
      +---------------------------+
      |   |   |   |   |   |   |   |     i n t e r o f f i c e
      | d | i | g | i | t | a | l |
      |   |   |   |   |   |   |   |      m e m o r a n d u m
      +---------------------------+

      To:  Architecture distribution    Date:  24 Jun 83
                                        From:  Mike Uhler
                                        Dept:  L.S.E.G.
                                        DTN:   (8-)231-6448
                                        Loc/Mail stop:  MRO1-2/E85
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      Subject:  Extended addressing
      Revision:  5

      Revision history

      Revision   Date      Changes
          5    07-Jul-83   Make one-word global byte pointers  legal  in
                           section  0.   Make  JSA  and  JRA illegal for
                           inter-section use.

      1.0  Introduction

      As we attempted to implement the EBOX microcode  for  Jupiter,  we
      quickly  discovered  that  there were some serious deficiencies in
      the documentation for what we were trying to implement.  The  most
      serious   deficiency  was  in  the  area  of  rules  for  extended
      addressing, especially for the  exception  conditions.   We  found
      ourselves  implementing  the  EBOX  microcode  partially  from the
      Processor Reference Manual (PRM) but, more often than not, from  a
      collection  of old documentation, memos, and recollections of what
      was decided in the design of extended addressing.

      After spending two weeks attempting to  decipher  what  the  rules
      should be and comparing them with the KL10 implementation, I wound
      up with a large collection of notes concerning aspects of extended
      addressing  which  are either not documented or poorly documented.
      Several meetings of the PDP-10 Architecture Committee ensued,  and
      this memo is an attempt to formalize my notes.

      The intent of the memo is to provide  a  description  of  extended
      addressing  as  defined by the PDP-10 architecture.  This material
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      really belongs  in  the  Processor  Reference  Manual,  and  every
      attempt will be made to get it included in the next release of the
      manual.   Note  that  certain  implementations   of   the   PDP-10
      architecture don't always conform to the descriptions given in the
      memo.  These are descriptions of what SHOULD be  implemented,  not
      necessarily  what  IS  implemented.   However,  all  future PDP-10
      processors should conform to these descriptions.

      In order to make it easier for the reader, I've also added  a  lot
      of   background,   definitions,   and   descriptions  of  extended
      addressing that are found in other  references.   This  additional
      discussion   should   make   the  overall  structure  of  extended
      addressing more clear.

      In order to avoid swamping the reader with too much detail at  any
      point,  I  sometimes  intentionally  ignore  or understate certain
      important aspects of the examples that I  use.   These  items  are
      generally  covered later in the memo.  I also occasionally forward
      reference topics.  Because of this organization, it may be best to
      make  a  quick  first  pass  through  the  memo  to  pick  out the
      highlights and then go back and make a more detailed pass.

      This memo assumes that the reader has at least a  basic  knowledge
      of  the  PDP-10  instruction  set,  the  notation used to describe
      instructions, and the format of an instruction word.  Readers  who
      do  not  have  this knowledge are referred to sections 1.4 through
      1.6 of the Processor Reference Manual and to the  Macro  Assembler
      Reference Manual.
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      2.0  Reference materials

      The primary source of information about the instruction set is the
      Processor   Reference   Manual.   Unfortunately,  there  are  some
      inaccuracies  and  some  omissions  in  the  sections  related  to
      extended addressing.  The "Extended Effective Address Calculation"
      flow chart on page 1-30 of the PRM is the  best  "description"  of
      the effective address calculation algorithms and it is attached to
      this memo for the convenience of the reader.

      The KL10 Engineering Functional  Spec  contains  several  chapters
      related   to   this  topic  and  has  some  interesting  insights.
      Especially  interesting  are  chapters  2.2,  "User  Interface  to
      Extended  Addressing",  and  2.3,  "Monitor Calling (MUUO, PXCT)".
      Along with these chapters  is  a  hand-drawn  flow  chart  by  Tom
      Hastings  entitled  "Flow  for Extended Addressing" that clears up
      several questions about EA-calc algorithms, especially in the area
      of PXCT.  A copy of this flow chart is attached.

      Old memos describing the design of  extended  addressing  and  the
      implementation of extended addressing in TOPS-20 are also somewhat
      helpful.

      Finally, the KL10 microcode contains a few helpful comments  about
      exception   conditions   in   that   implementation   of  extended
      addressing.  It is in no sense "light reading", however.
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      3.0  Historical summary of extended addressing

      PDP-10 processors prior to the model B KL10 implemented a  virtual
      address  space  of  256K  words.   As  programs  and the operating
      systems grew, it became apparent that a virtual address space that
      was  limited  to  256K  was  insufficient  for  future  expansion.
      Sometime in late 1973, an Extended  Addressing  Design  Group  was
      formed  to  evaluate  proposals for increasing the virtual address
      space of the PDP-10.  By early 1975, this group  had  agreed  upon
      one  proposal,  and this proposal was documented in chapter 2.2 of
      the KL10 Engineering Functional Spec.

      This proposal increased the size of the virtual address space from
      256K  words  to 1 billion words by expanding the size of a virtual
      address from 18 bits to 30 bits.  The  virtual  address  space  is
      logically  divided  into  4096  sections  of 256K words each.  The
      program may use these sections as  separate  logical  entities  or
      treat  them  as one large contiguous address space.  Instructions,
      however, must explicitly transfer control between sections;   they
      may not "fall" into the next section.

      The increase  in  the  size  of  the  virtual  address  space  was
      accompanied  by an increase in the size of PC, from 18 to 30 bits.
      This increase allowed a program to execute in any of the  extended
      sections.   The  contents  of  bits 6-17 of PC were termed the "PC
      section".

      In order to allow an instruction to specify a full 30-bit  virtual
      address, the rules for indexing and indirection were modified when
      PC section was  non-zero.   In  addition,  new  instructions  were
      defined to allow a program to jump to other sections.

      To insure compatibility with  programs  written  for  non-extended
      processors,   section   zero  is  treated  exactly  as  it  is  on
      non-extended  processors.   This  means  that  if  a  program   is
      executing  in section zero, nearly all instructions behave exactly
      as they would if the  program  were  executed  on  a  non-extended
      machine.   Programs  running in section zero cannot reference data
      in any other section (with one exception) and entry  into  another
      section  is  possible  only with a few instructions (e.g., XJRSTF,
      XJRST, etc.).

      The first processor to implement extended addressing was the model
      B  KL10.  Due to hardware restrictions, this processor implemented
      only 32 of the 4096 sections of virtual address space.  References
      to  virtual sections above the implemented range cause a page fail
      trap to the monitor.  The KC10 implements the full 30-bit  virtual
      address space.
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      4.0  Definition of terms

      Before we start looking at extended addressing, let's define  some
      terms:

       o  A virtual address is a 30-bit address used to reference a word
          in  an  address  space.   Although  the  address  space can be
          considered to be one large, contiguous space, it  is  probably
          easier to consider it to be broken into sections of 256K words
          each.  Bits 6-17 of  the  virtual  address  then  specify  the
          section  number  and  bits  18-35  specify the word within the
          section.  A virtual address looks like:

                6               17 18                      35
               |---------------------------------------------|
               |  Section number  |   Word within section    |
               |---------------------------------------------|
                          Virtual address format

          PC has the same format as a virtual address.

       o  An address word is a word containing I, X, and Y  fields  (see
          the  PRM  for  definitions for these fields) in either IFIW or
          EFIW (see below) format.   An  effective  address  calculation
          takes  such  a  word  as  input.  Thus, instructions, indirect
          words, and byte pointers are all examples of address words.

       o  A local address is an 18-bit  in-section  address  that,  when
          combined  with  a  default  section  number,  specifies a full
          30-bit address.  The section number is supplied  by  something
          other than the address word or index register.

       o  A global address is a 30-bit address  that  supplies  its  own
          section   number.   Therefore,  no  default  section  need  be
          applied.

       o  A local index is an 18-bit displacement  or  address  obtained
          from   an   index   register  used  in  an  effective  address
          calculation in section zero, or from an index register used in
          a  non-zero  section that has bit 0=1 or bits 6-17 equal zero.
          In a non-zero section, an index register  containing  a  local
          index has one of the following formats:

             0 1                       17 18                      35
            |-------------------------------------------------------|
            |1|         Ignored          | Local address (or offset)|
            |-------------------------------------------------------|
                         Local index format (bit 0 = 1)

             0 1     5 6               17 18                      35
            |-------------------------------------------------------|
            |0|Ignored|       0000       | Local address (or offset)|
            |-------------------------------------------------------|
                       Local index format (bits 6-17 = 0)
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       o  A global index is a 30-bit displacement  or  address  obtained
          from   an   index   register  used  in  an  effective  address
          calculation in a non-zero section, that has bit 0=0  and  bits
          6-17  non-zero.   An  index register containing a global index
          looks like:

             0 1     5 6                                          35
            |-------------------------------------------------------|
            |0|Ignored|      Global address with 6-17 non-zero      |
            |-------------------------------------------------------|
                              Global index format

       o  An instruction format indirect word  (IFIW)  is  any  indirect
          word  in  section  zero,  or  an  indirect  word in a non-zero
          section that has bit  0=1  and  bit  1=0  (instructions  being
          executed  are  always  interpreted  in  IFIW format).  In this
          format, bit 13 is the indirect bit, bits 14-17 are  the  index
          register address, and bits 18-35 are the local memory address.
          An IFIW in a non-zero section looks like:

             0 1 2           12 13 14  17 18                      35
            |-------------------------------------------------------|
            |1|0|   Ignored    |I|   X   |            Y             |
            |-------------------------------------------------------|
                                  IFIW format

       o  An extended format indirect word (EFIW) is any  indirect  word
          in a non-zero section that has bit 0=0.  In this format, bit 1
          is the indirect bit, bits 2-5 are the index register  address,
          and  bits  6-35  are the global memory address.  An EFIW looks
          like:

             0 1 2    5 6                                         35
            |-------------------------------------------------------|
            |0|I|  X   |                    Y                       |
            |-------------------------------------------------------|
                                  EFIW format

       o  An illegal indirect word is any indirect word  in  a  non-zero
          section  that  has both bits 0 and 1 set to a 1.  This type of
          indirect word is reserved for use by future hardware.   If  an
          EA-calc  encounters  this  type of indirect word in a non-zero
          section, it will generate a page  fail.   The  monitor  cannot
          perform  any  user service as a result of this trap, including
          trapping  to  the  user,  since  this  would  cause   possible
          compatibility  problems  with  future  machines.   An  illegal
          indirect word looks like:

             0 1 2                                                35
            |-------------------------------------------------------|
            |1|1|                  Reserved                         |
            |-------------------------------------------------------|
                          Illegal indirect word format
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       o  A one-word local byte pointer is  any  byte  pointer  whose  P
          field  is  less than or equal to 36 and that has bit 12=0.  In
          this type of byte pointer, bits 13-35 have the same format  as
          an  IFIW,  and  bits 0-11 specify the size and position of the
          byte.  A one-word local byte pointer looks like:

             0     5 6    11 12  14   17 18                       35
            |-------------------------------------------------------|
            |   P   |   S   |0|I|   X   |             Y             |
            |-------------------------------------------------------|
                       One-word local byte pointer format

       o  A one-word global byte pointer is any  byte  pointer  whose  P
          field  is greater than 36.  In this type of byte pointer, bits
          0-5 are an encoded representation of the size and position  of
          the  byte  and  bits  6-35 supply a full 30-bit address of the
          word containing the byte.   A  one-word  global  byte  pointer
          looks like:

             0      5 6                                           35
            |-------------------------------------------------------|
            |P,S enc |                30-bit address                |
            |-------------------------------------------------------|
                       One-word global byte pointer format

       o  A two-word global byte  pointer  is  any  byte  pointer  in  a
          non-zero section whose P field is less than or equal to 36 and
          which has bit 12=1.  As its name implies, this  type  of  byte
          pointer  consists  of  two  words where bits 0-11 of the first
          word give the size and position of the byte and bit 12 must be
          a  1.   The second word is either an IFIW or an EFIW and, when
          EA-calc'ed, supplies the address of the  word  containing  the
          byte.  A two-word global byte pointer looks like:

             0      5 6    11 12      17 18                       35
            |-------------------------------------------------------|
            |   P    |   S   |1|Reserved|     Available to user     |
            |-------------------------------------------------------|
            |                     IFIW or EFIW                      |
            |-------------------------------------------------------|
                       Two-word global byte pointer format

       o  A local stack pointer is any stack pointer in section zero, or
          a stack pointer in a non-zero section that has bit 0=1 or bits
          6-17 equal zero before incrementing or  decrementing  (exactly
          like  a  local  index).   Incrementing  or decrementing such a
          stack pointer will operate  on  both  halves  of  the  pointer
          independently, suppressing carries out of bit 18.
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       o  A global stack pointer  is  a  stack  pointer  in  a  non-zero
          section  that  has  bit  0=0  and  bits  6-17  non-zero before
          incrementing (exactly like a global index).   Incrementing  or
          decrementing  such  a stack pointer will treat the entire word
          as a 30-bit quantity.
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      5.0  Effective Address Calculations

      No discussion of extended addressing is complete  without  talking
      about EA-calc's.  An effective address calculation is performed on
      every instruction  before  it  is  executed.   In  addition,  some
      instructions perform additional EA-calc's during the processing of
      the instruction  (e.g.   byte  instruction  EA-calc  of  the  byte
      pointer).

      5.1  Description of the EA-calc algorithm

      The basic operation of  an  EA-calc  is  to  process  a  so-called
      address  word by adding the Y field of the word to the contents of
      the optional index register to compute a modified address.  If the
      indirect  bit  is set in the address word, another word is fetched
      from the memory location addressed by the computed address and the
      entire process repeats until a word is found with the indirect bit
      not set.  Sound simple?  Well, let's look at the  operation  in  a
      bit more detail.

      The address word can be of two different formats, IFIW or EFIW (an
      instruction  is  treated  as  an  IFIW when it is EA-calc'ed).  In
      addition, an index can be  of  two  different  formats,  local  or
      global.   Note  that  in section zero, all address words are IFIWs
      and all indices are local by definition.  The complexity  involved
      in the EA-calc algorithm is the result of these multiple formats.

      Since the indirect bit simply causes another address  word  to  be
      fetched  and  the  EA-calc  process  to  be repeated, we can fully
      characterize an EA-calc by looking at the  combinations  of  IFIW,
      EFIW, and indices in local and global format.  Let's look at these
      combinations one at a time.

      5.1.1  No indexing

      If no index register is specified in the address word, the EA-calc
      is strictly a function of the Y field in the address word.  For an
      IFIW, the result is a local address.  For example, both

              1,,100/ MOVE 1,200

      and

              1,,100/ MOVE 1,@150
              1,,150/ 400000,,200

      compute a local effective address of 200.  In the first case,  the
      only  address  word is the instruction itself, which is treated as
      an implicit IFIW.  In the  second  case,  there  are  two  address
      words,  the  instruction  and  the indirect word, and the indirect
      word is in the IFIW format.



                                                                 Page 10

      For an EFIW, the result is a  full  30-bit  global  address.   For
      example,

              1,,100/ MOVE 1,@[1,,200]

      computes a global effective address of 1,,200 because the indirect
      word has a global format.

      5.1.2  IFIW with local index

      If the address word is an IFIW and the index is local, the  result
      is  a local address.  The 18-bit address is computed by adding the
      Y field to the right half of the contents of the  index  register.
      For example:

              1,,100/ MOVE 1,[-1,,10]
              1,,101/ MOVE 2,@[400001,,200]

      The indirect word has an IFIW format, so bits  14-17  specify  the
      index  register address.  Since the contents of the index register
      are negative, it is a local index and the EA-calc is performed  by
      adding  the  Y field (200) to the right half of the index register
      (10) to produce a local effective address of 210.

      5.1.3  IFIW with global index

      If the address word is an IFIW and the index is global, the result
      is  a  30-bit  global  address.  The address is computed by adding
      bits 6-35 of the contents of the index register to  the  value  of
      the  Y  field,  that  has been sign-extended from bit 18 into bits
      6-17.  For example:

              1,,100/ MOVE 1,[2,,10]
              1,,101/ MOVE 2,-2(1)

      The second instruction word has an implicit IFIW format,  so  bits
      14-17  specify the index register address.  Since the left half of
      the index register is positive non-zero, it is a global index  and
      the   EA-calc   is   computed   by   adding  the  Y  field,  after
      sign-extending it from bit 18 into bits 6-17 (7777,,-2),  to  bits
      6-35  of  the  contents of the index register (2,,10), producing a
      global effective address of 2,,6.

      Note that the sign extension allows Y to be used as a positive  or
      negative  constant  offset  to  the  global  address  in  an index
      register.  This offset is limited to +/- 128K.
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      5.1.4  EFIW with global index

      If the address word is an EFIW, the index  is  always  assumed  to
      have  the global format and the result is a 30-bit global address.
      The address is computed by adding bits 6-35 of the contents of the
      index register to bits 6-35 of the Y field.  For example:

              1,,100/ MOVE 1,[2,,10]
              1,,101/ MOVE 2,@[010002,,200]

      The indirect word has an EFIW format,  so  bits  2-5  specify  the
      index  register  address.   The  index  is  always  global, so the
      EA-calc is computed by adding the Y field (2,,200) to bits 6-35 of
      the  contents  of  the  index register (2,,10) to produce a global
      effective address of 4,,210.

      5.1.5  References to section zero

      Note that the only way to reference section zero from  a  non-zero
      section  is  via an EFIW format indirect word with bits 6-17 equal
      zero.  Indexing alone cannot be used to  reference  section  zero,
      because  an  index with bits 6-17 equal zero is treated as a local
      address to the section  from  which  the  last  address  word  was
      fetched.

      5.1.6  Summary of EA-calc rules

      The preceding  sections  can  be  summarized  by  the  table  that
      follows.    This   table   gives  the  computation  done  for  all
      combinations of address words and index registers formats plus  an
      indication as to whether the result is local or global.

                                         Address
                                        Word Type

                              IFIW                     EFIW
            ===========================================================
                   || Y[18:35]              || Y[6:35]               ||
            None   ||                       ||                       ||
                   || Local                 || Global                ||
            ===========================================================
      Index        || Y[18:35]+(XR)[18:35]  || Not Defined           ||
      Reg   Local  ||                       ||  (Actually the case   ||
      Type         || Local                 ||   below)              ||
            ===========================================================
                   || Y[18]*7777,,Y[18:35]+ || Y[6:35]+(XR)[6:35]    ||
            Global ||   (XR)[6:35]          ||                       ||
                   || Global                || Global                ||
            ===========================================================
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      5.2  Results of an EA-calc

      When the microcode performs an EA-calc, it is simply following the
      rules  described  above  and shown graphically in the EA-calc flow
      chart from the PRM.  The  result  of  this  EA-calc  is  a  30-bit
      address  and  a  1-bit flag that indicates the address is local or
      global.  These  two  pieces  of  information  must  be  considered
      together  whenever  the  results  of  the EA-calc are used;  it is
      seldom, if ever, correct to  consider  the  address  without  also
      considering the local/global bit.

      Every  EA-calc  carries  a  default  section  along   during   the
      calculation of the effective address.  The initial default section
      for an EA-calc of an instruction is PC section.   More  generally,
      the default section is initially that from which the first address
      word was fetched.   This  default  section  is  changed  from  the
      initial value if the EA-calc follows a global address into another
      section.  In fact, the default section is always the section  from
      which the last address word was fetched.

      If a local address is calculated using the rules given above,  the
      default  section  is applied to complete the 30-bit address.  If a
      global address is calculated, the default section is not used.

      The last iteration of the EA-calc (the  computation  done  on  the
      last  address  word  that  doesn't  have  the  indirect  bit  set)
      determines whether or not the result of the EA-calc  is  local  or
      global.   If  the result of the last iteration is a local address,
      the result of the EA-calc is local.  Similarly, if the  result  of
      the  last  iteration  is  global,  so  is the entire EA-calc.  The
      transitions of the local/global flag are indicated on the PRM flow
      chart by notations such as "E Global".

      The significant thing to remember is that a  local  EA-calc  still
      results  in  a  30-bit  address,  even though 12 bits (the section
      number) were not explicitly supplied to the  EA-calc  routines  as
      part of an address word or an index register.

       o  An effective address calculation always computes  31  bits  of
          information:  a 30-bit address, and a 1-bit local/global flag.

      5.3  Simple EA-calc examples

      In the examples above, we ignored the fact that  EA-calc's  always
      produce  a 30-bit address when we said that the result was a local
      address n.  In the following examples, we emphasize  that  a  full
      30-bit address is produced.  Consider the following instruction:

              0,,200/ MOVE 1,100

      The  EA-calc  for  this  instruction  results  in  a   local   EA.
      Therefore,  the  EA-calc computes the 30-bit address as 0,,100 and
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      the 1-bit local/global flag as local.  Since the EA is  local,  we
      know that the section number was defaulted from something, in this
      case, the PC section.  We say that the effective address is 0,,100
      LOCAL   (this  notation  is  used  throughout  the  rest  of  this
      discussion to specify all 31 bits of information).

      Let's consider a slightly more complex example:

              1,,200/ MOVE 1,@300

              1,,300/400000,,100

      As in the previous  example,  the  effective  address  calculation
      computes  a  local  address  of  100.   Since the address word was
      fetched from section 1, the result of the EA-calc is 1,,100 LOCAL.

      Let's look at a global EA-calc:

             1,,100/ MOVE 1,@[2,,200]

      In this case, the effective address calculation produces a  global
      address of 2,,200 GLOBAL and no default section need be applied.
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      6.0  Use of the local/global flag

      There are two uses for the local/global flag.  First, it  is  used
      to  determine if the address is actually an AC.  If the address is
      local, and bits 18-35 are in the range 0  to  17,  inclusive,  the
      address  references  an  AC, independent of bits 6-17.  This means
      that a program can reference the ACs while running in any section,
      as long as the reference is local.

      Second, the local/global  flag  determines  how  to  increment  or
      decrement  the  address.  If the address is local, incrementing or
      decrementing it suppresses carries from bit 17 to bit 18 and  vice
      versa.   That  is,  the address always wraps around in the current
      section  if  the  right  half  is  incremented  past   2^18-1   or
      decremented  past 0.  A global address is handled as a full 30-bit
      quantity and overflow or underflow of the right  half  can  affect
      the left half section number.

      6.1  AC references

      Let's look at several examples that make use of  the  local/global
      flag.   First,  let's  compare  what  happens to AC references for
      local and global effective addresses.

              2,,100/ MOVE 1,@[400000,,5]

      The EA-calc for this instruction  yields  2,,5  LOCAL,  where  the
      section  number  was defaulted to 2.  Is this memory location 2,,5
      or AC 5?  Because the EA-calc is local, the rule says that  it  is
      an  AC  reference  and not a memory reference.  On the other hand,
      the EA-calc for

              2,,100/ MOVE 1,@[2,,5]

      results in an EA of 2,,5 GLOBAL.  Since the EA is global, this  is
      a memory reference and not an AC reference.

       o  EA-calc's which yield local addresses, where bits 18-35 of  EA
          are  in  the  range  0-17,  inclusive, always refer to the ACs
          independent of the section number.

      Finally, there is  the  concept  of  "global  AC  address".   This
      concept allows a program running in any non-zero section to make a
      global reference to the ACs by computing a global address  in  the
      first 16 (decimal) locations of section 1.  Consider the following
      example:
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              2,,100/ MOVE 1,@[1,,5]

      The EA-calc yields 1,,5 GLOBAL  and  because  of  the  "global  AC
      address" rule, the reference is to AC 5 instead of memory location
      1,,5.

       o  An EA-calc which yields a global address  to  locations  0-17,
          inclusive,  of section 1, refers to the ACs and not to memory.
          Such an address is called a global AC address.

      6.2  Incrementing EA

      Another use for the local/global flag computed as the result of an
      EA-calc  is  to  determine how to increment the effective address.
      Let's look at two examples using DMOVE, one computing a  local  EA
      and one computing a global EA.

              2,,100/ DMOVE 1,@[400000,,777777]

      The EA-calc for this instruction results in an  effective  address
      of  2,,777777 LOCAL.  The DMOVE instruction fetches two contiguous
      words from E and E+1, but what is E+1 in  this  case?   Since  the
      EA-calc  resulted  in  a  local  address,  incrementing  E is done
      section-local, resulting in 2,,0 LOCAL for E+1.   But  this  is  a
      local reference to the ACs, so the two references for E and E+1 go
      to 2,,777777 (memory) and 2,,0 (AC).  Note that the state  of  the
      local/global flag is maintained during the incrementing of EA.

       o  Incrementing or decrementing a local address  is  always  done
          relative  to  the  original section, i.e., the addresses "wrap
          around" in section.

       o  Incrementing a local address whose in-section part  is  777777
          causes the address to wrap around into the ACs.

      Let's look at the corresponding global case:

              2,,100/ DMOVE 1,@[2,,777777]

      In this case, the EA-calc yields 2,,777777 GLOBAL.   Because  this
      is a global address, incrementing E to get the second word results
      in a reference to 3,,0 GLOBAL.  Since this isn't a local  address,
      the reference is made to memory location 3,,0 and not to AC 0.

       o  Incrementing or decrementing  a  global  address  affects  the
          entire address;  i.e., section boundaries are ignored.

       o  The  process  of  incrementing  or  decrementing  an  address,
          whether the address is local or global, preserves the state of
          the local/global flag.
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      7.0  Multi-section EA-calc's

      So far we have  considered  only  EA-calc's  that  remain  in  one
      section.   If  the  program  is  running  in a non-zero section, a
      global quantity encountered during the  EA-calc  (from  either  an
      index  register or indirect word) can cause the EA-calc to "change
      sections".  An example will make this more clear:

              3,,100/ MOVE 1,@[200002,,100]
              2,,100/ 3,,200

      The EA-calc for this instruction  computes  a  global  address  of
      2,,100  from the indirect word in the literal.  Since the indirect
      bit is set in this word (bit 1 is the indirect bit  in  an  EFIW),
      the  EA-calc  routine fetches the word at 2,,100 and continues the
      EA-calc.  The final result of the EA-calc  yields  3,,200  GLOBAL.
      This   isn't  a  very  interesting  example,  because  it  doesn't
      demonstrate the significance of the section change, so let's  look
      at a slightly different example:

              3,,100/ MOVE 1,@[200002,,100]
              2,,100/ 400000,,200

      In this example, the first part of the EA-calc  remains  the  same
      and  the  routine  fetches  the  word  at  2,,100.   In this case,
      however, the result of the EA-calc yields a local address  instead
      of  a  global one.  But what section is the address local to?  The
      rule says that a local address is always local to the section from
      which  the  address  word  was fetched.  Since the EA-calc changed
      from section 3 to  section  2  when  the  last  address  word  was
      fetched,  the  EA-calc  is  relative  to section 2 and the EA-calc
      yields 2,,200 LOCAL.

       o  The default section for a local address is  always  that  from
          which the address word was fetched.

      Now that we've seen what happens to EA-calc's that  cross  section
      boundaries,  let's  see what happens if the EA-calc enters section
      zero:

              3,,077/ MOVEI 3,1
              3,,100/ MOVE 1,@[200000,,100]
              0,,100/ 3,,200

      As with the  example  above,  the  EA-calc  for  this  instruction
      fetches  the  word at 0,,100 and continues.  But since the EA-calc
      entered section zero, this word is treated as an IFIW  instead  of
      an  EFIW.   Therefore,  the  3  in  the  left  half  of  0,,100 is
      interpreted as the  index  register  field  instead  of  a  global
      section  number.   Since  AC  3  contains  a 1, the EA-calc yields
      0,,201.  In addition, the  last  address  word  was  fetched  from
      section zero, so the result is a local address.
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       o  An effective address calculation which  "falls"  into  section
          zero  always results in an effective address that is local (to
          section zero).  Furthermore, the effective address calculation
          can  never "get out" of section zero once it enters it because
          all addresses in section zero are treated as  local.   Further
          operations obey section zero rules.
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      8.0  Special case instructions

      Other than modifications to the EA-calc algorithms when the PC  is
      in  a  non-zero  section,  most instructions are unaffected by the
      addition of extended addressing.  However, there are a few classes
      of  instructions  that  behave  differently on an extended machine
      from the way they would on a non-extended machine.   This  section
      describes  the behavior of each class of instruction that has this
      characteristic.

      Examples in this section sometimes  use  the  POINT  pseudo-op  to
      describe  a  byte pointer.  For those readers who do not know what
      this pseudo-op generates, a description can be found in the  Macro
      manual.

      8.1  Byte instructions

      The effective address calculation for a byte instruction addresses
      the  byte  pointer  word(s).   The  instruction  then does another
      EA-calc on the byte pointer after determining  which  one  of  the
      three possible byte pointer formats was supplied.

      8.1.1  Byte pointer interpretation

      The algorithm for determining the type of the byte pointer  is  as
      follows:

                      +---------------+
                      | P field > 36? | ----> One-word global
                      +---------------+ Yes
                              |No
                              |
                              V
                      +---------------+
               +<---- |  Section 0?   |
               |  Yes +---------------+
               |              |No
               |              |
               |              V
               |      +---------------+
               |      |   Bit 12=1?   | ----> Two-word global
               |      +---------------+ Yes
               |              |No
               |              |
               V              V
               +--------------+-------------> One-word local

                  Byte pointer decode algorithm

      The "Section 0?" test in the flow chart  is  based  on  where  the
      first  word  of  the two-word global byte pointer was fetched from
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      and not on PC section.  This is an important  distinction  if  the
      byte instruction and the byte pointer are not in the same section.

       o  For byte instructions, the  test  for  the  possibility  of  a
          two-word global byte pointer is done based on the section from
          which the first word of the byte pointer  was  fetched.   That
          is,  if  the  section  from  which  the first word of the byte
          pointer was fetched is  non-zero,  the  byte  pointer  may  be
          global.

      8.1.2  Byte pointer EA-calc

      The default section for the byte pointer EA-calc is initially that
      from  which the byte pointer was fetched.  Once again, this may be
      different from PC section if the instruction and byte pointer  are
      in  different  sections.   If  we realize that the byte pointer is
      really an address word, this is an extension of the rule that says
      local  addresses  are  local to the section from which the address
      word was fetched.  For example:

              3,,100/ LDB 1,@[2,,100]
              2,,100/ POINT 6,200,0

      In this example, the byte instruction is fetched from  section  3.
      The EA-calc for the instruction follows an EFIW into section 2 and
      the byte pointer is fetched.  The  byte  pointer  is  in  one-word
      local  format,  so  the  EA-calc  of the byte pointer results in a
      local address.  But is the address local  to  section  3  (section
      containing the byte instruction) or 2 (section containing the byte
      pointer)?  The rule says that byte  pointer  EA-calc's  start  off
      local  to  the section from which the byte pointer was fetched, so
      the EA-calc is local to section 2.  The result of the  EA-calc  is
      therefore 2,,200 LOCAL.

      Note  that,  while  the  initial  default  section  may  be   that
      containing the byte pointer, the default section may change if the
      EA-calc encounters a global quantity.  For example:

              3,,100/ LDB 1,@[2,,100]
              2,,100/ POINT 6,@[200004,,100],0
              4,,100/ 400000,,200

      As in the previous example,  the  byte  pointer  is  fetched  from
      section 2.  The byte pointer has the indirect bit set, so the byte
      pointer EA-calc follows the EFIW in the literal  (which  also  has
      the indirect bit set) into section 4, where the final address word
      is fetched from location 4,,100.  This final address  word  is  an
      IFIW,  so  the  result  of  the  EA-calc is a local address.  Even
      though the byte pointer EA-calc started in section 2,  the  result
      of  the  EA-calc  is  local to section 4, because that's where the
      last address word was fetched  from.   The  byte  pointer  EA-calc
      results in an effective address of 4,,200 LOCAL.
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       o  For byte instructions, the initial  default  section  for  the
          byte  pointer  EA-calc  is  the  section  from  which the byte
          pointer was fetched, which may not be the same section as that
          containing  the  byte  instruction.   Further,  if the EA-calc
          results in a local  address,  the  address  is  local  to  the
          section  from  which  the  last  address word in the effective
          address calculation was fetched.

      8.2  EXTEND instructions

      Like the byte instructions, certain  EXTEND  instructions  perform
      another  EA-calc  for  the  byte  pointer (MOVSxx, CMPSxx, CVTBDx,
      CVTDBx, and  EDIT).   The  AC  field  of  the  EXTEND  instruction
      addresses  a  block  of  ACs,  that contain the byte pointers.  In
      addition, some EXTEND  instructions  perform  an  EA-calc  on  the
      extended  opcode  word,  which is interpreted in IFIW format.  The
      extended opcode word is addressed by the effective address of  the
      EXTEND instruction.

      8.2.1  Byte pointer interpretation

      The algorithm for determining the byte pointer format is the  same
      as  that  described for byte instructions with one exception.  For
      EXTEND instructions, the "Section 0?" test in the  flow  chart  is
      based on PC section.

       o  For EXTEND instructions, the test for  the  possibility  of  a
          two-word  global  byte  pointer  is  done based on PC section.
          That is, if PC section is non-zero, the byte pointers  may  be
          global.

      8.2.2  Byte pointer EA-calc

      The default section for the byte pointer EA-calc is  initially  PC
      section even if other parts of the EXTEND instruction are in other
      sections.  For example:
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              3,,100/ MOVEI 1,5             ;Source length
              3,,101/ MOVE 2,[POINT 7,200]  ;Source byte pointer
              3,,102/ MOVEI 4,5             ;Destination length
              3,,103/ MOVE 5,[POINT 7,300]  ;Destination byte pointer
              3,,104/ SETZB 3,6             ;Clear 2nd word of BPs
              3,,105/ EXTEND 1,@[2,,100]

              2,,100/ MOVSLJ                ;Extended opcode is MOVSLJ
              2,,101/ 0                     ;Fill character is 0

      In this example, the EXTEND instruction is in section  3  and  the
      EA-calc  of  the  instruction follows an EFIW into section 2.  The
      EA-calc's for the one-word local byte pointers  in  ACs  2  and  5
      generate  local  addresses  of  200 and 300 respectively.  But are
      they local to section 3 (PC section)  or  to  section  2  (section
      containing  the  extended  opcode)?  Because the byte pointers are
      fetched from the ACs, which are  implicitly  in  PC  section,  the
      EA-calc  is  relative  to  PC  section.   Once  again,  this  is a
      conceptual extension to the rule that local addresses are local to
      the  section  from  which the address word (in this case, the byte
      pointer) was fetched.

      As with byte instructions, the default section of the EA-calc  may
      change if the EA-calc encounters a global quantity.  An example of
      this for the EXTEND instruction would be  analogous  to  that  for
      byte instructions given above.

       o  For EXTEND instructions, the initial default section  for  the
          byte pointer EA-calc is PC section.

      One interesting  aspect  of  this  rule  is  demonstrated  by  the
      following example:

              3,,100/ MOVEI 1,5             ;Source length
              3,,101/ MOVE 2,[POINT 7,200]  ;Source byte pointer
              3,,102/ MOVEI 4,5             ;Destination length
              3,,103/ MOVE 5,[POINT 7,300]  ;Destination byte pointer
              3,,104/ SETZB 3,6             ;Clear 2nd word of BPs
              3,,105/ EXTEND 1,@[0,,100]

              0,,100/ MOVSLJ                ;Extended opcode is MOVSLJ
              0,,101/ 0                     ;Fill character is 0

      In this example, the EXTEND instruction is in a  non-zero  section
      (3)  and the extended opcode is in section zero.  Even though part
      of the processing of the instruction fell into section  zero,  the
      EA-calc of the byte pointers is still done relative to PC section.
      Hence, the result is the same as in the previous example.
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      8.2.3  Extended opcode EA-calc

      Some EXTEND instructions also perform an EA-calc on  the  extended
      opcode word.  In this case, the default section for the EA-calc is
      initially the section from which  the  extended  opcode  word  was
      fetched.  For example:

              3,,100/ MOVEI 1,5             ;Source length
              3,,101/ MOVE 2,[POINT 7,200]  ;Source byte pointer
              3,,102/ MOVEI 4,5             ;Destination length
              3,,103/ MOVE 5,[POINT 7,300]  ;Destination byte pointer
              3,,104/ SETZB 3,6             ;Clear 2nd word of BPs
              3,,105/ EXTEND 1,@[2,,100]

              2,,100/ MOVST 200             ;Extended opcode is MOVST
              2,,101/ 0                     ;Fill character is 0

      As in the last example, the EXTEND instruction EA-calc follows  an
      EFIW  into  section  2  to  fetch  the  extended  opcode word from
      location 2,,100.  In this example, the extended opcode  turns  out
      to  be a MOVST which addresses a translation table with the result
      of the EA-calc of the word.   This  EA-calc  results  in  a  local
      address  which is local to the section from which the address word
      was fetched.  Therefore, the table is read from locations starting
      at 2,,200 LOCAL.

       o  The initial default section for the EA-calc  of  the  extended
          opcode word under an EXTEND instruction is that from which the
          extended opcode word was fetched.

      8.2.4  EDIT pattern and mark addresses

      In  addition  to  byte  pointer  type  determination,   the   EDIT
      instruction  under  EXTEND  interprets the pattern string and mark
      addresses differently based on PC section.  If PC section is zero,
      both addresses are limited to 18-bit addresses in section zero and
      the  result  of  setting  bits   6-17   non-zero   is   undefined.
      Conversely,  if PC section is non-zero, both addresses are treated
      as full 30-bit  global  addresses  and  no  default  sections  are
      applied.   An  example of this is too complex to be given here and
      will be left as an exercise to the reader.

      8.3  JSP and JSR

      In a non-extended machine, these two instructions store the  flags
      and an 18 bit PC before jumping to the effective address.  This is
      also true if the instructions are executed in section zero  of  an
      extended  machine.  Because this format is insufficient to store a
      full 30-bit address, the operation of the instructions is modified
      when  the  PC  is  in  a non-zero section.  Instead of storing the
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      flags  and  PC,  these  instructions  store  the  full  30-bit  PC
      (actually PC+1), omitting the flags.  For example:

              2,,100/ JSP 1,200

      stores  2,,101  in  AC  1  before  jumping  to  location   2,,200.
      Similarly,

              2,,100/ JSR 200

      stores 2,,101 in 2,,200 before jumping to location  2,,201.   Note
      that  for  JSR,  the  PC  is  stored  in the word addressed by the
      effective address even if that  address  is  in  another  section,
      e.g.,

              2,,100/ JSR @[3,,200]

      In this case, the EA-calc for the  JSR  results  in  an  effective
      address  of  3,,200 GLOBAL.  Therefore, 2,,101 (PC+1) is stored in
      3,,200 (EA) before jumping to 3,,201 (EA+1).

      An interesting aspect of this is  demonstrated  by  the  following
      example:

              2,,100/ JSP 1,@[0,,100]

      Because the PC is in a non-zero section,  the  instruction  stores
      2,,101  in AC 1 and then jumps to location 0,,100.  But an attempt
      to return to the caller  in  section  2  via  the  usual  JRST (1)
      instruction   would  fail,  because  the  EA-calc  of  the  return
      instruction, done in section zero, would fail to produce a  30-bit
      global  address.   As  a  result,  it  is  difficult  to  write  a
      subroutine in section zero that can be called via JSP or JSR  from
      an arbitrary section.

      A final example illustrates the difference  between  a  local  and
      global EA for JSR:

              2,,200/ JSR 777777

      The EA-calc for this case results in a value of  2,,777777  LOCAL.
      Therefore,  2,,201  (PC+1)  is  stored  in  2,,777777 (EA) and the
      destination of the jump is 2,,0 (EA+1 local).  This is  consistent
      with  the  rule that local addresses always wrap around in section
      when incremented.

      The global analogy is as follows:

              2,,200/ JSR @[2,,777777]

      In this case, the result of the EA-calc is 2,,777777 GLOBAL so the
      instruction  stores  2,,201 (PC+1) into location 2,,777777 (EA) as
      in the last example.  The difference is in the destination of  the
      jump.   Because  the  effective address is global, incrementing it
      produces 3,,0 GLOBAL (EA+1 global) as the destination of the jump.
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      See  the  section  on  instruction  fetches  below  for additional
      information on these two cases.

       o  If PC is in a non-zero section, the JSP and  JSR  instructions
          store  a  full  30-bit  PC in the appropriate place instead of
          storing flags and PC.  This is true even if the destination of
          the jump is in section zero.

      8.4  Stack instructions

      In a non-extended machine (and  an  extended  machine  in  section
      zero),  the  stack  pointer  typically contains a negative control
      count in the left half and an 18-bit address in  the  right  half.
      Such  a  stack  pointer  is called a local stack pointer.  Because
      this format is insufficient to hold a full 30-bit  stack  address,
      an  additional  format for stack pointers is allowable when the PC
      is in a non-zero section.  In this format (called a  global  stack
      pointer),  the  stack pointer is positive, bits 6-17 are non-zero,
      and bits 6-35 of the word are interpreted as the global address of
      the stack.

      If the stack pointer is in local  format,  the  stack  address  is
      local to PC section.  For example:

              2,,100/ MOVE 17,[-100,,200]
              2,,101/ PUSH 17,300

      Because the left half of the stack pointer is negative, it  is  in
      local  format.   Therefore,  the  stack  address  is 2,,200 LOCAL,
      because the stack is local to PC section.

       o  Local stack pointers are always local to PC section.

       o  The test for the possibility of a global stack pointer is done
          based  on PC section.  That is, if PC section is non-zero, the
          stack pointer may be global.

      Note that a PUSH-type  stack  operation  done  on  a  local  stack
      pointer  that  has  overflowed (i.e., the left half of the pointer
      has gone to zero) changes the stack pointer to global format.

      The type of stack pointer also determines how the stack address is
      incremented or decremented.  For example, consider the following:
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              2,,100/ MOVE 17,[-100,,777777]
              2,,101/ PUSH 17,200

      The stack pointer in this example is local, so the  stack  address
      is  2,,777777  LOCAL.   When  the  PUSH instruction increments the
      pointer, it does so section-local,  resulting  in  an  incremented
      stack address of 2,,0 LOCAL (which actually references AC 0).  The
      stack pointer would then look like -77,,0.

      Let's look at the same example with a global stack pointer:

              2,,100/ MOVE 17,[2,,777777]
              2,,101/ PUSH 17,200

      With a global stack  pointer,  the  increment  is  done  globally,
      resulting in an incremented stack address of 3,,0 GLOBAL (which is
      memory location 0 in section 3).  The  stack  pointer  would  then
      look like 3,,0.

       o  Incrementing or  decrementing  a  local  stack  pointer  wraps
          around in section.  Conversely, the same operation on a global
          stack pointer may cross section boundaries.

      In addition to the requirement  for  a  global  stack  pointer  to
      specify  a  full  30-bit stack address, the operation of the PUSHJ
      and POPJ instructions is modified when the PC  is  in  a  non-zero
      section.   Like JSP and JSR, PUSHJ stores a full 30-bit PC (again,
      actually PC+1) on the stack, omitting the flags.  Similarly,  POPJ
      restores  a  full 30-bit PC from the stack instead of an 18-bit PC
      local to PC section.  Let's look at some examples:

              2,,100/ MOVE 17,[-100,,200]
              2,,101/ PUSHJ 17,400

      Because PC section is non-zero, the PUSHJ  stores  2,,102  on  the
      stack  at  location  2,,201,  which was addressed by a local stack
      pointer, and then jumps to  location  2,,400.   An  updated  stack
      pointer of -77,,201 is stored back into AC 17.  Similarly:

              2,,400/ MOVE 17,[-77,,201]
              2,,401/ POPJ 17,

      restores the full 30-bit PC from stack location 2,,201  (addressed
      by  the  local  stack  pointer)  and  then stores an updated stack
      pointer of -100,,200 back into AC 17.

      This behavior has some interesting aspects, as  the  next  example
      demonstrates:
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              2,,100/ MOVE 17,[2,,200]
              2,,101/ PUSHJ @[0,,300]

      Because PC is in a non-zero section, the PUSHJ instruction  stores
      a  full  30-bit  PC  (2,,102)  on  the  stack  at  location 2,,201
      (addressed by the global stack pointer).  The jump  is  then  made
      into  section zero.  But an attempt to return to the caller with a
      POPJ instruction will result in bedlam.  In the first  place,  the
      global stack pointer will be interpreted as a local one in section
      zero.  In addition, POPJ will assume that the stack word  contains
      flags and PC and restore an 18-bit PC, local to section zero.

      As this example demonstrates, it  isn't  very  practical  to  call
      subroutines  in  section  zero, from a non-zero section, using the
      normal call/return conventions.

       o  If PC is in a non-zero section, the PUSHJ instruction stores a
          full  30  bit  PC  on  the  stack.   This  is true even if the
          destination of the jump is in section zero and  regardless  of
          the format of the stack pointer.

       o  If PC is in a non-zero section, the  POPJ  instruction  always
          restores a full 30-bit PC from the stack.

      8.5  JSA and JRA

      These instructions use a format that is incompatible with extended
      addressing.   Because  they are also considered an obsolete method
      for subroutine call/return, no attempt has been made  to  find  an
      alternate  format  for  these  instructions  when  executed  in  a
      non-zero section.

      For  compatibility  with  section   zero   programs,   these   two
      instructions  continue  to  work  in  non-zero sections.  However,
      their use  is  restricted  to  intra-section  operation,  and  all
      inter-section use is undefined.

      In the case of JSA, the effective address  is  calculated  in  the
      normal  manner.   However,  if  the  EA-calc results in an address
      outside of PC section, the action of the instruction is undefined.
      For example, the results of:

              2,,100/ JSA 1,@[3,,200]

      are undefined because the effective address is in section 3 and PC
      section  is  section  2.   Note that a JSA which computes a global
      effective address which addresses the last word of PC  section  is
      also undefined.  Let's look at an example of why this is true:
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              2,,100/ JSA 1,@[2,,777777]

      In this case, the microcode would store the contents  of  AC  into
      2,,777777  and  attempt to jump to E+1.  But because EA is global,
      the computation of E+1  would  result  in  3,,0  GLOBAL  which  is
      outside of PC section.

      The normal usage of JRA  is  of  the  form  JRA  AC,(AC)  and  the
      operation of the instruction is defined to take this into account.
      After the normal effective address calculation  is  performed,  PC
      section  is appended to the in-section addresses in AC to form the
      address of where the old contents of AC were stored and the new PC
      address.   This  forces  all  references to be in PC section.  For
      example,

              2,,201/ MOVE 1,[200,,101]
              2,,202/ JRA 1,(1)

      restores AC from location 2,,200 (PC section plus contents  of  AC
      left) and then jumps to 2,,101 (EA in PC section).

      These  definitions  for  JSA  and  JRA  are  consistent  with  the
      operation of the instructions in section zero.

       o  The use of JSA and JRA in a non-zero section is restricted  to
          the  case  where  the  EA-calc  results  in  an  address in PC
          section.  All inter-section usage is undefined.

      8.6  LUUOs

      In a non-extended machine, LUUOs trap via a pair of locations  (40
      and  41)  in  exec or user virtual memory.  Because this scheme is
      insufficient to support  extended  addressing,  the  operation  of
      LUUOs  is  modified  if  the PC is in a non-zero section.  In this
      circumstance, the LUUO is  processed  through  a  four-word  block
      which  is  addressed by a word in the exec or user process tables.
      See the PRM for more details.

       o  If PC is in a non-zero section, LUUOs trap through a four-word
          block  addressed  by  a location in the EPT (exec LUUO) or UPT
          (user LUUO).

      8.7  BLT

      The format used for source and destination  addresses  by  BLT  is
      insufficient  to represent two 30-bit addresses.  As a result, the
      XBLT instruction was added to the instruction set to  allow  block
      transfers  from  one arbitrary 30-bit address to another.  Despite
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      this, BLT is still useful for intra-section block  transfers,  and
      the operation of the instruction has been changed slightly.

      The initial source address is constructed  by  taking  the  18-bit
      address in the left half of the AC and appending it to the section
      number  and  local/global  flag  from   the   effective   address.
      Similarly, the initial destination address is constructed from the
      18-bit address in the right half of the AC and the section  number
      and local/global flag from the effective address.  This means that
      transfers are  always  to  and  from  the  same  section  as  that
      specified  by the effective address, which need not necessarily be
      the same as PC section.  Source and destination addresses are then
      incremented,  section-local  (even  if  EA  is  global)  until the
      destination address is equal to EA.  For example:

              2,,100/ MOVE 1,[200,,300]
              2,,101/ BLT 1,@[3,,302]

      In this example, the EA-calc for the BLT results in 3,,302 GLOBAL.
      Using   the  rules  above,  the  initial  source  and  destination
      addresses would be 3,,200 GLOBAL and  3,,300  GLOBAL.   Therefore,
      the following transfer would take place:

              3,,200 => 3,,300
              3,,201 => 3,,301
              3,,202 => 3,,302

      Let's look at an example that  demonstrates  the  significance  of
      incrementing the addresses section-local:

              2,,100/ MOVE 1,[777776,,300]
              2,,101/ BLT 1,@[3,,302]

      As in the previous example, EA is 3,,302 GLOBAL  and  the  initial
      destination  address  is 3,,300 GLOBAL.  In this case, the initial
      source address is 3,,777776  GLOBAL  and  the  following  transfer
      takes place:

              3,,777776 => 3,,300
              3,,777777 => 3,,301
              3,,0      => 3,,302

      Note that the source address was  incremented  section-local  even
      though it was a global address.

      It is important  to  note  that  the  local/global  flag  must  be
      included  in  constructing  the  initial  source  and  destination
      addresses  even  though  the  addresses  are  always   incremented
      section-local.   This  is because the check for an AC reference is
      done by including this flag.  Let's  look  at  two  examples,  one
      whose EA is local and one whose EA is global:
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              2,,100/ MOVE 17,[1,,200]
              2,,101/ BLT 17,201

      In this case, the result of the EA-calc  for  the  BLT  is  2,,201
      LOCAL.   Therefore,  the  initial source and destination addresses
      are 2,,1 LOCAL and 2,,200 LOCAL, respectively.  Because the source
      is  a local address whose in-section part is in the range 0-17, it
      references AC 1.  Now let's look at the global case:

              2,,100/ MOVE 17,[1,,200]
              2,,101/ BLT 17,@[2,,201]

      In this case, the result of the EA-calc  for  the  BLT  is  2,,201
      GLOBAL.   Therefore,  the initial source and destination addresses
      are 2,,1 GLOBAL and 2,,200 GLOBAL, respectively.   In  this  case,
      the  source address references memory location 2,,1 instead of the
      ACs because the effective  address  is  global.   In  both  cases,
      however, the addresses are incremented section-local.

       o  The initial source  and  destination  addresses  for  BLT  are
          constructed by appending the appropriate half of the AC to the
          section  number  and  local/global  flag  from  the  effective
          address.   Incrementing of source and destination addresses is
          always done section-local independent  of  the  state  of  the
          local/global flag.  However, the determination of AC reference
          is done via the normal rules  by  including  the  local/global
          flag.

      8.8  XBLT

      The XBLT instruction is the one  exception  to  the  rule  that  a
      section  zero  program cannot reference data in non-zero sections.
      In this one case, the contents of AC+1 (source pointer)  and  AC+2
      (destination   pointer)   are  always  treated  as  30-bit  global
      addresses, even if the PC is in section zero.  This means  that  a
      program  running  in  section zero can allocate a non-zero section
      and XBLT code or data into  it  without  having  to  jump  into  a
      non-zero section to do it.

       o  The source and  destination  addresses  for  XBLT  are  always
          interpreted as full 30-bit global addresses, even if the PC is
          in section zero.

      This means that the final addresses left in AC+2 and AC+3  at  the
      end  of  the  XBLT  may  be  inaccessible by other instructions in
      section zero.  For example:
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              0,,100/ MOVEI 1,777777        ;Word count
              0,,101/ MOVEI 2,20            ;Source address
              0,,102/ MOVE 3,[2,,100]       ;Destination address
              0,,103/ EXTEND 1,[XBLT]

      In this example, the transfer is from 0,,20  to  2,,100,  and  the
      number  of  words  transferred  is  256K-1.   The final source and
      destination addresses left in ACs 2 and  3  are  1,,17  and  3,,77
      respectively.

       o  For XBLT, the final values stored in AC+2 and AC+3 for  source
          and  destination  addresses are computed by adding the initial
          word count to the initial source  and  destination  addresses.
          This  computation  is  the  same  in  all  sections, including
          section zero.

      8.9  JRSTF

      If the PC is in a non-zero section, JRSTF traps as an MUUO.   This
      is  because  JRSTF  is usually used with an indirect word or index
      register with PC flags in the left half.  It is quite likely  that
      these flags would be mistaken for a global section number.

       o  If PC is in a  non-zero  section,  JRSTF  traps  as  an  MUUO.
          XJRSTF should be used in a non-zero section.

      8.10  XMOVEI and XHLLI

      Unlike other immediate instructions that use only 18 bits  of  the
      effective  address,  these two instructions operate on all 30 bits
      of EA.  XMOVEI returns the full 30-bit effective  address  in  AC.
      XHLLI  stores  the  section number of the effective address in the
      left half of AC, leaving the right half unchanged.

      One important implication of these two instructions is  that  they
      convert  a  local  reference to an AC in any non-zero section into
      the global form.  For example:

              2,,100/ XMOVEI 1,6

      The EA-calc of the XMOVEI results in 2,,6 LOCAL, which is a  local
      reference to AC 6.  This result is then converted to the global AC
      address of 1,,6 before being loaded into AC 1.

      This conversion is not done  if  the  AC  reference  is  local  to
      section zero.  For example:
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              2,,100/ XMOVEI 1,@[200000,,6]

      In this example, the EA-calc follows an indirect EFIW into section
      zero.  The result of the EA-calc is therefore 0,,6 LOCAL, which is
      a local reference to AC 6.  Because the effective  address  is  in
      section  zero,  it is not converted to the global form and 0,,6 is
      stored in AC 1.

       o  If the effective address of an XMOVEI  or  XHLLI  is  a  local
          reference  to  an  AC in a non-zero section, the AC address is
          converted to a global AC address before being loaded into AC.

      8.11  XCT

      With the exception of the modification of the EA-calc rules  in  a
      non-zero  section, the XCT instruction operates in the same manner
      as on a non-extended machine.  The operation  of  the  instruction
      being  executed, however, may be affected.  This section describes
      these cases and gives examples to demonstrate them.

      8.11.1  Default section for EA-calc

      If an instruction is executed  by  an  XCT,  the  initial  default
      section  for  the  EA-calc of that instruction is the section from
      which the instruction was fetched.  This may be different from  PC
      section  if  the XCT and the executed instruction are in different
      sections.  For example:

              3,,100/ XCT @[2,,100]

              2,,100/ MOVE 1,200

      In this example, the XCT instruction  is  in  section  3  and  the
      executed  instruction  is  in section 2.  The Ea-calc for the MOVE
      yields a local address, which is local to the section  from  which
      the  MOVE  was  fetched.   Therefore, the result of the EA-calc is
      2,,200 LOCAL.  This rule allows  one  to  XCT  an  instruction  in
      another  section  and  have  local  references  generated  by  the
      executed instruction  be  local  to  the  section  containing  the
      instruction.
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       o  The initial default section for the EA-calc of an  instruction
          executed  by  XCT  is  that  from  which  the  instruction was
          fetched.

      8.11.2  Relationship with skip and jump instructions

      When a skip instruction is XCTed, the skip is always  relative  to
      PC  section,  i.e.,  the  section containing the XCT (first XCT if
      there is a chain  of  XCTs).   This  is  true  even  if  the  skip
      instruction is in another section.  For example:

              3,,100/ XCT @[2,,300]

              2,,300/ SKIPA 1,200

      In this example, an XCT in section 3 executes a  skip  instruction
      in  section  2.   Because  this instruction always skips, the next
      instruction is taken  from  location  3,,102  (PC+2),  not  2,,302
      (instruction+2).   However,  the  EA-calc of the SKIPA instruction
      results in 2,,200 LOCAL,  so  the  contents  of  location  200  in
      section 2 are stored in AC.

       o  If an XCT executes a skip  instruction,  the  skip  is  always
          relative  to  PC  section,  even if the skip instruction is in
          another section.

      The following example demonstrates the effect  of  XCTing  a  jump
      instruction:

              3,,100/ XCT @[2,,100]

              2,,100/ JRST 200

      In this example, an XCT in section 3 executes a  jump  instruction
      in  section  2.   The  EA-calc  for the JRST results in an address
      local to section 2, so the next instruction is taken from  2,,200,
      not 3,,200.

       o  If an XCT executes a jump instruction  that  jumps,  the  next
          instruction is fetched from the effective address of the jump.
          This is true even if the XCT and the  jump  are  in  different
          sections  and  the  EA-calc  of  the  jump  results in a local
          address whose section is different from PC section.
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      8.11.3  PC storing instructions

      When an XCT executes an instruction that stores PC as part of  the
      operation  of  the instruction (e.g., PUSHJ, JSP, etc.), the value
      stored is relative to PC section  (i.e.,  the  XCT)  and  not  the
      section of the executed instruction.  For example:

              3,,100/ XCT @[2,,200]

              2,,200/ JSP 1,300

      In this example, an XCT in section 3 executes a JSP in section  2.
      The  next  instruction is fetched from location 2,,300 because the
      EA-calc of the JSP is local to section 2.  However, the PC  stored
      in AC 1 is 3,,101 (XCT+1), not 2,,201 (JSP+1).

       o  If an XCT executes an instruction that stores PC  as  part  of
          its execution, the value stored is relative to the XCT and not
          the executed instruction.

      8.11.4  Local stack references

      When an XCT executes a stack instruction that uses a  local  stack
      pointer,  the stack pointer is local to PC section and not to that
      containing the stack instruction.  For example:

              3,,077/ MOVE 17,[-100,,300]
              3,,100/ XCT @[2,,200]

              2,,200/ PUSH 17,400

      In this example, an XCT in section 3 executes a PUSH in section 2.
      Since  the  EA-calc  for  the PUSH results in a local address, the
      datum to be pushed is in the same section as the PUSH  instruction
      (at  location  2,,400).  However, the stack pointer is local to PC
      section, not the section  containing  the  PUSH.   Therefore,  the
      datum is stored on the stack at location 3,,301.

       o  If an XCT executes a stack instruction whose stack pointer  is
          local,  the  stack  is  local  to  PC section, not the section
          containing the stack instruction.

      8.11.5  Generalizations for XCT

      The examples above cover specific relationships  between  XCT  and
      the  executed  instruction.   There are really two generalizations
      (one of which was given above) that can  be  made  about  XCT,  as
      follows:
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      1.  The initial default  section  for  the  EA-calc  of  an  XCTed
          instruction  is  that  from which the instruction was fetched,
          and not the section from which the XCT was fetched.

      2.  Any test of PC section for determining  whether  section  zero
          rules  or  non-zero  section  rules apply is done based on the
          section from which the XCT instruction was fetched (the  first
          one if there is a chain of XCTs).  That is, PC section doesn't
          change because an  XCT  executes  an  instruction  in  another
          section.
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      9.0  Summary of default sections for EA-calc

      After covering all the special case instructions, it is worthwhile
      to  summarize  the  rules  regarding  the  initial default section
      number for EA-calc's.  The initial default section for any EA-calc
      is that from which the address word was fetched.  This is true for
      the simple cases as well as the more complex cases.  The following
      table  gives  the initial default section for the various kinds of
      EA-calc:

      EA-calc class           Initial default section
      _______ _____           _______ _______ _______

      Instruction             PC section

      XCTed instruction       Section    containing     the     executed
                              instruction

      Byte instruction        Section containing the byte pointer
      byte pointer

      EXTEND instruction      PC section
      byte pointer

      EXTEND instruction      Section containing the opcode word
      opcode word

      Local stack             PC section
      pointer
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      10.0  Section zero vs. non-zero section rules

      As the previous discussion of special case instructions indicates,
      some  instructions do different things based on a test for section
      zero.  However, this test isn't always on  PC  section.   We  have
      intentionally  left  out  examples  that  demonstrate  some of the
      boundary conditions that make extended addressing hard to document
      to  avoid  confusing  the  reader  before  the  simple  cases  are
      understood.  This section  includes  examples  of  these  boundary
      conditions, and summarizes the rules for testing to see if section
      zero rules apply.

      The first example illustrates the test for the  possibility  of  a
      global byte pointer:

              3,,100/ LDB 1,@[0,,200]
              0,,200/ 000640,,300
              0,,201/ 400000,,400

      In this example, the byte instruction is in section 3 and the byte
      pointer  is  in  section  0.   Note that bit 12 is set in the byte
      pointer which, if global byte pointers are allowed, would indicate
      a  two-word global byte pointer.  Is this byte pointer interpreted
      as a one-word local or two a word global byte pointer?   The  rule
      given  in  a  previous section says that the test is made based on
      the section from which the byte pointer was  fetched.   Therefore,
      bit  12  is  ignored,  the byte pointer is interpreted in one-word
      local format, and the byte is fetched from the  word  at  location
      0,,300.

      Let's look at a similar case involving both XCT and EXTEND:

            3,,100/ MOVEI 1,5             ;Source length
            3,,101/ MOVE 2,[440740,,500]  ;Source b.p. (1st wd)
            3,,102/ MOVE 3,[5,,100]       ;Source b.p. (2nd wd)
            3,,103/ MOVEI 4,5             ;Destination length
            3,,104/ MOVE 5,[440740,,300]  ;Destination b.p. (1st wd)
            3,,105/ MOVE 6,[5,,200]       ;Destination b.p. (2nd wd)
            3,,106/ XCT @[0,,100]         ;Execute EXTEND in section 0

            0,,100/ EXTEND 1,200

            0,,200/ MOVSLJ                ;Extended opcode is MOVSLJ
            0,,201/ 0                     ;Fill character is 0

      In this example, the XCT is in section 3  and  the  entire  EXTEND
      instruction  is  in section zero.  Both the source and destination
      byte pointers have bit 12 set, which means they may be interpreted
      as  two-word  global pointers.  But are they?  The rule given in a
      previous section says that the test is made based on  PC  section,
      which  is  non-zero.   Therefore,  the  byte pointers are two-word
      global and the string is moved from 5,,100  to  5,,200.   If  this
      seems  like  an  anomaly,  remember  that  the test is based on PC
      section because the  byte  pointers  are  fetched  from  the  ACs.
      References to ACs addressed by the AC field of the instruction are
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      always made in PC section.

      A final example combines an XCT with a JSR:

              3,,100/ XCT @[0,,200]

              0,,200/ JSR 300

      In this example, the XCT is in section 3 and the JSR is in section
      zero.   The  EA-calc  of  the JSR is local to section zero, so the
      destination of the jump is 0,,301.  But what is stored in  0,,300?
      The  rule  given in a previous section says that the test is based
      on PC section.  Therefore, we store a full 30-bit PC (3,,101) into
      location 0,,300.

       o  The test for section zero rules vs.  non-zero section rules is
          done   based   on   PC  section  for  all  cases  except  byte
          instructions.  This is true even if the instruction is an  XCT
          which  executes  an  instruction in another section (including
          section zero).

       o  The test for section zero rules vs.   non-zero  section  rules
          for a byte instruction is done based on the section from which
          the byte pointer was fetched.

      It is important to realize that PC section may be  different  from
      that containing the instruction being executed if an XCT (or chain
      of XCTs) is involved.  PC section is always that  from  which  the
      original instruction (the XCT if that instruction is involved) was
      fetched.  This is a subtle distinction, but  it  is  important  in
      testing for section zero rules.
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      11.0  Special consideration for ACs

      On the PDP-10, the ACs are both general purpose registers and also
      part of the virtual address space of every program.  This dual use
      is convenient  but  also  confusing  when  one  is  attempting  to
      understand   the  rules  of  extended  addressing.   This  section
      describes some of the aspects of the relationship between extended
      addressing and the use of the ACs.

      11.1  AC references

      An AC can be referenced in one of four ways as follows:

      1.  As a general purpose register  through  the  AC  field  of  an
          instruction.

      2.  As an index register through the index register  field  of  an
          instruction or indirect word.

      3.  As  a  local  memory  reference  to  the  first  16  (decimal)
          locations of any section.

      4.  As a  global  memory  reference  to  the  first  16  (decimal)
          locations of section 1.

      In this discussion, we are concerned with the last two uses.

      The rules for extended addressing say that  memory  references  in
      section  zero  are always local.  Therefore, a section zero memory
      reference can reference the ACs only if it  is  to  the  first  16
      (decimal)  locations in section zero.  On the other hand, a memory
      reference in a non-zero section  can  reference  the  ACs  in  two
      different  ways.  If the memory reference is local, the ACs appear
      in the virtual address space of every  section  as  the  first  16
      locations.  For example, both

             2,,100/ MOVE 1,2

      and

             5,,100/ MOVE 1,2

      reference AC 2 even though the addresses are  local  to  different
      sections.

      In addition, the ACs may be referenced  in  a  section-independent
      way  via  a  reference  to  global address 1,,n, where n is in the
      range 0-17, inclusive.  This means  that  an  AC  address  can  be
      passed between two routines running in a non-zero section, even if
      the routines are in different sections.  For example:
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              5,,100/ MOVE 16,[1,,6]     ;Get global AC address for AC
              5,,101/ PUSHJ 17,@[3,,200] ; 6 and call routine
                      :
                      :
              3,,200/ MOVE 1,(16)        ;Use global XR to fetch data

      In this example, the calling  routine  in  section  5  places  the
      global  AC  address  for  AC  6  into AC 16 and calls a routine in
      section 3.  Because 1,,6  is  a  global  AC  address,  the  called
      routine  interprets  the  index  in  global format and the data is
      fetched from AC 6.

      Note that an address of the form 1,,n, where n  is  in  the  range
      0-17,  will always reference the ACs, whether the address is local
      or global.  If the address is local,  the  reference  is  a  local
      reference  to  the ACs in section 1.  If the address is global, it
      is a global AC reference to the ACs.

       o  An address of the form 1,,n, where n is  in  the  range  0-17,
          inclusive,  refers  to the ACs whether it is a local or global
          address.  Therefore, such an address can be used to  refer  to
          the  ACs  even  if  the  state  of the local/global bit is not
          known.

      11.2  Instruction fetches

      All instruction fetches are made as local references, even  though
      the  PC  is  a  full 30-bit address.  Therefore, an instruction is
      fetched from the ACs whenever bits 18-35 of PC are  in  the  range
      0-17,  inclusive, independent of the section number.  Consider the
      following example:

              1,,100/ XJRST [3,,2]

      This  instruction  sets  the  PC  to  3,,2.   However,  the   next
      instruction  fetch  will  come  from  AC 2 because it is made as a
      local reference.

      This behavior can have some  implications  for  instructions  that
      also store information before changing PC.  Consider the following
      example:

              1,,100/ JSR @[3,,2]

      The JSR stores the current PC into memory location 3,,2  and  then
      changes the PC to 3,,3.  The next instruction is then fetched from
      AC 3 because of the local reference, but the old PC is  in  memory
      and must be fetched with a global reference.

       o  Instruction fetches  from  C(PC)  are  always  made  as  local
          references  even if PC was previously set to a global address.
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          This  means  that  instruction  fetches  from  the  first   16
          (decimal) locations of any section cause the instruction to be
          fetched from the ACs.

      11.3  Storing PC

      If an instruction that stores PC  as  part  of  its  execution  is
      fetched from the ACs, the PC is stored as a full 30-bit address if
      PC is in a non-zero section.  For example:

              3,,100/ MOVE 4,[JSP 2,200]
              3,,101/ JRST 4

      In this example, the MOVE instruction stores a JSP into AC 4,  and
      the  JRST  instruction  computes  a  local  effective address that
      references the ACs.  PC is set to 3,,4, but the  next  instruction
      is  fetched  from AC 4 because instruction fetches are always made
      as local  references.   Therefore,  the  next  instruction  to  be
      executed  is the JSP.  Because PC section is non-zero (it is still
      3), the JSP must store a full 30-bit PC into AC 2.  The  important
      thing  to  realize  is  that PC is 3,,4 and is not 0,,4 (a section
      zero AC address) or 1,,4 (a global AC address).  Therefore the JSP
      stores  3,,5  (remember,  it  stores  PC+1) into AC 2 and jumps to
      3,,200.

       o  If an instruction that is fetched from AC stores PC as part of
          its  execution,  the  PC  stored  is  a  full  30-bit  address
          including PC section, if PC section is non-zero.

      11.4  Storing EA for LUUO, MUUO and page fails

      When an LUUO or MUUO is executed or an instruction page fails, the
      microcode  stores  some information about the exception in a block
      addressed by a word fetched from the UPT or EPT.  The  information
      stored includes the effective address (or reference address in the
      case of page fail) for the instruction that caused the  exception.
      If  the  resulting effective address is a local reference to an AC
      in a non-zero section, the microcode converts this  address  to  a
      global  AC  reference before storing it in the block.  This is the
      same rule used for XMOVEI and XHLLI.
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       o  If the effective address of an LUUO or MUUO, or an instruction
          that  causes  a  page fail results in a local reference to the
          ACs in a non-zero section, the microcode converts the local AC
          reference to a global AC address before storing the result.

      11.5  An example

      Consider the following example that brings together all  of  these
      rules:

              3,,100/ MOVE 6,[001000,,10]
              3,,101/ JRST 6

      In this example, the MOVE stores an LUUO (opcode 001)  into  AC  6
      and  the  JRST  sets PC to 3,,6.  The following list indicates the
      significant actions that are performed to process the LUUO:

      1.  The EA-calc for the LUUO is performed and the result is  3,,10
          LOCAL.

      2.  Because PC section is non-zero, the  LUUO  must  be  processed
          through a four-word block addressed by a location in the UPT.

      3.  PC+1 must be  stored  as  a  full  30-bit  address,  including
          section number.  The value stored is 3,,7.

      4.  Because the EA-calc of the LUUO resulted in a local  reference
          to  AC  10, it must be converted to a global AC address before
          it is stored in the block.   The  value  stored  is  therefore
          1,,10.
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      12.0  PXCT

      When the monitor is invoked by  an  MUUO,  page  fail,  etc.,  the
      address  space  of  the  process  that  caused  the  invocation is
      potentially different from that  of  the  monitor.   In  order  to
      provide  a  communications  mechanism  between the monitor and the
      so-called "previous context", the PXCT (for Previous context  XCT)
      instruction  was defined.  Although PXCT is normally considered as
      a separate topic from extended addressing, there are  interactions
      between  the  two  that  make  it  desirable  to  talk  about them
      together.

      Because PXCT is legal only in exec  mode,  there  is  no  need  to
      define  a  new opcode for the instruction.  Rather, the normal XCT
      opcode is used, and a non-zero AC field distinguishes a PXCT  from
      a  normal  XCT.   The  opcode  name  PXCT  is  simply a notational
      convenience to emphasize that the executed instruction  is  making
      previous context references.

      12.1  Previous context

      For the purposes of this discussion, "previous context" is defined
      by  three  processor  state  variables:   Previous Context Section
      (PCS), Previous Context User (PCU), and Previous AC  Block  (PAB).
      PCS  is  a  12-bit  state  register (5 on the KL10) that gives the
      value of PC section in the previous context at  the  time  of  the
      event  that  invoked  the  monitor.   PCU is a 1-bit register that
      indicates that the previous context was user mode (as  opposed  to
      exec  mode).   PAB  is  a  3-bit  register that gives the AC block
      number used by the previous context (there are typically  multiple
      AC  blocks implemented by a machine, 8 in both KL10 and KC10.  The
      so-called "current ac block" is addressed by another  3-bit  state
      register  called  Current  AC  Block,  or  CAB).   Therefore,  the
      previous context includes both the address space and ACs that were
      in use at the time of the event that invoked the monitor.

      When a context change occurs as the result of an MUUO, page  fail,
      interrupt,  etc.,  the  previous  context  state variables are set
      according to a set of rules that are  defined  for  each  type  of
      context  change.   The  specific  rules  aren't  important for the
      purpose of this discussion and the reader  is  referred  to  other
      sources  for  more  information.   The important point is that the
      state variable are set as the result of the context change.

      In addition to being set on a context change, the monitor may also
      set  the  state  variables  explicitly  when it desires to make an
      asynchronous reference to previous context.

      These previous context state registers then direct  references  to
      the  previous  context as described below.  Note that the previous
      context need not always be user mode.  It is exec  mode  in  cases
      where the monitor makes a request of itself, such as the execution
      of an MUUO by the monitor.
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      12.2  Use of the previous context state variables

      The state registers PCS, PCU, and PAB hold  information  necessary
      to  make  a  previous  context  memory  or  AC (as memory or index
      register) reference.  This section  describes  the  use  for  each
      register.

      PCS is a 12-bit state variable that gives the value of PC  section
      in the previous context.  It is used in the PXCT EA-calc algorithm
      as described below to provide a default section number for a local
      EA-calc.   It  is  also used as the basis for the test for section
      zero in some instructions  that  behave  differently  in  non-zero
      sections  as  described below.  (For most instructions, the effect
      is as if the instruction were executed in previous context.)

      PCU is a 1-bit state variable that  indicates  that  the  previous
      context  was  user  mode.  PCU is used to select the address space
      for  a  previous  context  memory  reference.   That  is,  if  the
      reference  is to previous context and PCU is set, the reference is
      made to  the  user  address  space  as  mapped  through  the  UPT.
      Conversely, if the reference is to previous context and PCU is not
      set, the reference is to the exec address space as mapped  through
      the EPT.

      PAB is a 3-bit state variable that gives the AC block  number  for
      the  previous  AC block.  If an index register or AC is referenced
      in previous  context,  PAB  gives  the  number  of  the  AC  block
      containing the data.

      12.3  References to previous context

      The PXCT mechanism allows the monitor to  execute  an  instruction
      such  that certain references of the executed instruction are made
      to the previous context.  Conceptually, these references are  made
      as  if  the PXCTed instruction were being executed in the previous
      context.

      It  is  important  to  understand  exactly  which  operations  are
      modified  by  PXCT.  The instruction fetch and EA-calc of the PXCT
      instruction and the fetch of the executed instruction  are  always
      done  in  current context.  In addition, all AC references (as the
      result of bits 9-12 of the executed instruction) are made  to  the
      current  context  ACs.  The only difference between an instruction
      executed under PXCT and one that is not is the way certain  memory
      and  index  register  references  are  made.   In  particular, the
      EA-calc of the executed instruction may reference  indirect  words
      and  index  registers  in  previous  context.  Also, memory and AC
      references made as the result of the EA-calc may  be  to  previous
      context.  Exactly which references are made in previous context is
      determined by the type of instruction that is being  executed  and
      by the bits set in the AC field of the PXCT instruction.
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      12.4  Applicable instructions

      Not all instructions may be executed via PXCT.  The use of PXCT is
      limited  to  instructions  that  are useful to the monitor, and no
      attempt is made to trap those cases that aren't  applicable.   The
      instructions that may be executed are as follows:

          MOVE class instructions
          Halfword class instructions
          EXCH
          XMOVEI, XHLLI
          BLT (with restrictions), XBLT
          Arithmetic (integer and floating point) instructions
          Boolean instructions
          DMOVE class instructions
          CAI and CAM class instructions
          SKIP, AOS, and SOS class instructions
          Logical test instructions
          PUSH and POP (with restrictions)
          Byte class instructions
          MOVSLJ (with restrictions)
          MAP

      All other  instructions  are  inapplicable,  and  the  results  of
      executing  an  inapplicable  instruction are undefined.  Note that
      this list explicitly excludes all instructions that jump.

      12.5  Interpretation of the AC field bits

      The four bits of the AC field of the  PXCT  instruction  determine
      which  memory  references  of the executed instruction are made to
      previous context.  For most PXCTed instructions, the AC field bits
      are  logically  grouped into two pairs (9-10 and 11-12) to control
      how EA-calc and data references are performed.  Within each  pair,
      the  first bit (the generic "E control bit") causes index register
      and address word references to come from previous  context  during
      an  EA-calc.   The second bit (the generic "D control bit") causes
      data fetches as the result of instruction execution to  come  from
      previous context.  When considered as a whole, bits 9-12 of the AC
      field are named "E1", "D1", "E2", and "D2" but the  generic  names
      ("E"  and "D") may be used when it is clear which bits control the
      reference in question.

      Not all executed instructions use both pairs of  bits.   In  fact,
      the  great majority of applicable instructions use only bits 9 and
      10;  bit 9 for the EA-calc of the PXCTed instruction  and  bit  10
      for  the  data  reference  made  as the result of that EA-calc.  A
      notable example of the use of bits 11 and 12 to  control  previous
      context references is the byte instructions.  In this case, bit 11
      controls the EA-calc of the byte pointer and bit 12  controls  the
      data reference to the word containing the byte.  Some instructions
      use other combinations of bits,  e.g.,  BLT,  EXTEND  (MOVSLJ  and
      XBLT), and stack instructions.
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      The previous context memory references controlled by each AC field
      bit may be summarized by the following table:

      Bit            References made in previous context if bit is 1

      9  (E1)  Effective  address  calculation  of  instruction   (index
               registers, indirect words).

      10 (D1)  Memory operands specified by EA, whether fetch  or  store
               (e.g,   PUSH  source,  POP  or  BLT  destination);   byte
               pointer.

      11 (E2)  Effective address calculation of byte pointer;  source in
               EXTEND  (e.g., XBLT or MOVSLJ source);  effective address
               calculation of source byte pointer in EXTEND (MOVSLJ).

      12 (D2)  Byte data;  source in BLT;  destination in EXTEND  (e.g.,
               XBLT   or   MOVSLJ   destination);    effective   address
               calculation  of  destination  byte  pointer   in   EXTEND
               (MOVSLJ).

      There are obviously a limited number of valid combinations  of  AC
      field  bits  for  those  instructions  that  may  be  PXCTed.  The
      following table gives the legal  combinations.   The  "AC"  column
      gives  the  AC  field  value for the equivalent bits, e.g., the AC
      column would contain a 4 for a 0 1 0 0 bit string.

                             E1 D1 E2 D2
          Instructions   AC  9  10 11 12   References

          General         4  0  1  0  0    Data
                         14  1  1  0  0    E, data

          PUSH, POP       4  0  1  0  0    Data
                         14  1  1  0  0    E, data

          Immediate      10  1  -  0  0    E (no data reference)

          BLT             5  0  1  0  1    Source data, destination data
                         15  1  1  0  1    E, source  data,  destination
                                           data

          XBLT            2  0  0  1  0    Source data
                          1  0  0  0  1    Destination data
                          3  0  0  1  1    Source data, destination data
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          Byte            1  0  0  0  1    Byte data
                          3  0  0  1  1    Pointer E, byte data
                          7  0  1  1  1    Pointer, pointer E, byte data
                         17  1  1  1  1    E, pointer, pointer  E,  byte
                                           data

          MOVSLJ          1  0  0  0  1    Destination    pointer     E,
                                           destination data
                          2  0  0  1  0    Source pointer E, source data
                          3  0  0  1  1    Source pointer E, destination
                                           pointer   E,   source   data,
                                           destination data

      Note that BLT, PUSH, POP, and MOVSLJ  have  restrictions  on  what
      memory  references  can  be  PXCTed.   For  BLT,  all  references,
      optionally  including  the  EA-calc,  must  be  done  in  previous
      context.   The  results  of  PXCTing  a  BLT  where source but not
      destination or destination but not source is in  previous  context
      are undefined.  The LDPAC and STPAC instructions should be used to
      transfer the previous ACs to and from  current  context.   In  all
      other  cases,  XBLT  must be used to transfer data between current
      and previous context.

      For PUSH and POP, the stack must always  be  in  current  context.
      This  means  that previous context references for PUSH and POP are
      limited to the EA-calc and data reference  made  to  the  location
      addressed  by  the  EA-calc.  PUSH and POP therefore reduce to the
      "general" case.

      For MOVSLJ, if source or destination data is in previous  context,
      the  source  or  destination  byte pointer EA-calc must be done in
      previous context also.  If the monitor wishes to force  a  current
      context  EA-calc  for  a  previous  context data reference, it can
      compute the effective address of the byte word and use a  one-  or
      two-word  global  byte  pointer.   The microcode will still do the
      EA-calc in previous context, but no previous context defaults will
      be applied.

      12.6  Modifications to the EA-calc algorithm

      The appropriate "E" and "D" control bits from the AC field of  the
      PXCT  instruction  are  used  to  modify  an  EA-calc  done on the
      executed  instruction  or  a  subsequent  EA-calc  done   by   the
      instruction (e.g., byte pointer).  This modification involves pre-
      and  post-processing  the  normal  effective  address  calculation
      algorithms to conditionally include PCS at two points.

      If the appropriate "E" control bit is  set,  the  initial  default
      section  for the EA-calc is set to PCS.  Since the "E" control bit
      also controls previous context indirect word  and  index  register
      references, this means that the entire EA-calc is done in previous
      context.  If the "E" control bit is not set, the  initial  default
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      section  for  the  EA-calc is that from which the address word was
      fetched, and the EA-calc is done in current context.

      When the normal EA-calc  is  completed,  the  resulting  value  is
      post-processed.   If the result of the EA-calc was a local address
      AND the "E" control bit was not set AND the "D"  control  bit  was
      set,  the  section number of the EA-calc is replaced by PCS.  Note
      that the local/global flag remains local if this is done.

      The application of PCS at the end of the EA-calc may seem to  make
      no  sense  at  first  glance,  so  let's take a closer look at it.
      Remember that the purpose of PXCT  is  to  allow  the  monitor  to
      reference data in the previous context as if the user had supplied
      it.  If the user supplies a local address in, for example, a  JSYS
      argument,  the monitor should make the data reference local to the
      section in which the user was running.  By applying PCS at the end
      of  the  EA-calc  as  indicated above, the microcode automatically
      makes the reference to the correct section.

      This algorithm may be described by the following flow chart:
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                   +-----------------+
                   |   Set initial   |
                   | default section |
                   +-----------------+
                            |
                            V
                   +-----------------+
                   |   "E" control   |No
                   |     bit set?    |---->-+
                   +-----------------+      |
                            |Yes            |
                            V               V
                   +-----------------+      |
                   | Initial default |      |
                   | section := PCS  |      |
                   +-----------------+      |
                            |<--------------+
                            V
                   +-----------------+
                   | Perform normal  |
                   |    EA-calc      |
                   +-----------------+
                            |
                            V
                   +-----------------+
                   |   "D" control   |
                   |     bit set?    |
                   |       AND       |
                   |   "E" control   |No
                   |   bit not set?  |---->-+
                   |       AND       |      |
                   |EA-calc resulted |      |
                   |      in a       |      |
                   | Local address?  |      V
                   +-----------------+      +---> Final EA
                            |Yes            |
                            V               A
                   +-----------------+      |
                   | EA[6:17] := PCS |      |
                   +-----------------+      |
                            |               |
                            V               A
                            +--->-----------+

                    PXCT EA-calc algorithm
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      Assume that PCS is 1 and consider the following example:

              2,,100/ PXCT 4,[MOVE 1,100]

      MOVE is one of the "general" class of opcodes, so bits 9 and 10 of
      the  PXCT  AC  field  control the previous context references.  In
      this example, bit 9 (The "E1" bit) is off and  bit  10  (the  "D1"
      bit)  is  on.   Therefore,  the EA-calc is done in current context
      with a result of 2,,100 LOCAL.  Because the "D1" bit  is  on,  the
      "E1"  bit is off, and the result of the EA-calc is local, the PXCT
      EA-calc algorithm applies PCS to bits 6-17 of  the  EA-calc.   The
      final  effective  address  is  therefore 1,,100 LOCAL and the data
      reference is made to that location in previous context.

      Let's look at another example.  Assume that PCS is 2 and that  the
      following locations exist in previous context:

              2,,200/ 200003,,300

              3,,300/ 400000,,400

      In current context, the following instruction is executed:

              1,,100/ PXCT 14,[MOVE 1,@200]

      In this example, both the "E1" and "D1" bits are on in the PXCT AC
      field.  Therefore, the EA-calc is done in previous context and the
      initial default section  for  the  EA-calc  is  set  to  2  (PCS).
      Location 2,,200 in previous context contains an indirect EFIW that
      the EA-calc follows  into  section  3.   The  final  address  word
      fetched  from  previous context location 3,,300 is in IFIW format,
      so the result of the EA-calc is local to the  section  from  which
      the address word was fetched.  The result of the EA-calc is 3,,400
      LOCAL.  Because the "D1" bit is also set, the  MOVE  fetches  data
      from previous context location 3,,400.

      A final  example  demonstrates  the  result  of  an  EA-calc  that
      references an AC.  Assume that PCS is 3.

              2,,100/ PXCT 4,[MOVE 1,2]

      As with the first example, the EA-calc is done in current  context
      and  PCS  is  applied  to  bits  6-17  of the result to produce an
      effective address of 3,,2 LOCAL.  Just as in  the  non-PXCT  case,
      this  is  a local reference to AC 2.  Because the "D1" bit is set,
      the reference is made to previous context AC 2  in  the  AC  block
      specified by PAB.
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       o  The  EA-calc  of  a  PXCTed  instruction  may   be   pre-   or
          post-processed as directed by the AC field control bits of the
          PXCT instruction.  Except for this additional processing,  the
          EA-calc algorithms and results are exactly the same as for the
          non-PXCT case.  This includes the uses  for  the  local/global
          flag.

      12.7  Section zero vs. non-zero section rules

      Of the instructions that may be  PXCTed,  there  are  three  types
      (stack,  byte,  and  MOVSLJ)  that operate differently in non-zero
      sections and section zero.  When  one  of  these  instructions  is
      PXCTed,  the  test  for zero/non-zero rules may not be the same as
      the test when there is no PXCT involved.  The interaction of  PXCT
      with each of the instruction types is covered separately below.

      12.7.1  Stack instructions

      When no PXCT is involved, the test for the possibility of a global
      stack  pointer  is  done  based on PC section.  When a PUSH or POP
      instruction is PXCTed, the previous context references are limited
      to  the  EA-calc  and  the datum addressed by the EA-calc, and the
      stack reference is always made in current  context.   Because  the
      stack  is  in  current  context,  the  interpretation of the stack
      pointer type is made based on the current context PC  section  and
      is not dependent on PCS.  For example, assume that PCS is 0.

              2,,100/ MOVE 1,[3,,1000]
              2,,101/ PXCT 4,[PUSH 1,200]

      In this example, PC section is non-zero and the stack  pointer  in
      AC 1 has a global format.  The test to determine whether the stack
      pointer is allowed to be global is still made based on PC  section
      (even   though  there  is  a  PXCT  involved),  and  not  on  PCS.
      Therefore, the stack pointer is indeed global and previous context
      location  0,,200  is  pushed  onto  the  stack  in current context
      location 3,,1001.

       o  When a stack instruction (PUSH, POP) is PXCTed, the  test  for
          the  possibility of a global stack pointer is done based on PC
          section.

       o  When a stack instruction is PXCTed, local stack  pointers  are
          always local to PC section.
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      12.7.2  Byte instructions

      Normally, the byte instruction test for the possibility of  global
      byte  pointers  is  done  based on the section from which the byte
      pointer was fetched.  When a byte instruction is PXCTed, this rule
      continues  to  apply,  with  extensions to include the possibility
      that the byte pointer may be fetched from previous context.   This
      is best explained with several examples.

      Assume that PCS is 0 and that the  following  locations  exist  in
      previous context:

              0,,100/ 400000,,200

              0,,200/ 12

      In current context, the following instruction is executed:

              2,,300/ PXCT 3,[LDB 1,400]

              2,,400/ 000640,,0
              2,,401/ 400020,,100

      For PXCT of byte instructions, bits 9 (E1) and 10 (D1) direct  the
      EA-calc of the byte instruction and the fetch of the byte pointer.
      Bits 11 (E2) and 12 (D2) direct the EA-calc of  the  byte  pointer
      and  the  fetch of the word containing the byte.  In this example,
      the "D1" bit is off, so the byte pointer is fetched  from  current
      context  location 2,,400.  Bit 12 is on in the byte pointer, and a
      test must be made to see if it may be global.  The byte pointer is
      global  because it was fetched from current context section 2, and
      the fact that PCS is zero is not considered.

      The "E2" bit and the "D2" bit of the PXCT AC field are both on, so
      the  byte pointer EA-calc is done in previous context.  The second
      word of the two-word global byte pointer has the indirect bit set,
      and  the  next  address  word  is  fetched  from  previous context
      location 0,,100.  The final result of the EA-calc is 0,,200  LOCAL
      in  previous context and bits 30-35 of that word are extracted and
      placed in current context AC 1.

      Let's look at a similar example in which the byte pointer is  also
      fetched  from  previous  context.  Once again assume that PCS is 0
      and the previous context contains the following locations:

              0,,400/ 000640,,100
              0,,401/ 400000,,200

              0,,100/ 10
              0,,200/ 20

      In current context, the following instruction is executed:

              2,,300/ PXCT 7,[LDB 1,400]
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      In this case, the "D1" bit of the PXCT AC field  is  set,  so  the
      byte pointer is fetched from previous context location 0,,400.  As
      in the last example, bit 12 is  set  in  the  byte  pointer.   But
      because the byte pointer was fetched from previous context section
      0, bit 12 is ignored  and  the  byte  pointer  is  interpreted  in
      one-word  local  format.   The EA-calc is done in previous context
      and results in an effective address of 0,,100 LOCAL.  The byte  is
      then fetched from bits 30-35 of previous context location 100.

       o  When  a  byte  instruction  is  PXCTed,  the  test   for   the
          possibility  of  a  global  byte  pointer is done based on the
          section from which the byte pointer was fetched.  This is true
          independent  of  whether  the  byte  pointer  is  fetched from
          current or previous context.

      This interpretation, while correct  architecturally,  causes  some
      problems  for  TOPS-20  as it is implemented today because TOPS-20
      copies byte  pointers  from  the  previous  context  into  current
      context.   Ideally,  when a JSYS does a byte instruction on behalf
      of the user, the byte pointer would be interpreted exactly  as  if
      the  user  had  executed  the byte instruction.  Thus, if the byte
      pointer were fetched from section 0, it would be interpreted as  a
      local  pointer;   if  it  were  fetched from any other section, it
      would be interpreted  as  possibly  being  global.   This  can  be
      accomplished by using PXCT 7, as indicated in the example above.

      Because TOPS-20 copies the byte pointer from the previous  context
      into  current  context,  one that looks like a global byte pointer
      will be interpreted as a global byte pointer even if it is fetched
      from  previous  context section zero.  This is because the monitor
      typically  runs  in  a  non-zero  section  and  the  PXCTed   byte
      instruction  fetches the byte pointer from current context.  Hence
      the test for the possibility of a  global  byte  pointer  is  made
      based  on  current  context  section  rather than previous context
      section.

      12.7.3  EXTENDed MOVSLJ instruction

      If no PXCT is involved, the MOVSLJ test for the possibility  of  a
      global  byte  pointer  is  made based on PC section.  If a PXCT is
      involved, the test is more complex  because  it  is  based  on  PC
      section if the PXCT control bit for the byte pointer is off and on
      PCS if the PXCT control bit is on.  For example, assume  that  PCS
      is   zero   and  that  previous  context  contains  the  following
      locations:

              0,,200/ ASCII|ABCDE|

              0,,300/ ASCII|FGHIJ|
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      In  current  context,  the  following  instruction   sequence   is
      executed:

              3,,100/ MOVEI 1,5                ;Source length
              3,,101/ DMOVE 2,[440740,,200     ;Source BP (word 1)
                               400000,,300]    ;Source BP (word 2)
              3,,102/ MOVEI 4,5                ;Destination length
              3,,103/ DMOVE 5,[440740,,400     ;Destination BP (word 1)
                               400000,,500]    ;Destination BP (word 2)
              3,,104/ PXCT 2,[EXTEND 1,600]    ;PXCT the MOVSLJ

              3,,600/ MOVSLJ                   ;Extended opcode is MOVSLJ
              3,,601/ 0                        ;Fill character is 0

      In this example, the "E2" bit is set in the PXCT AC  field,  which
      indicates  that  the source EA-calc and string reference are to be
      made to previous context.  Conversely, the "D2" bit is off,  which
      indicates  that  the destination EA-calc and string references are
      to be made to current context.

      Because the source-in-previous control bit is set in the  PXCT  AC
      field,  the  test  for  the  possibility  of  a global source byte
      pointer is made based on PCS.  In this case, PCS is zero,  so  bit
      12  is  ignored  in  the  byte  pointer  and  it is interpreted in
      one-word local format.  The byte pointer EA-calc results in 0,,200
      LOCAL in previous context.

      On the other hand, the destination-in-previous control bit is  not
      set,  so the test for the possibility of a global destination byte
      pointer is made based on PC section.  Since PC section is non-zero
      and  bit  12  is  set, the byte pointer is interpreted in two-word
      global format, and the byte  pointer  EA-calc  results  in  3,,500
      LOCAL in current context.

      The result is to transfer the string "ABCDE" from previous context
      location 0,,200 to current context location 3,,500.

       o  When  a  MOVSLJ  instruction  is  PXCTed,  the  test  for  the
          possibility  of  a  global  byte  pointer  is done based on PC
          section if the appropriate PXCT control bit is  off.   If  the
          bit is on, the test is done based on PCS.



                               APPENDIX A

                           EA-CALC FLOWCHARTS

      The following  pages  contain  the  EA-calc  flowcharts  from  the
      Processor   Reference   Manual  (page  1-30)  and  from  the  KL10
      Engineering Functional Spec.



                                                            Page Index-1

                                    INDEX

      AC references  . . . . . . . . .  38
        global . . . . . . . . . . . .  38
        local  . . . . . . . . . . . .  38
      Address word . . . . . . . . . .  5

      BLT  . . . . . . . . . . . . . .  27
        AC references  . . . . . . . .  28
        source and destination addresses  28
      Byte instructions  . . . . . . .  18
      Byte pointer decode  . . . . . .  18
      Byte pointer EA-calc
        byte instructions  . . . . . .  19
        EXTEND instructions  . . . . .  20
      Byte pointer type
        byte instructions  . . . . . .  18
        EXTEND instructions  . . . . .  20

      EA-calc  . . . . . . . . . . . .  9
        algorithm  . . . . . . . . . .  9
          EFIW with global index . . .  11
          IFIW with global index . . .  10
          IFIW with local index  . . .  10
          no indexing  . . . . . . . .  9
          section 0  . . . . . . . . .  11
          summary  . . . . . . . . . .  11
        byte instructions  . . . . . .  18
        byte pointers  . . . . . . . .  19
        default section  . . . . . . .  12
        default sections . . . . . . .  35
        EXTEND instructions  . . . . .  20
        flowcharts . . . . . . . . . .  A-1
        local or global result . . . .  12
        local/global flag  . . . . . .  14
        multi-section  . . . . . . . .  16
        results  . . . . . . . . . . .  12
        section zero . . . . . . . . .  16
      Effective address calculation  .  9
      EFIW . . . . . . . . . . . . . .  6
      EXTEND instructions  . . . . . .  20
        byte pointer EA-calc . . . . .  20
        byte pointer type  . . . . . .  20
        extended opcode EA-calc  . . .  22
      Extended addressing
        EA-calc  . . . . . . . . . . .  9
        historical summary . . . . . .  4
        reference materials  . . . . .  3
        terms  . . . . . . . . . . . .  5
          address word . . . . . . . .  5
          EFIW . . . . . . . . . . . .  6
          global address . . . . . . .  5



                                                            Page Index-2

          global index . . . . . . . .  6
          global stack pointer . . . .  7
          IFIW . . . . . . . . . . . .  6
          illegal indirect word  . . .  6
          local address  . . . . . . .  5
          local index  . . . . . . . .  5
          local stack pointer  . . . .  7
          one-word global byte pointer  7
          one-word local byte pointer   7
          two-word global byte pointer  7
          virtual address  . . . . . .  5
      Extended format indirect word  .  6
      Extended opcode EA-calc  . . . .  22

      Global AC address  . . . . . . .  14
      Global address . . . . . . . . .  5
      Global index . . . . . . . . . .  6
      Global stack pointer . . . . . .  7
      Global stack pointers  . . . . .  24

      IFIW . . . . . . . . . . . . . .  6
      Illegal indirect word  . . . . .  6
      Incrementing EA  . . . . . . . .  15
      Instruction fetches  . . . . . .  39
      Instruction format indirect word  6

      JRA  . . . . . . . . . . . . . .  26
        EA-calc  . . . . . . . . . . .  26
      JRSTF  . . . . . . . . . . . . .  30
      JSA  . . . . . . . . . . . . . .  26
        EA-calc  . . . . . . . . . . .  26
      JSP  . . . . . . . . . . . . . .  22
        storing PC . . . . . . . . . .  23
      JSR  . . . . . . . . . . . . . .  22
        storing PC . . . . . . . . . .  23

      Local AC references  . . . . . .  14
      Local address  . . . . . . . . .  5
      Local index  . . . . . . . . . .  5
      Local stack pointer  . . . . . .  7
      Local stack pointers . . . . . .  24
      Local/global flag  . . . . . . .  14
      LUUO . . . . . . . . . . . . . .  27

      Multi-section EA-calc  . . . . .  16

      Non-zero section rules . . . . .  36

      One-word global byte pointer . .  7
      One-word local byte pointer  . .  7

      PAB  . . . . . . . . . . . . . .  42 to 43
      PC store . . . . . . . . . . . .  40
      PCS  . . . . . . . . . . . . . .  42 to 43
      PCU  . . . . . . . . . . . . . .  42 to 43



                                                            Page Index-3

      Previous context
        applicable instructions  . . .  44
        references . . . . . . . . . .  43
        state registers  . . . . . . .  42
          use  . . . . . . . . . . . .  43
      PXCT . . . . . . . . . . . . . .  42
        AC field bits  . . . . . . . .  44
        EA-calc algorithm  . . . . . .  46
          flow chart . . . . . . . . .  48
        local/global flag
          byte instructions  . . . . .  51
          MOVSLJ . . . . . . . . . . .  52
          stack instructions . . . . .  50

      Section zero rules . . . . . . .  36
      Stack instructions . . . . . . .  24
        storing PC . . . . . . . . . .  25
      Stack pointers . . . . . . . . .  24
        default section  . . . . . . .  24
        incrementing . . . . . . . . .  24
      Storing EA . . . . . . . . . . .  40

      Two-word global byte pointer . .  7

      Virtual address  . . . . . . . .  5

      XBLT . . . . . . . . . . . . . .  29
        non-zero section references  .  29
      XCT  . . . . . . . . . . . . . .  31
        default section for EA-calc  .  31
        local stack references . . . .  33
        PC storing instructions  . . .  33
        skip and jump instructions . .  32
        stack instructions . . . . . .  33
      XHLLI  . . . . . . . . . . . . .  30
        AC references  . . . . . . . .  30
      XMOVEI . . . . . . . . . . . . .  30
        AC references  . . . . . . . .  30


