file section nunber

AC2: destination identifier: fork handle,, process section nunber

AC3: flags,, count
The flags determ ne access to the destination section, and the count
is the nunber of contiguous sections to be mapped. The count nust be
between 0 and 37 (octal). The flags are as foll ows.

B2(SMARD) Al l ow read access

B3(SMAR) Allow wite access

B4(SM/AEX) Al | ow execute access

B18- 35 The number of sections to map. This nunber nust be
between 1 and 37 (octal).

8.3.1.2 Mapping Process Sections to a Process - The SMAP% nonitor

call also maps sections from one process to another process. In
addition, you can map one section of a process to another section of
the sane process. The SMAP% call maps all pages that exist in the

source section to correspondi ng pages in the destination section

If you map a source section into a destination section with SWAdND
set, SMAP% creates the destination section using an indirect pointer.

This neans that the destination section will contain all pages that
exi st in the source section, and the contents of the destination pages
will be identical to the contents of the source pages.

Furthernore, after SMAP% has mapped the destination section, changes
that occur in the source section nap cause the sanme changes to be made
in the destination section map. This ensures that both the source
section and the destination section contain the sane data.

If SMAND is not set, SMAP% creates the new section using a shared
pointer. After SMAP% maps the destination section, changes that occur
in the source section's map do not cause any change in the destination
section's map. Thus after a short tinme the source and destination
sections nmight contain different data.

I f you request a shared pointer (SMAND not set) to the destination

section, what happens depends on the contents of the source section
when the SMAP% cal | executes. The outcone is one of the follow ng.

8-13

USI NG EXTENDED ADDRESSI NG

1. If the source section does not exist, the SMAP% call creates
t he section.

2. If the source is a private section, a napping to the private
section is established, and the destination process is
co-owner of the private section.

3. |If the source section contains a file section, the source
section is napped to the destination section.

4. If the source section map is nade by neans of an indirect
section pointer, SMAP% follows that pointer until the source
section is found to be nonexistent, a private section, or a
section of a file.

This SMAP% function requires three words of argunents in ACl through
AC3.

AC1: Source identifier: fork handle,, section nunber
AC2: Destination identifier: fork handle,, section nunber
AC3: access flags,,the nunber of contiguous sections to map.

The nunber of sections mapped, the nunber in the right
hal f of AC3, nust be between 1 and 37.

The flags determ ne access to the destination section.
The flags are as foll ows:

B2 (SMARD) Al'l ow read access
B3(SMAR) Allow wite access
B4(SM/AEX) Al l ow execute access

B6(SMA ND) Map the destination section using an indirect
section pointer. Once the destination section
map is created, the indirect section pointer
causes the destination section map to change
in exactly the same way that the source
section map changes.

B18- 35 Count of the number of contiguous sections to
be mapped.

8.3.1.3 Creating Sections - Before you can use a nonzero section of
menory, you nust create it. If your programreferences a nonzero
section of menory that does not exist (that is not nmapped), the
instruction that makes the reference fails.

8- 14

USI NG EXTENDED ADDRESSI NG

This SMAP% function requires three words of argunents in ACl through
AC3, as follows:

AC1: 0

AC2: destination identifier: fork handle,, section nunber

AC3: fl ags, , count
The flags determ ne access to the destination section, and the count
is the nunber of contiguous private sections to be created. This

count nust be between 1 and 37.

The flags in the left half of AC3 are as foll ows:

B2(SMARD) Al'l ow read access

B3(SMAR) Allow wite access

B4(SM/AEX) Al | ow execute access

B6(SM/4 ND) Create the section using an indirect pointer

B18- 35 The nunber of sections to create. This nunber

must be between 1 and 37. All created sections
are contiguous.

8.3.1.4 Unmapping a Process Section - You can use the SMAP% nonitor
call to wunmap one or nore sections of nenory in a process. The
contents of the section are |ost.

If the section contains pages mapped froma file, this function does
not cause the unmapped sections to be witten back to the file from
whi ch they were mapped. Such pages nust be mapped to the file by
nmeans of the PMAP% call.

This function requires three words of arguments in ACl through AC3, as
foll ows.

AC1: -1
AC2: Destination identifier: fork handle,, section nunber
AC3: 0,, count

The count is the nunber of contiguous sections to be
unmapped. This nunber nust be between 1 and 37

8- 15

USI NG EXTENDED ADDRESSI NG

8.3.2 Starting a Process in Any Section

You can use nost of the calls described in Chapter 5 to contro
prograns that run in a nonzero section. The SFORK% nonitor call is an
exception, and will not start a programin a nonzero section

The XSFRK% nonitor call starts a process in any section of nmenory. |If
the process is frozen (by neans of the FFORK% call), XSFRK% changes
the doubl e-word PC, but does not resume execution of the process. To
resune the execution of any frozen fork, use the RFORK% cal |

The XSFRK% cal |l requires three words of argunents in ACl through AC3.
ACL: flags,, process handl e
Fl ags:

SFYCON(1B0) continue a process that has halted.
If SF¥CON is set, the address in AC3
is ignored and the process continues
fromwhere it was halted

AC2: PC fl ags,, 0
AC3: address to which this call is to set the PC

The XSFRK% call al so starts a process in section 0. To do so, set the
left half of AC3 to zero and the right half of AC3 to the address in
section 0 at which you want the process to start.

Most other calls consider an address with a zero in the left half to
be a local address. The XSFRK% call, however, uses the contents of
AC3 to set the PCC. A PCwith zero in the left half indicates an
address in section O.

8.3.3 Setting the Entry Vector in Any Section

The SEVEC% nonitor call has room in its argument ACs for only a
hal f-word address, so it cannot be used to set a process entry vector
to an address in a nonzero section. The XSVEC% call, on the other
hand, wuses an AC for the address of the entry vector, and another AC
for the length of the entry vector, and can specify an entry vector in
any section of nenory.

The XSVEC% call requires three words of argunents in ACl through AC3.
ACL: process handl e

AC2: length of the entry vector, or 0
AC3: address of the beginning of the entry vector

8- 16

USI NG EXTENDED ADDRESSI NG

The length of the entry vector specified in AC2 nust be | ess than 1000
wor ds. If AC2 contains 0, TOPS-20 assunes a default length of two
wor ds.

8.3.4 ntaining Informati on About a Process

Al though the nonitor calls described in Chapter 5 work in any section
of nenory, several of them can only return information about the
section in which they are executed. The foll ow ng paragraphs describe

the nonitor calls you can use to obtain informati on about any section
of menory.

8.3.4.1 Menory Access Information - Several kinds of information
about menory are inmportant. Anong them are whether a page or section
exists (is mapped), and, if so, what the access to a page or section
is. The RSMAP% and XRMAP% cal ls provide this information
The RSMAP% monitor call reads a section map, and provides information
about the mapping of one section of the address space of a process.
RSMAP% r equi res one word of argunents in ACLl: a fork handle in the
left half, and a section nunber in the right half. It returns the
access information in AC2.
The map i nformation that RSMAP% returns in ACL can be the follow ng:
-1 no current mappi ng present (the section does not exist)
0 the mapping is a private section
n,,m where nis a fork handle or a JFN, and m is a section
nunber. If nis a fork handle, the mapping is an indirect
or shared mapping to another fork's section. If n is a
JEN, the mapping is a shared mapping to a file section.
The access information bits returned in AC2 are the foll ow ng:
B2(SMARD) Read access is all owed
B3(SMAR) Wite access is all owed
B4(SM/AEX) Execute access is all owed
B5(PAYEX) The section exists

B6(SM4 ND) The section was created using an indirect pointer.

8- 17

USI NG EXTENDED ADDRESSI NG

Al t hough the RSMAP% cal | does not return information on individua
pages, the data it does return is useful in preventing error returns
fromthe XRVMAP% nonitor call
The XRMAP% cal | returns access information on a page or group of pages
in any section of nmenory. Although the RVAP% call returns access data
about a page in the current section, and you can use the RSMAP% cal
in any section of nmenory, you nust use the XRVAP% call to obtain
i nformati on about pages in any section other than the current section.
The XRMAP% cal |l requires two words of arguments in ACl and AC2.

ACL: process handle,, 0

AC2: address of the argunent bl ock

The argunent bl ock addressed by AC2 has the followi ng fornat:

i Length of the argunent block, including this word i

\ . \
\ . \
\ . \

The nunmber of words in the argunent block is three tinmes the nunber of
groups of pages for which you want access data, plus one. Each group
of pages requires three argunments: the nunber of pages in the group
the nunmber of the first page in the group, and the address at which
the monitor is to return the access data.

Note that the address to which the nonitor returns data should be in a
section of menory that already exists. |If it does not exist, the cal
will fail with an illegal nenory reference.

The access information returned for each group of pages specified in
the argunent block is the foll ow ng:

8-18

USI NG EXTENDED ADDRESSI NG

B2 (RMARD) read access all owed
B3(RMANR) write access all owed
B4(RM/EX) execute access all owed
B5(RMAEX) page exists

B9(RMAPY) copy-on-wite access

For each page specified in the argunent block that does not exist,
XRVAP% returns a -1. It also returns a zero flag word for each such
page. The data block to which XRVAP% returns the access information
should therefore contain twice as many words as the nunmber of groups
of pages about which you want infornmation.

If you execute an XRMAP% call to obtain information about a page in a

nonexi stent section, the XRVAP% call fails with an illegal nenory
reference. For this reason it is recormended to execute an RSMAP%
call to deternmine that the section exists before you use XRVAP% t o

obtain informati on about any page within that section.

8.3.4.2 Entry Vector Information - To obtain the entry vector of a
process in any section of nenory, use the XGVEC% call. This call
returns the length of the entry vector in AC2 and the address of the
entry vector in AC3.

The XGVEC% cal |l requires one word of argunent: in ACl, the handle of
the fork for which you want the entry vector.

8.3.4.3 Page-Failure Information - A page-fail word, described in the
DECsyst em 10/ DECSYSTEM 20 Pr ocessor Ref erence Manual , cont ai ns
information that allows a programto determne the cause of a page
trap and the address of the instruction that caused the trap. This
information allows a programto correct the cause of the page-fail
trap. Once the program has corrected the cause of the page-fail trap,
the program can continue execution.

The XGTPWsp cal |l obtains the page-fail word from the nonitor's data
base, and returns it to the calling program s address space. The
XGTRP% cal | requires two words of arguments in AClL and AC2.

ACL: process handl e

AC2: address of the block in which to return data

8.3.5 Program Data Vectors

Program Data Vectors (PDVs) are data structures in a process that are
known to the nonitor by nane and |ocation. They contain information

8-19

USI NG EXTENDED ADDRESSI NG

about the program segnments within a process. The PDVis a block of
data that LINK wites into nmenory when | oading and |inking a program
The PDV resides in nenory as a part of the program and starts at a
program data vector address (PDVA). PDVs are used to allow user
prograns to obtain information about other prograns that can be mapped
into a process. PDVs and PDVAs are mani pul ated by using the PDVOP%
nonitor call. (Refer to the TOPS-20 Mnitor Calls Reference Mnual
for a conplete description of the PDVOP% nonitor call.) The PDVOP%
nonitor call can be used to obtain information about an execute-only
process.

Certain words in the PDV (for exanple, .PVNAM point to blocks of
i nformati on. These words are in either |FIWor EFIWformat (see
Sections 8.2.3.1 and 8.2.3.2) except that they cannot wuse indexing,
and any indirect chain pointed to by the word cannot go through an
accumul ator. This allows a programto find the address of a block
pointed to by a PDV word by sinply using an XMOVEl instruction. For
exanpl e,

XVOVEI ACL, @ PVNAM AC2)

puts into ACl1 the gl obal address of the nane of the PDV whose PDVA is
in AC2.

8.3.5.1 Manipulating PDV Addresses - For the process specified in
word .POPHD of the argunent bl ock, the .POGET function of the PDVOP%
nmonitor call returns all PDVAs within the range of addresses specified
in words .POADR and .PQADE of the argunent bl ock. (See the
description of the PDVOP% nmonitor call in the TOPS-20 Mnitor Calls
Ref erence Manual for the fornmat of the argunent block.) The address
range supplied by words . POADR and . POADE determ nes which PDVAs are
af fected by any given call.

The . POADD function of the PDVOP% nonitor call adds the PDVAs
specified in the data block to the systems data base for the
specified process. The PDVAs nust be in ascending order wthin the
dat a bl ock.

The . POREM function of the PDVOP% nonitor call renoves a set of PDVAs
from the systenls data base for the specified process. Those renoved
are the ones within the range specified by words . POADR and . POADE of
the argunent bl ock.

8.3.5.2 PDV Nanmes - The .PONAM function of the PDVOP% nonitor call
returns the ASCIZ name of a PDV in nenory. Wrd .POADR of the
argument bl ock nust contain a valid PDVA for the specified process.
The nanme returned is the one to which word . PVYNAM of the PDV points.
The string returned by . PONAM i s placed into the data bl ock.

8- 20

USI NG EXTENDED ADDRESSI NG

For the specified process, the .POLOC function returns in the data
bl ock all the PDVAs of PDVs with the specified nane. The byte pointer
in AC3 points to the PDV nane. Function .POLOC is affected by
. POADR/ . POADE wor ds.

The followi ng rules apply to the assignment of PDV nanes. If these
rules are followed, it is quite unlikely that two packages that want
to run in the same process will discover a conflict in PDV nanes.

1. PDV nanmes assigned by DIA TAL will contain the character "%
at the end (or elsewhere). No PDV nanmes assigned by users
shoul d contain the "% character.

2. Al PDV nanmes containing the character are reserved to

DI TAL for future use.

3. The character "$" is reserved for a special use: PDV nanes
of the form stringl$string2 are reserved for the special
cl ass of use named by stringl. Rules 1 and 2 still apply in
thi s case.

As a general principle, avoid using PDV nanes that are insufficiently
specific; use of such names invites conflicts with other packages.

8.3.5.3 Version Number - The .POVER function of the PDVOP% nonitor
call returns in the data block the version of a programin nenory.
Word . POADR nust contain a valid PDVA for the specified process. The
version returned is the one that word . PWER of the PDV contains.

For nore information on program data vectors, including explanations
of the static nenmory nmap (pointed to by word . PVYWMEM and the synbol
table vector (pointed to by word .PVSYM, refer to the TOPS-20 LINK
Ref er ence Manual .

8.4 MODI FYI NG EXI STI NG PROGRAMS

Exi sting prograns can be nodified to run in any section of nenory,
including both section 0 and all other sections. The sections that
foll ow di scuss the changes that nust be nade to an existing program so
that it runs in a single nonzero section.

8.4.1 Data Structures
St acks, tables, and other data structures used in the past have often

contained words wth an address in the right half and a count in the
left half. The count <could be positive or negative because all

8-21

USI NG EXTENDED ADDRESSI NG

programs ran only in section 0, and when the contents of a word were
eval uated for Effective Address cal culation or address use in section
0, only the right half was considered.

In all other sections, the entire word is considered to be an address.
If the left half of the word is negative, the left half is ignored
when the address is evaluated, and the address is local. Thus for a
word to contain an address in the right half and a count in the left
hal f, the count nust be negati ve.

8.4.1.1 Index Wrds - Be sure the left halves of index words contain
a nonpositive quantity. To use the left half of an index register to

hold a count, the count nust be negative. |If the left half is unused,
it must be zero so that the effective address is a |local address. |If
the left half contains a positive nunber, the indexed address will be
gl obal

8.4.1.2 Indirect Wirds - To be sure that an indirect word in a
nonzero section is evaluated as a |ocal address, always set bit 0 of
the indirect word. Argunment lists that produce |ocal addresses in
section 0, for exanple, will produce |ocal addresses in any section if
bit 0 is set.

8.4.1.3 Stack Pointers - As mentioned above, the left halves of stack
pointers nust contain zero or a negative nunber to produce |oca
addresses. A negative nunmber in the left half is considered to be a
count . A positive nunber in the left half is considered to be a
section nunber.

8.5 WRITING MULTI SECTI ON PROGRAMS

Mul tisection prograns, prograns that use nore than one section of
menory, are similar to single-section prograns that run in nonzero
sections. They allow you to place tables needed for processing
interrupts in any section of nmenory (See Chapter 4), to use very |large
arrays, and to wite nodul es of code that can be dynanically mapped
into a section of nenory and execut ed.

In a single-section program |ocal addresses and byte pointers are
sufficient to specify any word or byte in the progranmi s address space.
In a nmultisection program |ocal addresses and byte pointers cannot
specify any word or byte in the program s address space. Mst nonitor
calls use only one AC per argunent, so passing two-word global byte
pointers is not possible. Thus, it is necessary to:

8-22

USI NG EXTENDED ADDRESSI NG
o keep monitor call argunments in the same section of nmenory as
the code nmaking the call, or
o wuse global argunents, or

0 use the global formof the nonitor call

In many nultisection progranms it is not necessary to keep all the
arguments required by a call in the same section as the code that
nmakes the call. dobal argunents are required, and they take severa

forns. Chapter 1 of the TOPS-20 Mnitor Calls Reference Manual gives
details on the use of these argunents.

The follow ng program conmputes a file checksum by XORing the words in
all file pages. The programis |oaded into section 0 and naps itself
into section 1. It then junps into section 1 to access the file data
| oaded into section 15.

TI TLE CHKSUM - COWPUTE A FI LE CHECKSUM

SEARCH MONSYM ; STANDARD UNI VERSAL FI LES
SEARCH MACSYM

. REQUI RE SYS: MACREL ; GET JSERR SUPPORT ROUTI NES
STDAC. ; DEFI NE STANDARD ACS

; PROGRAM CONSTANTS

PDLSI Z==100 . SI ZE OF STACK
CODSEC==1 : SECTI ON TO MAP CODE | NTO
DATSEC==15 . SECTI ON TO MAP FI LE DATA | NTO
DATPAG==100 . PAGE W THI N DATSEC FOR FI LE DATA
PAGSI Z==1000 . SI ZE OF A PAGE

CHKSUM RESET% . RESET THE WORLD
MOVE P, [| OAD PDLSI Z, PDL]
MOVE T1,[.FHSLF, , 0] ' MAP THI'S FORKS SECTI ON 0

MOVE T2, [. FHSLF, , CODSEC] ; TO EXTENDED CCDE SECTI ON
MOVX T3, SMARDI SMAR!I SM/AEX! SMA ND+1
; I NDI RECT PO NTER RD, WR, EX 1 SECTI ON

SVAPY%
EIJSHLT ; UNEXPECTED FATAL ERROR
GETFI L: SETZM FI LIFN ; SAY NO FI LE SEEN
TVEG <

ENTER FI LE SPEC TO CHECKSUM > ; PROWT USER FOR FI LE
MOVX T1, GI¥%SHT! GI%OLD! GI%NS ; OLD FI LE
MOVE T2,[.PRIIN,,. PRI QU ;READ FI LE SPEC FROM TERM NAL

GIIFN% ; GET FI LE SPEC
ERIJIMPR BADFI L ; CANNOT GET FI LE TELL USER
MOVEM T1, FI LIJFN ; SAVE FI LE JFN

MOVX T2, FLD(AD36, OF¥BSZ) | OFYRD
- REQUEST READ ACCESS AND 36 BI T BYTES
OPENF% - OPEN THE FI LE

8- 23

BADFI L:

DOCHKS:

CHKLOP:

XORLOP:

NOPAGE:

USI NG EXTENDED ADDRESSI NG

ERIJIMPR BADFI L ; CANNOT OPEN FI LE TELL USER

XJRST [CODSEC, , DOCHKS] ; ENTER EXTENDED SECTI ON
; AND DO CHECKSUM

JSERR ; PRINT ERROR MESSAGE
SKIPE T1, FI LJFN ;1S THERE A JFN
RLIFN% y YES. RELEASE I T
EJSERR ; PRIENT ERROR | F ANY
JRST GETFI L ; AND TRY TO GET FI LE AGAI N

THE FOLLOW NG CODE RUNS I N A NONZERO SECTI ON AND
DOES A CHECKSUM CF THE FILE STORED I N FI LJFN

SETZB Q1, Q@ QL HOLDS THE CHECKSUM
I NI TIALLY ZERO
'@ |'S THE CURRENT FILE PAGE NUMBER
MOVE T1, Q@ . GET FILE PAGE NUMBER
HRL T1, FI LJFN : AND FILE JFN
FFUFP% : FIND FI RST USED PAGE
ERIMPR NOPAGE ' CAN T GO ANALYZE ERROR
HRRZ @, T1 . REMEMBER CURRENT PAGE NUMBER
ACS Q@ : USE NEXT HI GHER PAGE NEXT TI ME
MOVE T2, [<DATSEC>B26+DATPAG ; THROUGH LOOP TO DATA PAGE
HRLI T2, .FHSLF I N DATA SECTION OF THI S FORK
MOVX T3, PM/RD . READ ACCESS
PMAP% : MAP THE FI LE PAGE
EJSHLT . UNEXPECTED FATAL ERROR
HRLI T1, DATSEC T1 1S I NDEX | NTO DATA PAGE.
HRRI T1, DATPAG'PAGSI Z :SETUP SECTI ON AND PAGE ADDRESS
MOVEl T2, PAGSI Z : T2 COUNTS THE WORDS | N A PAGE

THE FOLLOW NG LOOP DOES THE CHECKSUM FOR A PAGE

XOR Q1, (T1) : CHECKSUM TH' S WORD
ACS T1 : STEP TO NEXT WORD
SQIG T2, XORLOP . DO THE WHOLE PAGE
SETO T1, : UNVAP THE FI LE PAGE

MOVE T2, [<DATSEC>B26+DATPAG ; TO DATA PAGE | N DATA
HRLI T2, .FHSLF . SECTI ON OF THI S FORK
MOVX T3, PM/RD

PMAPY%

EJSHLT : UNEXPECTED FATAL ERROR
JRST CHKLOP : LOOP FOR MORE PAGES

HERE VWHEN FFUFP% FAI LS

CAl E T1, FFUFX3 ; NO USED PAGE FOUND?
JSHLT ; NO. UNEXPECTED FATAL ERROR

; PRINT THE CHECKSUM AND QUI T

8- 24

USI NG EXTENDED ADDRESSI NG

TVEG <

THE FI LE CHECKSUM | S: >
MOVX T1,. PRI QU PRENT I T ON THE TERM NAL
MOVE T2, Q1 ; GET THE CHECKSUM

MOVX T3, NOAWAG FLD(D8, NO/RRDX) ; UNSI GNED OCTAL NUMBER
NOUT%

STORACE

EIJSHLT ; UNEXPECTED FATAL ERROR
MOVE T1, FI LIJFN ; GET FI LE AGAI N
CLOSF% yCLOSE I T

EIJSHLT ; UNEXPECTED FATAL ERROR
HALTF% ; STOP PROGRAM
XJIRST [CHKSUM ; JUMP BACK TO SECTION 0 AND

; START OVER | F USER CONTI NUES
BLOCK PDLSI Z ; STACK
FI LJFN. BLOCK 1 ; FILE JEN

END CHKSUM

8- 25

-A-

AC, 1-2
gl obal reference, 8-7
ref erences, 8-6
Access
copy-on-wite, 5-5
file, 3-2, 3-16
file append, 3-16
file frozen, 3-16
file read, 3-16
file restricted, 3-16
file thawed, 3-16
file unrestricted, 3-16
file wite, 3-16
page, 5-5
Access bits
OPENF% 3- 17
PMAPY 3- 26
Accunmul ator (AQ), 1-2
Accumul ators, 1-3
gl obal reference, 8-7
hardware, 8-6
references, 8-6
Addr ess
gl obal, 8-1, 8-6
| ocal, 8-4, 8-6
Addr ess space, 8-1, 8-2
process, 1-6, 5-1, 5-11
Addr essi ng
extended, 8-1
Addr essi ng ACs, 8-2
Addr essi ng nenory, 8-2

ADJSP instruction, 2-2, 8-10

Al C% JSYS, 4-9, 4-17, 5-4
AOBJIN pointer, 8-4
Argunent bl ock

DEQ% 6-14

ENQ% 6-8

ENQC% 6-15

GIJFN% | ong form 3-13
Argunment s

CFORKY% 5-8

DEQ% 6-12

DIC% 4-16

ENQ% JSYS, 6-6

ENQC% 6-14

GET% 5-11

I NDEX

Argunents (Cont.)
GIJFN% short form 3-4
I11C% 5-19
JFENS% 3-33
JSYS, 1-2, 1-3
monitor calls, 1-3
MRECVY% 7-9
MSENDY 7-7
MJTI L% 7-15
OPENF% 3-16
PMAPY% 3-26, 3-28, 5-14
PMAP% JSYS, 8-15
RDTTY% 2-9
SFORK% 5-15
SINY 3-22
SIRY% 4-6

SMAPY% 3-29, 8-13, 8-14, 8-15

SOUTY 3-23

XGTPW/4 8- 19

XRI R% 4-15

XRMAP% JSYS, 8-18

XSFRK% 8-16

XSIRY% 4-7

XSVEC% JSYS, 8-16
ASCl | strings, 2-1, 3-21
ASCl Z pseudo-op, 1-6
ASCl Z strings, 2-1, 3-21
ATl % JSYS, 4-13

-B-

Bl N% JSYS, 1-5, 3-21
exanmple, 1-5

Bl ock
packet data, 7-2
packet descriptor, 7-2

BLT instruction, 8-9

BOUT% JSYS, 3-21

Byte, 2-1, 3-1
reading a, 2-8
transferring, 3-21
witing a, 2-8

Byte instructions, 8-10

Byt e mani pul ation instructions,

ADISP, 2-2
| BP, 2-2
| LDB, 2-2

| ndex-1

Byte pointer, 8-10

gl obal , 8-10

| ocal, 8-10

one-word gl obal, 2-2, 8-10
system standard for JSYS, 2-2
two-word gl obal, 2-2, 8-10

-G

Cal I i ng sequence
nonitor calls, 1-3

Capability words, 5-11

CFORK% JSYS, 5-4, 5-8, 5-15, 5-19
argunents, 5-8

execution, 5-10
Changi ng sections, 8-2
Channel

deactivating, 4-16

panic, 4-5, 4-10, 4-11
Channel assignnents

software interrupt, 4
Channel table (CHNTAB),
CHNTAB, 4-7
Cl S% JSYS, 4-17
Clearing interrupt system 4-17
CLCSF% JSYS, 3-30

-4
4-7

exanple, 3-31
execution, 3-31
flag bits, 3-30

Closing a file, 3-30
Conmmuni cat i on

process, 1-6
Communi cation facility

i nter-process, 7-1

Control bits
RDTTY% 2-10
Control process, 1-6

Copy-on-wite access, 5-5
Count er
program 8-1

Creating sections, 8-14
-D
Dat a bl ock
packet, 7-2
Data transfer, 2-1
Data transfers, 3-19

Deactivating a channel, 4-16
Deadl y embrace, 6-4, 6-5, 6-19
Deassi gning term nal codes, 4-17
DEBRK% JSYS, 4-11

Def erred node
terminal interrupt, 4-14
Del eting inferior process,
DEQ% JSYS, 6-2, 6-6, 6-12
argunent bl ock, 6-14
argunents, 6-12
functions, 6-12
Descri ptor bl ock
packet, 7-2
Desi gnat or
desti nati on,
primary input,
primary out put,
source, 3-20
uni ver sal device, 8-11
Destinati on desi gnator,
Devi ce desi gnat or

5-20

3-20
2-2, 3-20
2-2, 3-20

3-20

uni versal, 8-11
DI C% JSYS, 4-16
argunents, 4-16

Dl R% JSYS, 4-16

Direct process control, 5-4

Di sabling interrupt system 4-16
DTl % JSYS, 4-17

- E-
Editing functions, 2-9

Ef fecti ve address, 8-1
Ef fecti ve address cal cul ati on,

8-3, 8-8
exanple, 8-8
i ndexi ng, 8-8

indirection, 8-8
ext ended, 8-3
i medi ate instructions, 8-8
i ndexi ng, 8-5
indirection, 8-5
nonzero sections, 8-3
EFIW 8-6, 8-20
El R% JSYS, 4-9, 4-11, 4-17, 5-4
EJSERR macro, 1-5
EJSHLT macro, 1-5
ENQ quota, 6-3
ENQ% JSYS, 5-4, 6-2, 6-6, 6-17
argunment bl ock, 6-8
argunents, 6-6
functions, 6-6
ENQC% JSYS, 5-4, 6-6, 6-14
argument bl ock, 6-15
argunents, 6-14
flag bits, 6-15

| ndex- 2

ENQUEUE/ DEQUEUE (ENQ DEQ
facility, 5-4, 6-1
use of, 6-6
Entry vector, 8-16
i nformation, 8-19
EP. macro, 8-6, 8-7
ERCAL synbol, 1-4, 5-15
ERCALR synbol, 1-4
ERCALS synbol, 1-4, 1-5
ERIMP synbol, 1-4, 5-15
ERIJIMPR synbol , 1-4, 2-13
ERIMPS synbol , 1-4
Error returns
nmonitor calls, 1-4
ERSTR% JSYS, 1-5
Execut e-only process, 8-19
Ext ended addressing, 8-1, 8-3
exanpl es, 8-7
using nonitor calls with, 8-11
Ext ended format indirect word
(EFIW, 8-6
Ext ended instruction format, 8-3
Ext ended page nunber, 8-11

-F-

FH/&EPN, 8-11
File
closing a, 3-30
exanpl es, 3-40
opening a, 3-16
poi nter, 3-20
readi ng from
summary, 3-40
referencing, 3-3
sharing, 3-2, 6-1
witing to
summary, 3-40
| e access, 3-2, 3-16
codes, 3-2
Fil e append access, 3-16
File frozen access, 3-16
File identifier, 3-2
Fil e page nmapping, 3-26
File pointer, 3-20
File read access, 3-16
File restricted access, 3-16
File section
mappi ng, 8-12
File section mapping, 3-28
File specification, 3-3
standard, 3-3

Fi

File thawed access, 3-16

File unrestricted access, 3-16
File wite access, 3-16

Files, 3-1

Flag bits
CLOSF% 3-30
ENQC% 6-15

GIJFN% long form 3-14

GIJFN% short form 3-5

MRECV% 7-10

MSEND% 7-8

SMAP% 3- 29
FI ags

packet descriptor block, 7-3
For mat

ext ended instruction, 8-3

| PCF packet, 7-2

<SYSTEM~I NFO r equests, 7-13

<SYSTEM~I NFO r esponses, 7-14
Format options

JENS% 3-34

NOUT% 2-6
Functi ons

DEQ% 6-12

ENQ% 6-6

MJTI L% 7-15

PDVOP% 8- 20

RDTTY% 2-9

-G

GET% JSYS, 5-11, 5-14
argunents, 5-11
GETER% JSYS, 1-5
G-l WM nacro, 8-6
GFRKS% JSYS, 5-7
d obal address, 8-1, 8-4, 8-6
G obal byte pointer, 8-10
d obal stack, 8-10
A\JFN% JSYS, 3-9, 3-36
bits returned, 3-37
GTJFN% JSYS, 3-3, 3-4
argument s
long form 3-12
short form 3-4
bits returned, 3-10
execution, 3-9, 3-14
flag bits
long form 3-14
short form 3-5
long form 3-4, 3-12
argument bl ock, 3-13

| ndex- 3

GTJFN% JSYS (Cont.) I nput

short form 3-4 termnal, 2-1
exanmpl es, 3-11 | nput desi gnat or
sumary, 3-15 primary, 2-2
GISTS% JSYS, 3-31 I nstruction fornat
bits returned, 3-31 extended, 8-3
Instruction format indirect word
-H (IFlW, 8-5
I nstructions
HALTF% JSYS, 2-8, 5-17 byte, 8-10
exanple, 2-7 stack, 8-10
Handl e section, 8-17 I nter-process comuni cation
HFORK% JSYS, 5-17 facility

receive quota, 7-1
-1 - send quota, 7-1
utility functions, 7-15

/O nmonitor calls, 2-2 I nter-process conmuni cation
I BP instruction, 2-2 facility (I1PCF), 1-6, 5-4,
I dentifier 7-1
file, 3-2 Interrupt, 4-1
IFIW 8-5, 8-20 generating, 4-10
1 C% JSYS, 4-10, 5-4, 5-19 I nterrupt channel assignnents,
argunents, 5-19 4-4
I LDB instruction, 2-2 I nterrupt channels
Illegal instruction trap, 1-4 activating, 4-9
| mredi ate instructions, 8-8 Interrupt conditions, 4-4
| mredi at e node I nterrupt deferred node
termnal interrupt, 4-14 ternmnal, 4-14
| ndexi ng, 8-4, 8-20 Interrupt dismssing, 4-11
exanpl e, 8-8 I nterrupt i medi ate node
I ndirection, 8-5, 8-20 termnal, 4-14
exanpl e, 8-8 I nterrupt processing, 4-10
extended format indirect word Interrupt service routines, 4-6
(EFIW, 8-6 I nterrupt system
instruction format indirect clearing, 4-17
word (IFIW, 8-5 di sabling, 4-16
Inferior process, 1-6, 5-1 Interrupts
characteristics, 5-8 termnal, 4-12
conmuni cating with superior, | PCF, 1-6, 5-4, 7-1
5-10 packet data bl ock, 7-2, 7-6,
creating, 5-8, 5-10 7-12
del eting, 5-20 address, 7-6
parallel, 5-10 | ength, 7-6
starting, 5-15 packet descriptor block, 7-2
status, 5-17 7-12
term nation, 5-16 flags, 7-3
I nformation receive quota, 7-1
about process, 8-17 send quota, 7-1
entry vector, 8-19 utility functions, 7-15
page-failure, 8-19 | PCF packet format, 7-2

Initialization
process, 2-8

| ndex- 4

-J-

JEN, 3-1, 3-2
JENS% JSYS, 3-33
argunents, 3-33
format options, 3-34
Job, 1-7
Job file nunber, 3-1, 3-2
Job structure, 1-6
exapme, 1-7
JRA instruction, 8-10
JRST instruction, 8-2, 8-9
JSA instruction, 8-10
JSP instruction, 8-10
JSR i nstruction, 8-10
JSYS, 1-2
Al C% 4-9, 4-17, 5-4
argunents, 1-2, 1-3
ATl % 4-13
BIN%g 1-5, 3-21
BOUTY% 3-21

CFORK% 5-4, 5-8, 5-10, 5-15,

5-19
ClS% 4-17
CLOSF% 3-30
DEBRK% 4-11
DEQ» 6-2, 6-6, 6-12
DI CY% 4-16
DIRY 4-16
DTI % 4-17
EIRY% 4-9, 4-11, 4-17, 5-4
ENQ» 5-4, 6-2, 6-6, 6-17
ENQC% 5-4, 6-6, 6-14
error returns, 1-4
ERSTR% 1-5
GET% 5-11, 5-14
GETERY 1-
G-RKSY%
ANIFNY%
GTIFNY%
GISTSY%
HALTF%
HFORK%
1/0 2-2
I1C% 4-10, 5-4, 5-19
JFNS% 3-33
KFORK% 5-4, 5-20
MRECVY% 5-4, 7-7, 7-9
MSEND% 5-4, 7-7, 7-12
MJTI L% 5-4, 7-15
NNy 2-4, 2-13, 2-14
NOUTY% 2-5, 2-14

- 36
-4, 3-9

w w

-31
5-17

GNWWWO
=00 WWwwo~NO

7

o1 o1 Ol

JSYS (Cont.)
OPENF% 3-2, 3-16
PBI N% 2-8, 2-14
PBOUTY% 2-8, 2-14
PDVOP% 5-11, 8-19

PMAP% 3-25, 3-26, 3-27, 3-28,

5-11, 5-14, 5-15, 5-19,
8-12, 8-15

PSQUTY 2-3, 2-14
RDTTY% 2-5, 2-9, 2-12, 2-14
RESET% 2-8, 5-21, 7-5
RFSTS% 5-4, 5-17
RFSTS% | ong form 5-17, 5-18
RFSTS% short form 5-17
R Ny 3-24
R R¥% 4-15, 8-11
ROUTY% 3-24
RSVAPY% 8- 17
SAVEY 5-11
SEVECY® 8-16
SFORK% 5-4, 5-15
SFRKV% 5-16
SIN%g 3-22
SIR% 4-6, 4-11, 5-4, 8-11
SKPI R% 4-14
SMAPY%, 3-28, 8-12
SQUTY 3-22, 3-23
SPIFNY% 2-2
SSAVEY, 5-11
STIW, 4-14
WFORK% 5-4, 5-16
XGTPW/4 8-19
XGVEC% 8-19
XRI R% 4-15, 8-12
XRMAPY% 8-18
XSFRK% 5-16, 8-16
XSIR% 4-6, 4-11, 4-17, 8-12
XSVEC% 8-16

JUWP instruction synbols, 1-4
ERCAL, 1-4, 5-15
ERCALR, 1-4
ERCALS, 1-4, 1-5
ERIMP, 1-4, 5-15
ERIMPR, 1-4, 2-13
ERIMPS, 1-4

JUWP instructions, 1-4

- K-

KFORK% JSYS, 5-4, 5-20

| ndex-5

-L-

Level nunber
resource, 6-4
LEVTAB, 4-8
LFI WM macro, 8-6
LI NK, 8-19
Literals, 2-2
Local address, 8-4, 8-6
Local byte pointer, 8-10
Lock
resource, 6-1
Long form GTIJFN% 3-12
LUUO i nstructions, 8-9

- M

MACSYM 1-3
MACSYM nmacros, 1-3
EJSERR, 1-5
EJSHLT, 1-5
EP., 8-7
indirection, 8-6
EP., 8-6
G-lW 8-6
LFIVWM 8-6
MG 2-4
Mappi ng, 8-12
file page, 3-26
file section, 3-28
file sections to a process,
8-12
menory, 8-12
page, 3-24, 5-14
process page, 3-27
process section, 8-13
sections, 8-12
Menory, 8-2
Mermory sharing, 5-5
Messages
receiving process, 7-7
sendi ng process, 7-7
Monitor calls, 1-2
argunents, 1-2, 1-3
calling sequence, 1-3
error returns, 1-4
for processes, 5-7
1/0 2-2
operation code, 1-2
MONSYM 1-2, 2-3
MRECV% JSYS, 5-4, 7-7, 7-9
argunents, 7-9

MRECV% JSYS (Cont.)
execution, 7-11
flagbits, 7-10
flags returned, 7-11
MSEND% JSYS, 5-4, 7-7, 7-12
argunments, 7-7
execution, 7-9
flag bits, 7-8
Mul ti pl e processes, 5-2
Mul tisection programnms, 8-22
MUTI L% JSYS, 5-4, 7-15
argunments, 7-15
execution, 7-20
functions, 7-15

- N

Nl N%6 JSYS, 2-4, 2-13, 2-14
example, 2-7
NOUT% JSYS, 2-5, 2-14
example, 2-6, 2-7
format options, 2-6
Nunber
reading a, 2-4
witing a, 2-5

Q

One-word gl obal byte pointer,
8-10, 8-11

OPENF% JSYS, 3-2, 3-16, 3-27
access bits, 3-17
arguments, 3-16
exanpl es, 3-19

Opening a file, 3-16

Oper ation code
nonitor calls, 1-2

CQut put
termnal, 2-1

Qut put desi gnat or
primary, 2-2

Ownership, 6-2, 6-17
excl usive, 6-2, 6-17
shared, 6-1, 6-2, 6-17

- P-
Packet, 7-1, 7-2

receiving a, 7-9
sending a, 7-7

2-2,

Packet data bl ock, 7-2, 7-6, 7-12

address, 7-6

| ndex- 6

Packet data bl ock (Cont.)
length, 7-6
Packet descriptor block, 7-2,
7-12
flags, 7-3
Packet fornmat
| PCF, 7-2
Page, 3-1
Page access, 5-5
Page mappi ng, 5-14
file, 3-25
Page sharing, 5-5

Page-failure information, 8-19
Pani ¢ channel, 4-5, 4-10, 4-11
Paral l el inferior processes, 5-10

PBl N% JSYS, 2-8, 2-14
PBOUT% JSYS, 2-8, 2-14
PC, 5-1, 8-1, 8-2, 8-9
address, 8-9
address fields, 8-2
PDV, 8-19
nanes,
rul es,
PDVA, 8-19
mani pul ati ng, 8-20
PDVOP% JSYS, 5-11, 8-19

8-20
8-20

functions, 8-20
PID 7-1, 7-5, 7-11
PM/EPN, 8-11

PVAP% JSYS, 3-25, 3-27, 3-28,
5-11, 5-14, 5-15, 5-19, 8-12,
8-15

access bhits, 3-26
argunents, 3-26, 3-28, 5-14,
8-15
PO NT pseudo-op, 2-1
Poi nt er
file, 3-20

Pool ed resources,

POP instruction, 8-10

POPJ instruction, 8-9, 8-10

.PRIIN symbol, 2-2, 2-9, 2-14,
3-20

Primary input designator (.PRIIN),
2-2, 3-20

Primary out put desi gnator
(.PRRQOU), 2-2, 3-20

Printing a string, 2-3

Priority level

interrupt, 4-11
software interrupt,

6-11

4-4

Priority level table (LEVTAB)

4-8
. PRI QU synbol, 2-2, 2-9, 2-14,
3-20
Process, 1-6, 1-7
address space, 1-6, 5-11
capabilities, 5-11
conmuni cation, 1-6, 5-3, 5-19
control, 1-6, 5-4
deleting inferior, 5-20
exanpl es, 5-21
execute-only, 8-19
handl e, 5-5, 5-10
identifiers, 5-5
inferior, 1-6, 5-1

i nformati on about, 8-17
JSYSs for, 5-7
multiple, 5-2
parallel, 5-1
starting in any section,
starting inferior, 5-15
status word, 5-17
structure, 1-6, 5-1
superior, 1-6, 5-1
termnating inferior,
use of resources, 6-5
Process comuni cation
5-5, 5-19
sharing pages, 5-19
software interrupt,
Process control, 5-4
Process handle, 5-5
Process ID (PID), 7-1, 7-5, 7-11
Process identifiers, 5-5
Process initialization, 2-8
Process mappi ng, 3-27
Process nessages
receiving, 7-7
sendi ng, 7-7
Process rel ati onships, 5-1
Process section, 3-28
unmappi ng, 8-15
Process status word, 5-17
Process structure, 1-6, 5-1
Process unmappi ng, 3-28
Program counter, 8-2
address fields, 8-2
Program counter (PC),
8-9
address, 8-9
Program data vector (PDV),
address (PDVA), 8-19

8- 16

5-16

1-6, 5-3,

5-4, 5-19

5-1, 8-1,

8-19

| ndex-7

Program data vector (PDV) (Cont.)
mani pul ati ng PDVAs, 8-20
nanes, 8-20

rules, 8-20
program ver si on nunber,

Pr ogr ans
mul ti section,

Protection
resource, 6-4

Pseudo- ops
ASCl Z, 1-6
PO NT, 2-1

PSQUT% JSYS, 2-3, 2-14
exanple, 2-7

PUSH i nstructi on,

PUSHJ i nstruction,

8-21

8-22

8- 10
8-2, 8-9, 8-10

-Q

Queue, 6-1, 6-2
Quota, 7-1

receive, 7-1
send, 7-1

-R

RDTTY% JSYS, 2-5, 2-9, 2-12, 2-14
argunents, 2-9
control bits, 2-10
editing functions, 2-9
exanpl e, 2-13

Readi ng a byte, 2-8

Readi ng a nunber, 2-4

Readi ng a string, 2-9

Reading froma file
summary, 3-40

Recei ve quota, 7-1

Recei ving a packet, 7-9

Referencing a file, 3-3

Rel easing a resource, 6-12

RESET% JSYS, 2-8, 5-21, 7-5

exanple, 2-7
Resource, 6-1
| evel nunber, 6-4
obt ai ni ng i nformati on about,
6- 14
ownershi p, 6-2, 6-17
pool ed, 6-11

protection, 6-4

rel easing a, 6-12
requesting use of, 6-6
sharing, 6-1, 6-17

Resource (Cont.)
use by process, 6-5
Resource | ock, 6-1
Resource nane, 6-4
Resour ce ownership, 6-2
RFSTS% JSYS, 5-4, 5-17
long form 5-17, 5-18
status-return bl ock, 5-18
process status word, 5-17
short form 5-17
Rl N% JSYS, 3-24
Rl R% JSYS, 4-15, 8-11
exanmpl e, 4-15
ROUT% JSYS, 3-24
RSMAP% JSYS, 8-17
i nfformati on returned, 8-17

- S

SAVE% JSYS, 5-11
Section

changi ng, 8-2

creating, 8-14

nonzero, 8-14, 8-16

zero, 8-3, 8-11
Section handle, 8-17
Section mappi ng, 8-12

file, 3-28
file to process, 8-12
process, 8-13

Sections, 8-2
Send quota, 7-1
Sendi ng a packet, 7-7
SEVEC% JSYS, 8-16
SFM instruction, 8-9
SFORK% JSYS, 5-4, 5-15
argunents, 5-15
SFRKV% JSYS, 5-16
Sharer groups, 6-17
use of, 6-17, 6-18
Sharing files, 3-2, 6-1
Shari ng pages, 5-19
Sharing resources, 6-1, 6-17
Short form GTIJFN% 3-4

exanpl es, 3-11
SI N% JSYS, 3-22
argunents, 3-22

SIR% JSYS, 4-6, 4-11, 5-4, 8-11
argunents, 4-6
SKPI R% JSYS, 4-14

| ndex- 8

SMAP% JSYS, 3-28, 8-12

argunents, 3-29, 8-13, 8-14,
8-15

flag bits, 3-29

Software interrupt, 1-6, 4-10,

5-19

channel assignnents, 4-4
channels and priorities, 4-4
di sabling, 4-16
di smi ssing, 4-11
exanmpl e, 4-18
pani ¢ channel, 4-5, 4-10, 4-11
priority level, 4-11
priority levels, 4-4
process conmuni cation, 5-4
processi ng, 4-10
service routines, 4-6

tables, 4-6
Software interrupt system 1-6,
4-1, 5-16

enabling, 4-9
oper ational sequence, 4-2
summary, 4-17
Sour ce designator, 3-20
SQUT% JSYS, 3-22, 3-23
argunents, 3-23
SPIJFN% JSYS, 2-2
SSAVE% JSYS, 5-11
St ack
address, 8-10
gl obal , 8-10
poi nter, 8-10
regi ster, 8-10
Stack instructions, 8-10
ADJSP, 8-10
POP, 8-10
POPJ, 8-10
PUSH, 8-10
PUSHJ, 8-10
Standard file specification, 3-3
Starting a process, 8-16
Starting inferior process, 5-15
Status word
process, 5-17
Status-return bl ock, 5-18
STI W JSYS, 4-14
String
printing a, 2-3
reading a, 2-9
Strings
ASCl |, 2-1, 3-21
ASCl z, 2-1, 3-21

Strings (Cont.)
text, 2-1
transferring, 3-22
exanpl e, 3-23
Structure
process, 1-6
Superior process, 1-6, 5-1
communi cating with inferior

5-10
<SYSTEM¢INFO, 7-1, 7-5, 7-6, 7-7,
7-9, 7-12

functions and argunents, 7-13
requests, 7-12
format, 7-13
responses, 7-14
<SYSTEM~I NFO r esponses, 7-15

-T-

Tabl e
channel (CHNTAB), 4-7
priority level (LEVTAB), 4-8
software interrupt, 4-6
Term nal
i nput, 2-1
out put, 2-1
Term nal codes
deassi gni ng, 4-17
Terminal interrupts, 4-12
codes, 4-12
def erred node, 4-14
generating, 4-13
i mredi ate node, 4-14
Termi nating inferior process,
5-16
Text strings, 2-1
TVM5G macro, 2-4
example, 2-7
Transferring bytes, 3-21
Transferring data, 3-19
Transferring strings, 3-22
exampl e, 3-23
Trap
illegal instruction, 1-4
Two-word gl obal byte pointer, 2-2
8- 10

-U
Uni versal device designator, 8-11

Unmappi ng
process page, 3-28

| ndex-9

Unmappi ng (Cont.) XCT instruction, 8-9

process section, 8-15 XGTPW/h6 JSYS, 8-19
argunents, 8-19
- V- XGVEC% JSYS, 8-19
XHLLI instruction, 8-8, 8-9
Vect or XJEN instruction, 8-9
entry, 8-16 XJRST instruction, 8-2
Virtual address space, 8-1 XJRSTF instruction, 8-2, 8-9
Virtual space, 1-6 XMOVEIl instruction, 8-8, 8-20
XPCW i nstruction, 8-9
-W XRI R% JSYS, 4-15, 8-12
argunents, 4-15
WFORK% JSYS, 5-4, 5-16 XRVAP% JSYS, 8-18
Witing a byte, 2-8 argunents, 8-18
Witing a nunber, 2-5 XSFRK% JSYS, 5-16, 8-16
Witing to a file argunents, 8-16
summary, 3-40 XSI R% JSYS, 4-6, 4-11, 4-17, 8-12
argunments, 4-7
- X- XSVEC% JSYS, 8-16

argunents, 8-16
XBLT instruction, 8-9

| ndex- 10

