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1.0 Introduction

As we attenpted to inplenment the EBOX nicrocode for Jupiter, we
qui ckly discovered that there were sonme serious deficiencies in
t he docunentation for what we were trying to inplenment. The nopst
serious deficiency was in the area of rules for extended
addressing, especially for the exception conditions. W found
ourselves inmplenenting the EBOX microcode partially fromthe
Processor Reference Manual (PRVM) but, nore often than not, from a
collection of old docunentation, nenos, and recollections of what
was decided in the design of extended addressing.

After spending two weeks attenpting to decipher what the rules
shoul d be and conparing themwi th the KL10 inplenentation, | wound
up with a large collection of notes concerning aspects of extended
addressing which are either not docunented or poorly docunented.
Several neetings of the PDP-10 Architecture Committee ensued, and
this neno is an attenpt to fornalize ny notes.

The intent of the nenp is to provide a description of extended
addressing as defined by the PDP-10 architecture. This material
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really belongs in the Processor Reference WMnual, and every
attenpt will be nmade to get it included in the next release of the
manual . Note that certain inplenentations of t he PDP- 10

architecture don't always conformto the descriptions given in the
meno. These are descriptions of what SHOULD be inplenented, not
necessarily what |S inplenented. However, all future PDP-10
processors should conformto these descriptions.

In order to nake it easier for the reader, |'ve also added a |ot
of backgr ound, definitions, and descriptions of extended
addressing that are found in other references. This additiona
di scussi on shoul d make the overall structure of extended
addressi ng nore clear.

In order to avoid swanping the reader with too nmuch detail at any

point, | sonetinmes intentionally ignore or understate certain
i mportant aspects of the exanples that | use. These itens are
generally covered later in the neno. | also occasionally forward

reference topics. Because of this organization, it may be best to
make a quick first pass through the meno to pick out the
hi ghl i ghts and then go back and nake a nore detail ed pass.

This neno assunmes that the reader has at |east a basic know edge
of the PDP-10 instruction set, the notation used to describe
instructions, and the format of an instruction word. Readers who
do not have this knowl edge are referred to sections 1.4 through
1.6 of the Processor Reference Manual and to the WMacro Assenbler
Ref er ence Manual
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2.0 Reference materials

The primary source of information about the instruction set is the
Processor Ref er ence Manual . Unfortunately, there are sone
i naccuracies and sone onmissions in the sections related to
ext ended addressing. The "Extended Effective Address Cal cul ati on"
flow chart on page 1-30 of the PRMis the best "description" of
the effective address calculation algorithns and it is attached to
this neno for the conveni ence of the reader.

The KL10 Engi neering Functional Spec contains several chapters
rel at ed to this topic and has some interesting insights.
Especially interesting are chapters 2.2, "User Interface to
Ext ended Addressing", and 2.3, "Monitor Calling (MJUO, PXCT)"
Along with these chapters is a hand-drawmn flow chart by Tom
Hastings entitled "Flow for Extended Addressing" that clears up
several questions about EA-calc algorithns, especially in the area
of PXCT. A copy of this flowchart is attached.

A d nenps describing the design of extended addressing and the
i mpl ement ati on of extended addressing in TOPS-20 are al so sonewhat
hel pful .

Finally, the KL10 mcrocode contains a few hel pful conments about
exception condi tions in t hat i mpl enent ati on of extended
addressing. It is in no sense "light reading", however.
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3.0 Historical sunmary of extended addressing

PDP- 10 processors prior to the nodel B KL10 inplenmented a virtua

address space of 256K words. As prograns and the operating
systens grew, it becane apparent that a virtual address space that
was limted to 256K was insufficient for future expansion

Sonetine in late 1973, an Extended Addressing Design G oup was
formed to evaluate proposals for increasing the virtual address
space of the PDP-10. By early 1975, this group had agreed upon
one proposal, and this proposal was docunented in chapter 2.2 of
t he KL10 Engi neering Functional Spec.

Thi s proposal increased the size of the virtual address space from
256K words to 1 billion words by expanding the size of a virtua

address from 18 bits to 30 bits. The virtual address space is
logically divided into 4096 sections of 256K words each. The
program may use these sections as separate logical entities or

treat them as one large contiguous address space. Instructions,
however, must explicitly transfer control between sections; t hey
may not "fall" into the next section.

The increase in the size of the virtual address space was
acconpanied by an increase in the size of PC, from18 to 30 bits.
This increase allowed a programto execute in any of the extended
sections. The contents of bits 6-17 of PC were terned the "PC
section".

In order to allow an instruction to specify a full 30-bit virtual
address, the rules for indexing and indirection were nodi fied when
PC section was non-zero. In addition, new instructions were
defined to allow a programto junp to other sections.

To insure conpatibility with prograns witten for non-extended
processors, section zero is treated exactly as it is on
non- ext ended processors. This means that if a program is
executing in section zero, nearly all instructions behave exactly
as they would if the program were executed on a non-extended
machi ne. Progranms running in section zero cannot reference data
in any other section (with one exception) and entry into another
section is possible only with a few instructions (e.g., XJRSTF,
XJRST, etc.).

The first processor to inplenment extended addressi ng was the nodel
B KL10. Due to hardware restrictions, this processor inplenented
only 32 of the 4096 sections of virtual address space. References
to virtual sections above the inplenmented range cause a page fai
trap to the nonitor. The KC10 inplenments the full 30-bit virtua
addr ess space
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4.0 Definition of terns

Before we start |ooking at extended addressing, let's define sone
ter ns:

(o]

A virtual address is a 30-bit address used to reference a word
in an address space. Al though the address space can be
considered to be one large, contiguous space, it is probably
easier to consider it to be broken into sections of 256K words
each. Bits 6-17 of the virtual address then specify the
section nunber and bits 18-35 specify the word within the
section. A virtual address |ooks |ike:

Virtual address formt

PC has the sanme format as a virtual address.

An address word is a word containing I, X, and Y fields (see
the PRM for definitions for these fields) in either IFIWor
EFI W (see bel ow) fornmat. An effective address calculation

takes such a word as input. Thus, instructions, indirect
words, and byte pointers are all exanples of address words.

A local address is an 18-bit in-section address that, when
conbined with a default section nunber, specifies a ful
30-bit address. The section nunber is supplied by sonething
other than the address word or index register

A gl obal address is a 30-bit address that supplies its own
section nunber . Therefore, no default section need be
appl i ed.

A local index is an 18-bit displacement or address obtained
from an i ndex register used in an effective address
calculation in section zero, or froman index register used in
a non-zero section that has bit 0=1 or bits 6-17 equal zero.
In a non-zero section, an index register containing a |ocal
i ndex has one of the followi ng formats:

| 1] | gnor ed | Local address (or offset)|

| O] I gnor ed| 0000 | Local address (or offset)|
I

Local index format (bits 6-17 = 0)
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A global index is a 30-bit displacemrent or address obtained

from an i ndex register used in an effective address
calculation in a non-zero section, that has bit 0=0 and bits
6-17 non-zero. An index register containing a global index
| ooks like:

01 56 35

B EEERREEEEE |

| O] I gnor ed| G obal address with 6-17 non-zero |

d obal index format

An instruction format indirect word (IFIW is any indirect
word in section zero, or an indirect word in a non-zero
section that has bit 0=1 and bit 1=0 (instructions being
executed are always interpreted in IFIWformat). |In this
format, bit 13 is the indirect bit, bits 14-17 are the index
regi ster address, and bits 18-35 are the | ocal nenory address.
An IFIWin a non-zero section |ooks |ike:

012 12 13 14 17 18 35

| FI W f or mat

An extended format indirect word (EFIW is any indirect word
in a non-zero section that has bit 0=0. |In this format, bit 1
is the indirect bit, bits 2-5 are the index register address,
and bits 6-35 are the global nenory address. An EFI WI ooks
like:

012 56 35
....................................................... |
I0|I| X Y :
EFI W f or mat
An illegal indirect word is any indirect word in a non-zero
section that has both bits 0 and 1 set to a 1. This type of
indirect word is reserved for use by future hardware. If an
EA-calc encounters this type of indirect word in a non-zero
section, it will generate a page fail. The nonitor cannot

perform any user service as a result of this trap, including
trapping to the wuser, since this would cause possi bl e
conpatibility problems wth future machines. An illega
indirect word | ooks Iike:

Illegal indirect word fornat
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A one-word |l ocal byte pointer is any byte pointer whose P
field is less than or equal to 36 and that has bit 12=0. In
this type of byte pointer, bits 13-35 have the sane format as
an IFIW and bits 0-11 specify the size and position of the
byte. A one-word local byte pointer |ooks I|ike:

0 56 11 12 14 17 18 35

One-word | ocal byte pointer fornat

A one-word gl obal byte pointer is any byte pointer whose P
field is greater than 36. |In this type of byte pointer, bits
0-5 are an encoded representation of the size and position of
the byte and bits 6-35 supply a full 30-bit address of the

word containing the byte. A one-word global byte pointer
| ooks |ike:
0 56 35
R EREEEEEEEEEEEETEEE |
| P, S enc | 30-bit address [

One-word gl obal byte pointer format

A two-word gl obal byte pointer is any byte pointer in a
non-zero section whose P field is less than or equal to 36 and
which has bit 12=1. As its name inplies, this type of byte
pointer consists of two words where bits 0-11 of the first
word give the size and position of the byte and bit 12 must be
a 1. The second word is either an IFIWor an EFI Wand, when
EA-cal c' ed, supplies the address of the word containing the
byte. A two-word gl obal byte pointer |ooks like:

| | FIWor EFIW |

Two-word gl obal byte pointer format

A local stack pointer is any stack pointer in section zero, or
a stack pointer in a non-zero section that has bit 0=1 or bits
6-17 equal zero before incrementing or decrenenting (exactly
like a local index). I ncrementing or decrenenting such a
stack pointer will operate on both halves of the pointer
i ndependent |y, suppressing carries out of bit 18.
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A gl obal stack pointer is a stack pointer in a non-zero
section that has bit 0=0 and bits 6-17 non-zero before
increnmenting (exactly like a global index). I ncrenenting or
decrenmenting such a stack pointer will treat the entire word
as a 30-bit quantity.
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5.0 Effective Address Cal cul ati ons

No di scussi on of extended addressing is conplete wthout talking
about EA-calc's. An effective address calculation is performed on

every instruction before it is executed. In addition, sone
i nstructions performadditional EA-calc's during the processing of
the instruction (e.qg. byte instruction EA-calc of the bhyte
poi nter).

5.1 Description of the EA-calc algorithm

The basic operation of an EA-calc is to process a so-called
address word by adding the Y field of the word to the contents of
the optional index register to conpute a nodified address. |If the
indirect bit is set in the address word, another word is fetched
fromthe nenory | ocation addressed by the conputed address and the
entire process repeats until a word is found with the indirect bit
not set. Sound sinple? Well, let's look at the operation in a
bit nmore detail.

The address word can be of two different formats, |FIWor EFIW (an

instruction is treated as an |IFIWwhen it is EA-calc'ed). In
addition, an index can be of tw different formats, local or
gl obal . Note that in section zero, all address words are | FIW
and all indices are local by definition. The conplexity involved

inthe EA-calc algorithmis the result of these nultiple formats.

Since the indirect bit sinply causes another address word to be
fetched and the EA-calc process to be repeated, we can fully
characterize an EA-calc by looking at the conbinations of IFIW
EFIW and indices in local and global format. Let's |ook at these
conbi nations one at a tine.

5.1.1 No indexing

If no index register is specified in the address word, the EA-calc
is strictly a function of the Y field in the address word. For an
IFIW the result is a |ocal address. For exanple, both

1,,100/ MOVE 1, 200

and
1,,100/ MOVE 1, @50
1,, 150/ 400000, , 200
conmpute a local effective address of 200. |In the first case, the

only address word is the instruction itself, which is treated as
an inplicit IFIW 1In the second case, there are two address
words, the instruction and the indirect word, and the indirect
word is in the IFIWformat.
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For an EFIW the result is a full 30-bit global address. For
exanpl e,

1,,100/ MOVE 1, @1, , 200]

conmputes a gl obal effective address of 1,,200 because the indirect
word has a global format.

5.1.2 |IFIWwth |ocal index

If the address word is an IFIWand the index is local, the result
is a local address. The 18-bit address is conputed by adding the
Y field to the right half of the contents of the index register.
For exanpl e:

1,,100/ MOVE 1,[-1,,10]
1,,101/ MOVE 2, @ 400001, , 200]

The indirect word has an IFIWformat, so bits 14-17 specify the
i ndex register address. Since the contents of the index register
are negative, it is a local index and the EA-calc is perforned by
adding the Y field (200) to the right half of the index register
(10) to produce a local effective address of 210.

5.1.3 |IFIWwth global index

If the address word is an IFIWand the index is global, the result
is a 30-bit global address. The address is conputed by adding
bits 6-35 of the contents of the index register to the value of
the Y field, that has been sign-extended frombit 18 into bits
6-17. For exanple:

1,,100/ NMOVE 1,[2,,10]
1,,101/ MOVE 2,-2(1)

The second instruction word has an inplicit IFIWformat, so bits
14-17 specify the index register address. Since the left half of
the index register is positive non-zero, it is a global index and
t he EA-cal c is conput ed by adding the Y field, after
sign-extending it frombit 18 into bits 6-17 (7777,,-2), to bits
6-35 of the contents of the index register (2,,10), producing a
gl obal effective address of 2,,6.

Note that the sign extension allows Y to be used as a positive or
negative constant offset to the global address in an index
register. This offset is limted to +/- 128K
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5.1.4 EFIWw th gl obal index

If the address word is an EFIW the index is always assuned to
have the global format and the result is a 30-bit gl obal address.
The address is conputed by adding bits 6-35 of the contents of the
index register to bits 6-35 of the Y field. For exanple:

1,,100/ NMOVE 1,[2,,10]
1,,101/ MOVE 2, @ 010002, , 200]

The indirect word has an EFIWformat, so bits 2-5 specify the
i ndex register address. The index is always global, so the
EA-calc is computed by adding the Y field (2,,200) to bits 6-35 of
the contents of the index register (2,,10) to produce a globa
ef fective address of 4,,210.

5.1.5 References to section zero

Note that the only way to reference section zero from a non-zero
section is via an EFIWformat indirect word with bits 6-17 equa
zero. |Indexing alone cannot be used to reference section zero,
because an index with bits 6-17 equal zero is treated as a |l oca
address to the section from which the last address word was
f et ched.

5.1.6 Summary of EA-calc rules

The preceding sections can be summarized by the table that
fol | ows. Thi s tabl e gives the conmputation done for al
conbi nati ons of address words and index registers formats plus an
i ndication as to whether the result is |local or global

Addr ess
Wrd Type
| FIW EFI W

[| Y[18:35] || Y[6:35] [

None || | |

|| Local || 4 obal | ]

I ndex [] Y[18:35]+(XR)[18:35] || Not Defined |
Reg Local || || (Actually the case [
Type || Local | ] bel ow) | ]

|| Y[18]*7777,,VY[18:35]+ ||
Gobal || (XR[6:35] [
|| d obal I
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5.2 Results of an EA-calc

When the mcrocode perforns an EA-calc, it is sinply follow ng the
rules described above and shown graphically in the EA-calc flow
chart fromthe PRM The result of this EA-calc is a 30-bit
address and a 1-bit flag that indicates the address is |ocal or
global. These two pieces of information nust be considered
together whenever the results of the EA-calc are used; it is
seldom if ever, correct to consider the address wthout also
considering the local/global bit.

Every EA-calc carries a default section along during t he
cal culation of the effective address. The initial default section
for an EA-calc of an instruction is PC section. More generally,
the default section is initially that fromwhich the first address
word was fetched. This default section is changed from the
initial value if the EA-calc follows a global address into another
section. In fact, the default section is always the section from
whi ch the | ast address word was fetched.

If a local address is calculated using the rul es given above, the
default section is applied to conplete the 30-bit address. If a
gl obal address is calculated, the default section is not used

The last iteration of the EA-calc (the conputation done on the
|ast address word that doesn't have the indirect bit set)
det erm nes whether or not the result of the EA-calc is local or

gl obal . If the result of the last iteration is a |ocal address,
the result of the EA-calc is local. Sinilarly, if the result of
the last iteration is global, so is the entire EA-calc. The

transitions of the local/global flag are indicated on the PRM fl ow
chart by notations such as "E d obal "

The significant thing to renenber is that a local EA-calc still
results in a 30-bit address, even though 12 bits (the section
nunber) were not explicitly supplied to the EA-calc routines as
part of an address word or an index register.

o0 An effective address cal cul ation always conputes 31 bits of
information: a 30-bit address, and a 1-bit l|ocal/global flag.

5.3 Sinple EA-cal c exanpl es

In the exanpl es above, we ignored the fact that EA-calc's always
produce a 30-bit address when we said that the result was a | oca
address n. |In the follow ng exanples, we enphasize that a ful
30-bit address is produced. Consider the follow ng instruction:

0,,200/ MOVE 1, 100

The EA-calc for this instruction results in a | ocal EA.
Therefore, the EA-calc conmputes the 30-bit address as 0,,100 and
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the 1-bit local/global flag as local. Since the EAis local, we
know that the section nunber was defaulted fromsonething, in this
case, the PC section. W say that the effective address is 0,, 100
LOCAL (this notation is wused throughout the rest of this
di scussion to specify all 31 bits of information).

Let's consider a slightly nore conpl ex exanpl e:

1,,200/ MOVE 1, @00

1,, 300/ 400000, , 100
As in the previous exanple, the effective address calculation
computes a |ocal address of 100. Since the address word was
fetched fromsection 1, the result of the EA-calc is 1,,100 LOCAL.
Let's look at a gl obal EA-calc:

1,,100/ MOVE 1, @2, , 200]

In this case, the effective address cal cul ati on produces a gl obal
address of 2,,200 GLOBAL and no default section need be appli ed.
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6.0 Use of the local/global flag

There are two uses for the local/global flag. First, it is wused
to determine if the address is actually an AC. If the address is
local, and bits 18-35 are in the range 0 to 17, inclusive, the
address references an AC, independent of bits 6-17. This neans
that a program can reference the ACs while running in any section

as long as the reference is |ocal

Second, the local/global flag determines how to increnment or

decrenent the address. |If the address is local, increnenting or
decrenmenting it suppresses carries frombit 17 to bit 18 and vice
ver sa. That is, the address always waps around in the current

section if the right half is increnented past 2718-1 or
decrenmented past 0. A global address is handled as a full 30-bit
quantity and overflow or underflow of the right half can affect
the left half section nunber.

6.1 AC references

Let's |l ook at several exanples that nake use of the |[|ocal/globa
flag. First, let's conpare what happens to AC references for
| ocal and gl obal effective addresses.

2,,100/ MOVE 1, @ 400000, , 5]

The EA-calc for this instruction yields 2,,5 LOCAL, where the
section number was defaulted to 2. |Is this nmenory location 2,,5
or AC 5? Because the EA-calc is local, the rule says that it is
an AC reference and not a nenory reference. On the other hand,
the EA-calc for

2,,100/ MOVE 1, @2, , 5]

results in an EA of 2,,5 GLOBAL. Since the EAis global, this is
a nenory reference and not an AC reference.

0 EA-calc's which yield | ocal addresses, where bits 18-35 of EA
are in the range 0-17, inclusive, always refer to the ACs
i ndependent of the section nunber.

Finally, there is the concept of "global AC address". Thi s
concept allows a programrunning in any non-zero section to nmake a
gl obal reference to the ACs by conputing a gl obal address in the
first 16 (decimal) locations of section 1. Consider the follow ng
exanpl e:
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2,,100/ MVE 1, @1, , 5]

The EA-calc yields 1,,5 GLOBAL and because of the "global AC
address"” rule, the reference is to AC 5 instead of nenory | ocation
1,,5.

0 An EA-calc which yields a global address to |l|ocations 0-17,
inclusive, of section 1, refers to the ACs and not to nenory.
Such an address is called a gl obal AC address.

6.2 Increnmenting EA

Anot her use for the local/global flag conputed as the result of an
EA-calc is to deternmine howto increnent the effective address.
Let's |l ook at two exanpl es using DMOVE, one conputing a |ocal EA
and one conputing a gl obal EA

2,,100/ DMOVE 1, @ 400000, , 777777]

The EA-calc for this instruction results in an effective address
of 2,,777777 LOCAL. The DMOVE instruction fetches two contiguous
words fromE and E+1, but what is E+1 in this case? Since the
EA-calc resulted in a local address, increnenting E is done
section-local, resulting in 2,,0 LOCAL for E+1. But this is a
local reference to the ACs, so the two references for E and E+1 go
to 2,,777777 (menory) and 2,,0 (AC). Note that the state of the
| ocal /global flag is nmaintained during the increnmenting of EA

o Incrementing or decrenenting a |ocal address is always done
relative to the original section, i.e., the addresses "wap
around" in section.

o Incrementing a | ocal address whose in-section part is 777777
causes the address to wap around into the ACs.

Let's |l ook at the correspondi ng gl obal case:
2,,100/ DMOVE 1, @2, ,777777]

In this case, the EA-calc yields 2,,777777 GLOBAL. Because this
is a global address, incrementing E to get the second word results
in areference to 3,,0 GLOBAL. Since this isn't a |local address,
the reference is made to nmenory location 3,,0 and not to AC 0.

o Incrementing or decrenenting a global address affects the
entire address; i.e., section boundaries are ignored

o The process of incrementing or decrenenting an address,
whet her the address is |local or global, preserves the state of
the | ocal /gl obal fl ag.
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7.0 Milti-section EA-calc's

So far we have considered only EA-calc's that remain in one
secti on. If the program is running in a non-zero section, a
gl obal quantity encountered during the EA-calc (from either an
i ndex register or indirect word) can cause the EA-calc to "change
sections". An exanple will make this nore clear:

3,,100/ MOVE 1, @ 200002, , 100]
2,,100/ 3,,200

The EA-calc for this instruction conputes a global address of
2,,100 fromthe indirect word in the literal. Since the indirect
bit is set inthis word (bit 1 is the indirect bit in an EFIW,
the EA-calc routine fetches the word at 2,,100 and continues the
EA-calc. The final result of the EA-calc yields 3,,200 G.OBAL.
Thi s isn't a very interesting exanple, because it doesn't
denonstrate the significance of the section change, so let's |00k
at a slightly different exanple:

3,,100/ MOVE 1, @ 200002, , 100]
2,,100/ 400000, , 200

In this exanple, the first part of the EA-calc remains the sane
and the routine fetches the word at 2,,100. In this case,
however, the result of the EA-calc yields a |ocal address instead
of a global one. But what section is the address local to? The
rule says that a local address is always local to the section from
which the address word was fetched. Since the EA-cal c changed
fromsection 3 to section 2 when the l|ast address word was
fetched, the EA-calc is relative to section 2 and the EA-calc
yields 2,,200 LOCAL.

o The default section for a local address is always that from
whi ch the address word was fetched.

Now t hat we've seen what happens to EA-calc's that cross section
boundaries, let's see what happens if the EA-calc enters section
zero:

3,,077/ MOVEl 3,1
3,,100/ MOVE 1, @ 200000, , 100]
0,, 100/ 3,,200

As with the exanple above, the EA-calc for this instruction
fetches the word at 0,,100 and continues. But since the EA-calc
entered section zero, this word is treated as an |FIW instead of
an EFIW Therefore, the 3 in the left half of 0,,100 is
interpreted as the index register field instead of a globa

section number. Since AC 3 contains a 1, the EA-calc yields
0,,201. In addition, the last address word was fetched from
section zero, so the result is a | ocal address.
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An effective address cal culation which "falls" into section
zero always results in an effective address that is local (to
section zero). Furthernore, the effective address cal cul ation
can never "get out" of section zero once it enters it because
all addresses in section zero are treated as | ocal. Furt her
operations obey section zero rul es.
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8.0 Special case instructions

O her than nodifications to the EA-calc algorithns when the PC is
in a non-zero section, nost instructions are unaffected by the
addi tion of extended addressing. However, there are a few cl asses
of instructions that behave differently on an extended nachine
fromthe way they would on a non-extended nmachi ne. This section
descri bes the behavior of each class of instruction that has this
characteristic.

Exanples in this section sonetines use the PO NT pseudo-op to
describe a byte pointer. For those readers who do not know what
this pseudo-op generates, a description can be found in the Macro
manual .

8.1 Byte instructions

The effective address calculation for a byte instruction addresses
the byte pointer word(s). The instruction then does another
EA-calc on the byte pointer after deternmning which one of the
t hree possible byte pointer formats was suppli ed.

8.1.1 Byte pointer interpretation

The algorithmfor determning the type of the byte pointer is as
fol | ows:

Fom e e e e e e e oo +
| Pfield > 36? | ----> One-word gl oba
e + Yes
| No
I
V
Fom e e e e e e e oo +
+<---- | Section 0? |
| Yes +--------mmomoo- +
I | No
I I
| \Y,
| B +
| | Bit 12=1? | ----> Two-word gl oba
| R + Yes
I | No
I I
\Y, \Y,
Fom - R > One-word | ocal

Byt e pointer decode al gorithm

The "Section 0?" test in the flowchart is based on where the
first word of the two-word gl obal byte pointer was fetched from
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and not on PC section. This is an inportant distinction if the
byte instruction and the byte pointer are not in the sane section

o For byte instructions, the test for the possibility of a
t wo-word gl obal byte pointer is done based on the section from
which the first word of the byte pointer was fetched. That
is, if the section from which the first word of the byte
poi nter was fetched is non-zero, the byte pointer may be
gl obal .

8.1.2 Byte pointer EA-calc

The default section for the byte pointer EA-calc is initially that
from which the byte pointer was fetched. Once again, this may be
different fromPC section if the instruction and byte pointer are
in different sections. If we realize that the byte pointer is
really an address word, this is an extension of the rule that says
| ocal addresses are local to the section fromwhich the address
word was fetched. For exanple:

3,,100/ LDB 1, @2, , 100]
2,,100/ PO NT 6, 200, 0

In this exanple, the byte instruction is fetched from section 3.
The EA-calc for the instruction follows an EFIWinto section 2 and
the byte pointer is fetched. The byte pointer is in one-word
local format, so the EA-calc of the byte pointer results in a
| ocal address. But is the address local to section 3 (section
containing the byte instruction) or 2 (section containing the byte
pointer)? The rule says that byte pointer EA-calc's start off
local to the section fromwhich the byte pointer was fetched, so
the EA-calc is local to section 2. The result of the EA-calc is
therefore 2,,200 LOCAL.

Note that, while the initial default section may be t hat
contai ning the byte pointer, the default section nay change if the
EA-cal ¢ encounters a global quantity. For exanple:

3,,100/ LDB 1, @2, ,100]
2,,100/ PO NT 6, @ 200004, ,100], 0
4,,100/ 400000, , 200

As in the previous exanple, the byte pointer is fetched from
section 2. The byte pointer has the indirect bit set, so the byte
pointer EA-calc follows the EFIWin the literal (which also has
the indirect bit set) into section 4, where the final address word
is fetched fromlocation 4,,100. This final address word is an
IFIW so the result of the EA-calc is a local address. Even
t hough the byte pointer EA-calc started in section 2, the result
of the EA-calc is local to section 4, because that's where the
| ast address word was fetched from The byte pointer EA-calc
results in an effective address of 4,,200 LOCAL.
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o For byte instructions, the initial default section for the
byte pointer EA-calc is the section from which the byte
poi nter was fetched, which may not be the sane section as that
containing the byte instruction. Further, if the EA-calc
results in a local address, the address is local to the
section from which the last address word in the effective
address cal cul ati on was fetched

8.2 EXTEND instructions

Li ke the byte instructions, certain EXTEND instructions perform
another EA-calc for the byte pointer (MOVWSxx, CWMPSxx, CVTBDX,
CviDBx, and EDIT). The AC field of the EXTEND instruction
addresses a block of ACs, that contain the byte pointers. 1In
addition, some EXTEND instructions perform an EA-calc on the
extended opcode word, which is interpreted in IFIWformat. The
ext ended opcode word is addressed by the effective address of the
EXTEND i nstructi on.

8.2.1 Byte pointer interpretation

The algorithmfor determning the byte pointer format is the sane
as that described for byte instructions with one exception. For
EXTEND i nstructions, the "Section 0?" test in the flow chart is
based on PC section

0 For EXTEND instructions, the test for the possibility of a
two-word global byte pointer is done based on PC section.
That is, if PC section is non-zero, the byte pointers my be
gl obal .

8.2.2 Byte pointer EA-calc

The default section for the byte pointer EA-calc is initially PC
section even if other parts of the EXTEND instruction are in other
sections. For exanple
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3,,100/ MOVElI 1,5 ; Source |l ength

3,,101/ MOVE 2,[ PO NT 7,200] ;Source byte pointer
3,,102/ MOVEI 4,5 ; Destination | ength
3,,103/ MOVE 5,[ PO NT 7,300] ;Destination byte pointer
3,,104/ SETZB 3,6 ; Clear 2nd word of BPs
3,,105/ EXTEND 1, @2, , 100]

2,,100/ MOVSLJ ; Ext ended opcode is MOVSLJ
2,,101/ O ;Fill character is O

In this exanple, the EXTEND instruction is in section 3 and the
EA-calc of the instruction follows an EFIWinto section 2. The
EA-calc's for the one-word | ocal byte pointers in ACs 2 and 5
generate |local addresses of 200 and 300 respectively. But are
they local to section 3 (PC section) or to section 2 (section
containing the extended opcode)? Because the byte pointers are
fetched fromthe ACs, which are inplicitly in PC section, the
EA-calc is relative to PC section. Once again, this is a
conceptual extension to the rule that |ocal addresses are local to
the section from which the address word (in this case, the byte
poi nter) was fetched

As with byte instructions, the default section of the EA-calc nay
change if the EA-calc encounters a global quantity. An exanple of
this for the EXTEND instruction would be analogous to that for
byte instructions given above.

0o For EXTEND instructions, the initial default section for the
byte pointer EA-calc is PC section.

One interesting aspect of this rule is denmonstrated by the
foll owi ng exanpl e

3,,100/ MOVElI 1,5 ; Source |l ength

3,,101/ MOVE 2,[ PO NT 7,200] ;Source byte pointer
3,,102/ MOVEI 4,5 ; Destination | ength
3,,103/ MOVE 5,[ PO NT 7,300] ;Destination byte pointer
3,,104/ SETZB 3,6 ; Clear 2nd word of BPs
3,,105/ EXTEND 1, @O0, , 100]

0,, 100/ MOVSLJ ; Extended opcode is MOVSLJ
0,,101/ O ;Fill character is O

In this exanple, the EXTEND instruction is in a non-zero section
(3) and the extended opcode is in section zero. Even though part
of the processing of the instruction fell into section =zero, the
EA-cal c of the byte pointers is still done relative to PC section.
Hence, the result is the same as in the previous exanple.
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8.2.3 Extended opcode EA-calc

Sonme EXTEND i nstructions also performan EA-calc on the extended
opcode word. In this case, the default section for the EA-calc is
initially the section fromwhich the extended opcode word was
fetched. For exanple:

3,,100/ MOVElI 1,5 ; Source |l ength

3,,101/ MOVE 2,[ PO NT 7,200] ;Source byte pointer
3,,102/ MOVEI 4,5 ; Destination | ength
3,,103/ MOVE 5,[PO NT 7,300] ;Destination byte pointer
3,,104/ SETZB 3,6 ; Clear 2nd word of BPs
3,,105/ EXTEND 1, @2, , 100]

2,,100/ MOVST 200 ; Ext ended opcode is MOVST
2,,101/ O ;Fill character is O

As in the |ast exanple, the EXTEND i nstruction EA-calc follows an
EFIW into section 2 to fetch the extended opcode word from

|l ocation 2,,100. |In this exanple, the extended opcode turns out
to be a MOVST which addresses a translation table with the result
of the EA-calc of the word. This EA-calc results in a |ocal

address which is local to the section fromwhich the address word
was fetched. Therefore, the table is read fromlocations starting
at 2,,200 LOCAL.

o The initial default section for the EA-calc of the extended

opcode word under an EXTEND instruction is that fromwhich the
ext ended opcode word was fetched.

8.2.4 EDT pattern and mark addresses

In addition to byte pointer type deternination, t he ED T
instruction under EXTEND interprets the pattern string and mark

addresses differently based on PC section. |If PC section is zero
both addresses are linmted to 18-bit addresses in section zero and
the result of setting bits 6-17 non-zer o is undef i ned
Conversely, if PC section is non-zero, both addresses are treated
as full 30-bit global addresses and no default sections are
appl i ed. An exanple of this is too conplex to be given here and
will be left as an exercise to the reader.

8.3 JSP and JSR

In a non-extended machi ne, these two instructions store the flags
and an 18 bit PC before junping to the effective address. This is
also true if the instructions are executed in section zero of an
extended machine. Because this format is insufficient to store a
full 30-bit address, the operation of the instructions is nodified
when the PC is in a non-zero section. Instead of storing the
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flags and PC, these instructions store the full 30-bit PC
(actually PC+l), omtting the flags. For exanple:

2,,100/ JSP 1,200

stores 2,,101 in AC 1 before junping to location 2,,200
Simlarly,

2,,100/ JSR 200

stores 2,,101 in 2,,200 before junping to location 2,,201. Not e
that for JSR, the PC is stored in the word addressed by the
effective address even if that address is in another section,

e.g.,
2,,100/ JSR @3, , 200]

In this case, the EA-calc for the JSR results in an effective
address of 3,,200 GLOBAL. Therefore, 2,,101 (PC+l) is stored in
3,,200 (EA) before junmping to 3,,201 (EA+1).

An interesting aspect of this is denonstrated by the follow ng
exanpl e:

2,,100/ JSP 1,@0,, 100]
Because the PCis in a non-zero section, the instruction stores

2,,101 in AC1 and then junps to location 0,,100. But an attenpt
toreturn to the caller in section 2 via the wusual JRST (1)

instruction would fail, because the EA-calc of the return
instruction, done in section zero, would fail to produce a 30-bit
gl obal address. As a result, it is difficult to wite a

subroutine in section zero that can be called via JSP or JSR from
an arbitrary section.

A final exanple illustrates the difference between a Ilocal and
gl obal EA for JSR

2,,200/ JSR 777777

The EA-calc for this case results in a value of 2,,777777 LOCAL.
Therefore, 2,,201 (PC+l) is stored in 2,,777777 (EA) and the
destination of the jump is 2,,0 (EA+1 local). This is consistent
with the rule that |ocal addresses always wap around in section
when i ncrenent ed

The gl obal analogy is as follows:
2,,200/ JSR @2,,777777]

In this case, the result of the EA-calc is 2,,777777 GLOBAL so the
instruction stores 2,,201 (PC+l) into location 2,,777777 (EA) as
in the last exanple. The difference is in the destination of the
j unp. Because the effective address is global, increnenting it
produces 3,,0 GLOBAL (EA+1 global) as the destination of the junp.
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See the section on instruction fetches below for additional
infornati on on these two cases.

o If PCis in a non-zero section, the JSP and JSR instructions
store a full 30-bit PCin the appropriate place instead of
storing flags and PC. This is true even if the destination of
the junmp is in section zero.

8.4 Stack instructions

In a non-extended machine (and an extended nmmchine in section
zero), the stack pointer typically contains a negative contro

count in the left half and an 18-bit address in the right half.
Such a stack pointer is called a |ocal stack pointer. Because
this format is insufficient to hold a full 30-bit stack address,
an additional format for stack pointers is allowabl e when the PC
is in a non-zero section. In this format (called a global stack
pointer), the stack pointer is positive, bits 6-17 are non-zero,
and bits 6-35 of the word are interpreted as the gl obal address of
t he stack.

If the stack pointer is in local format, the stack address is
|l ocal to PC section. For exanple:

2,,100/ MOVE 17,[- 100, , 200]
2,,101/ PUSH 17, 300

Because the left half of the stack pointer is negative, it is in
local formt. Therefore, the stack address is 2,,200 LOCAL,
because the stack is local to PC section.

0 Local stack pointers are always local to PC section.

0 The test for the possibility of a global stack pointer is done
based on PC section. That is, if PC section is non-zero, the
stack pointer nmay be gl obal

Note that a PUSH type stack operation done on a local stack
pointer that has overflowed (i.e., the left half of the pointer
has gone to zero) changes the stack pointer to gl obal fornat.

The type of stack pointer also determ nes how the stack address is
i ncrenented or decrenented. For exanple, consider the follow ng:
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2,,100/ MOVE 17,[-100,,777777]
2,,101/ PUSH 17, 200

The stack pointer in this exanple is local, so the stack address
is 2,,777777 LOCAL. When the PUSH instruction increnents the
pointer, it does so section-local, resulting in an increnented
stack address of 2,,0 LOCAL (which actually references AC 0). The
stack pointer would then look Iike -77,,0.

Let's look at the sane exanple with a gl obal stack pointer:

2,,100/ MOVE 17,[2,,777777]
2,,101/ PUSH 17, 200

Wth a global stack pointer, the increnent is done globally,
resulting in an increnented stack address of 3,,0 GLOBAL (which is
menory location O in section 3). The stack pointer would then
| ook like 3,,0.

0 Increnenting or decrenenting a local stack pointer waps
around in section. Conversely, the same operation on a gl obal
stack pointer may cross section boundari es.

In addition to the requirenent for a global stack pointer to
specify a full 30-bit stack address, the operation of the PUSH]
and POPJ instructions is nmodified when the PC is in a non-zero
secti on. Li ke JSP and JSR, PUSH] stores a full 30-bit PC (again,
actually PC+l) on the stack, onitting the flags. Simlarly, PORJ
restores a full 30-bit PC fromthe stack instead of an 18-bit PC
|l ocal to PC section. Let's |look at sone exanpl es:

2,,100/ MOVE 17, [- 100, , 200]
2,,101/ PUSHJ 17, 400

Because PC section is non-zero, the PUSHI stores 2,,102 on the
stack at location 2,,201, which was addressed by a |ocal stack
pointer, and then junps to location 2,,400. An updated stack
pointer of -77,,201 is stored back into AC 17. Simlarly:

2,,400/ MOVE 17,[-77,,201]
2,,401/ POPJ 17,

restores the full 30-bit PC fromstack location 2,,201 (addressed
by the local stack pointer) and then stores an updated stack
poi nter of -100,,200 back into AC 17.

Thi s behavi or has some interesting aspects, as the next exanple
denonstrat es
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2,,100/ MOVE 17,[2,,200]
2,,101/ PUSHI @O0, , 300]

Because PC is in a non-zero section, the PUSH] instruction stores
a full 30-bit PC (2,,102) on the stack at location 2,,201
(addressed by the gl obal stack pointer). The junp is then nmde
into section zero. But an attenpt to return to the caller with a

POPJ instruction will result in bedlam 1In the first place, the
gl obal stack pointer will be interpreted as a |ocal one in section
zero. |In addition, POPJ will assune that the stack word contains

flags and PC and restore an 18-bit PC, local to section zero

As this exanple denonstrates, it isn't very practical to cal
subroutines in section zero, froma non-zero section, using the
normal call/return conventi ons.

o If PCis in a non-zero section, the PUSH] instruction stores a
full 30 bit PC on the stack. This is true even if the
destination of the junp is in section zero and regardless of
the format of the stack pointer.

o If PCis in a non-zero section, the POPJ instruction always
restores a full 30-bit PC fromthe stack

8.5 JSA and JRA

These instructions use a format that is inconpatible with extended
addr essi ng. Because they are al so considered an obsol ete net hod
for subroutine call/return, no attenpt has been made to find an
alternate format for these instructions when executed in a
non-zero section

For conpatibility wth section zero progr amns, t hese t wo
instructions continue to work in non-zero sections. However,
their use is restricted to intra-section operation, and al
inter-section use is undefined

In the case of JSA, the effective address is calculated in the
normal nmnner. However, iif the EA-calc results in an address
out side of PC section, the action of the instruction is undefined.
For exanple, the results of:

2,,100/ JSA 1, @3, , 200]

are undefined because the effective address is in section 3 and PC
section is section 2. Note that a JSA which conputes a gl obal
effective address whi ch addresses the | ast word of PC section is
al so undefined. Let's |Iook at an exanple of why this is true:
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2,,100/ JSA 1, @2,,777777]

In this case, the m crocode would store the contents of AC into
2,,777777 and attenpt to junp to E+1. But because EA is gl obal
the conputation of E+1 would result in 3,,0 G.OBAL which is
out si de of PC secti on.

The normal usage of JRA is of the form JRA AC (AC) and the
operation of the instruction is defined to take this into account.
After the normal effective address calculation is perforned, PC
section is appended to the in-section addresses in ACto formthe
address of where the old contents of AC were stored and the new PC
addr ess. This forces all references to be in PC section. For
exanpl e,

2,,201/ MOVE 1,200, ,101]
2,,202/ JRA 1, (1)

restores AC fromlocation 2,,200 (PC section plus contents of AC
left) and then junps to 2,,101 (EA in PC section).

These definitions for JSA and JRA are consistent wth the
operation of the instructions in section zero

o The use of JSA and JRA in a non-zero section is restricted to
the case where the EA-calc results in an address in PC
section. All inter-section usage is undefined.

8.6 LUUGs

In a non-extended nachine, LUUGs trap via a pair of locations (40
and 41) in exec or user virtual menory. Because this schene is
insufficient to support extended addressing, the operation of
LUUGs is nodified if the PCis in a non-zero section. |In this
circunstance, the LUUO is processed through a four-word block
which is addressed by a word in the exec or user process tables.
See the PRM for nore details.

o If PCis in a non-zero section, LUUCs trap through a four-word
bl ock addressed by a location in the EPT (exec LUUO or UPT
(user LUUO) .

8.7 BLT

The format used for source and destination addresses by BLT is
insufficient to represent two 30-bit addresses. As a result, the
XBLT instruction was added to the instruction set to allow block
transfers from one arbitrary 30-bit address to another. Despite
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this, BLT is still useful for intra-section block transfers, and
the operation of the instruction has been changed slightly.

The initial source address is constructed by taking the 18-bit
address in the left half of the AC and appending it to the section
nunber and |local/global flag from the ef fective addr ess.
Simlarly, the initial destination address is constructed fromthe
18-bit address in the right half of the AC and the section nunber
and | ocal/global flag fromthe effective address. This neans that
transfers are always to and from the sanme section as that
specified by the effective address, which need not necessarily be
the same as PC section. Source and destination addresses are then
increnmented, section-local (even if EA is global) wuntil the
destination address is equal to EA. For exanple:

2,,100/ MOVE 1,200, ,300]
2,,101/ BLT 1, @3, , 302]

In this exanple, the EA-calc for the BLT results in 3,,302 GLOBAL.
Usi ng the rules above, the initial source and destination
addresses woul d be 3,,200 GLOBAL and 3,,300 G.OBAL. Ther ef or e,
the followi ng transfer would take place:

3,,200 => 3,,300
3,,201 => 3,,301
3,,202 => 3,,302

Let's l ook at an exanple that denmponstrates the significance of
i ncrementing the addresses section-I|ocal

2,,100/ MOVE 1,[777776, , 300]
2,,101/ BLT 1, @3, , 302]

As in the previous exanple, EAis 3,,302 GOBAL and the initial
destination address is 3,,300 GLOBAL. In this case, the initia
source address is 3,,777776 GLOBAL and the following transfer
t akes pl ace:

3,,777776 => 3,, 300
3,,777777 => 3,,301
3,,0 => 3,, 302

Note that the source address was increnented section-local even
though it was a gl obal address.

It is inportant to note that the |local/global flag nmust be
included in constructing the initial source and destination
addresses even though the addresses are always i ncrement ed
section-| ocal. This is because the check for an AC reference is
done by including this flag. Let's look at tw exanples, one
whose EA is local and one whose EA is gl obal
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2,,100/ MOVE 17,[1,,200]
2,,101/ BLT 17,201

In this case, the result of the EA-calc for the BLT is 2,,201
LOCAL. Therefore, the initial source and destination addresses
are 2,,1 LOCAL and 2,,200 LOCAL, respectively. Because the source
is a local address whose in-section part is in the range 0-17, it
references AC 1. Now let's |ook at the gl obal case:

2,,100/ MOVE 17,[1,, 200]
2,,101/ BLT 17, @2, , 201]

In this case, the result of the EA-calc for the BLT is 2,,201

GLOBAL. Therefore, the initial source and destination addresses
are 2,,1 GLOBAL and 2,,200 GLOBAL, respectively. In this case
the source address references nenory location 2,,1 instead of the
ACs because the effective address is global. In both cases,

however, the addresses are increnented section-| ocal

o The initial source and destination addresses for BLT are
constructed by appending the appropriate half of the ACto the
section nunber and local/global flag from the effective
addr ess. I ncrenenting of source and destination addresses is
al ways done section-local independent of the state of the
| ocal / gl obal flag. However, the deternination of AC reference
is done via the nornal rules by including the |ocal/globa
flag.

8.8 XBLT

The XBLT instruction is the one exception to the rule that a
section zero program cannot reference data in non-zero sections.
In this one case, the contents of AC+l (source pointer) and AC+2
(destination poi nt er) are always treated as 30-bit gl obal
addresses, even if the PCis in section zero. This neans that a
program running in section zero can allocate a non-zero section
and XBLT code or data into it wthout having to junp into a
non-zero section to do it.

0 The source and destination addresses for XBLT are always
interpreted as full 30-bit gl obal addresses, even if the PCis
in section zero.

This neans that the final addresses left in AC+2 and AC+3 at the
end of the XBLT nay be inaccessible by other instructions in
section zero. For exanple:
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0,,100/ MOVEl 1,777777 ;Word count
0,,101/ MOVEl 2,20 ; Sour ce addr ess
0,,102/ MOVE 3,[2,,100] ; Destination address

0,,103/ EXTEND 1, [ XBLT]

In this example, the transfer is from0,,20 to 2,,100, and the
nunber of words transferred is 256K-1. The final source and
destinati on addresses left in ACs 2 and 3 are 1,,17 and 3,,77
respectively.

o For XBLT, the final values stored in AC+2 and AC+3 for source
and destination addresses are computed by adding the initial
word count to the initial source and destination addresses.
This conputation is the same in all sections, including
section zero.

8.9 JRSTF

If the PCis in a non-zero section, JRSTF traps as an MJUQO Thi s
is because JRSTF is usually used with an indirect word or index
register with PCflags in the left half. It is quite likely that
these flags would be mistaken for a gl obal section nunber

o If PCis ina non-zero section, JRSTF traps as an MJUO
XJRSTF shoul d be used in a non-zero section

8.10 XMOVElI and XHLLI

Unli ke other immediate instructions that use only 18 bits of the
effective address, these two instructions operate on all 30 bits
of EA. XMOVEl returns the full 30-bit effective address in AC
XHLLI stores the section nunber of the effective address in the
left half of AC, leaving the right half unchanged.

One inmportant inplication of these two instructions is that they
convert a local reference to an ACin any non-zero section into
the global form For exanple:

2,,100/ XMOVEl 1,6
The EA-calc of the XMOVElI results in 2,,6 LOCAL, which is a |oca
reference to AC 6. This result is then converted to the global AC

address of 1,,6 before being |loaded into AC 1.

This conversion is not done if the AC reference is local to
section zero. For exanple:
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2,,100/ XVOVEl 1, @ 200000, , 6]

In this exanmple, the EA-calc follows an indirect EFIWinto section
zero. The result of the EA-calc is therefore 0,,6 LOCAL, which is
a local reference to AC 6. Because the effective address is in
section zero, it is not converted to the global formand 0,,6 is
stored in AC 1.

o |If the effective address of an XMOVEI or XHLLI is a I|oca
reference to an AC in a non-zero section, the AC address is
converted to a global AC address before being | oaded into AC

8.11 XCT

Wth the exception of the nodification of the EA-calc rules in a
non-zero section, the XCT instruction operates in the sanme nanner
as on a non-extended machine. The operation of the instruction
bei ng executed, however, nmay be affected. This section describes
t hese cases and gives exanples to denonstrate them

8.11.1 Default section for EA-calc

If an instruction is executed by an XCT, the initial default
section for the EA-calc of that instruction is the section from
which the instruction was fetched. This nay be different from PC
section if the XCT and the executed instruction are in different
sections. For exanple

3,,100/ XCT @2, ,100]
2,,100/ MOVE 1, 200

In this exanple, the XCT instruction is in section 3 and the
executed instruction is in section 2. The Ea-calc for the MOVE
yields a local address, which is local to the section from which
the MOVE was fetched. Therefore, the result of the EA-calc is
2,,200 LOCCAL. This rule allows one to XCT an instruction in
another section and have local references generated by the
executed instruction be local to the section containing the
i nstruction.
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o The initial default section for the EA-calc of an instruction
executed by XCT is that from which the instruction was
f et ched.

8.11.2 Relationship with skip and junp instructions
When a skip instruction is XCTed, the skip is always relative to
PC section, i.e., the section containing the XCT (first XCT if
there is a chain of XCTs). This is true even if the skip
instruction is in another section. For exanple

3,,100/ XCT @ 2,, 300]

2,,300/ SKIPA 1,200

In this exanple, an XCT in section 3 executes a skip instruction

in section 2. Because this instruction always skips, the next
instruction is taken from location 3,,102 (PC+2), not 2,,302
(instruction+2). However, the EA-calc of the SKIPA instruction

results in 2,,200 LOCAL, so the contents of location 200 in
section 2 are stored in AC

o |If an XCT executes a skip instruction, the skip is always
relative to PC section, even if the skip instructionis in
anot her section.

The followi ng exanpl e denponstrates the effect of XCTing a junp
i nstruction:

3,,100/ XCT @2, , 100]
2,,100/ JRST 200

In this example, an XCT in section 3 executes a junp instruction
in section 2. The EA-calc for the JRST results in an address
local to section 2, so the next instruction is taken from 2,,200
not 3,, 200.

o |If an XCT executes a junp instruction that junps, the next
instruction is fetched fromthe effective address of the junp.
This is true even if the XCT and the junp are in different
sections and the EA-calc of the junp results in a loca
address whose section is different from PC section.
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8.11.3 PC storing instructions

When an XCT executes an instruction that stores PC as part of the
operation of the instruction (e.g., PUSH]J, JSP, etc.), the val ue
stored is relative to PC section (i.e., the XCT) and not the
section of the executed instruction. For exanple:

3,,100/ XCT @2, ,200]
2,,200/ JSP 1,300

In this exanple, an XCT in section 3 executes a JSP in section 2.
The next instruction is fetched fromlocation 2,,300 because the
EA-calc of the JSP is local to section 2. However, the PC stored
in AC1is 3,,101 (XCT+1), not 2,,201 (JSP+1).

o |If an XCT executes an instruction that stores PC as part of
its execution, the value stored is relative to the XCT and not
t he executed instruction.

8.11.4 Local stack references

When an XCT executes a stack instruction that uses a local stack
pointer, the stack pointer is local to PC section and not to that
containing the stack instruction. For exanple:

3,,077/ MOVE 17, [- 100, , 300]
3,,100/ XCT @2, ,200]

2,,200/ PUSH 17, 400

In this exanple, an XCT in section 3 executes a PUSH in section 2.
Since the EA-calc for the PUSH results in a |local address, the
datumto be pushed is in the sane section as the PUSH instruction
(at location 2,,400). However, the stack pointer is local to PC
section, not the section containing the PUSH Therefore, the
datumis stored on the stack at |ocation 3,, 301

o |If an XCT executes a stack instruction whose stack pointer is
local, the stack is Jlocal to PC section, not the section
contai ning the stack instruction.

8.11.5 Ceneralizations for XCT

The exanpl es above cover specific relationships between XCT and
the executed instruction. There are really two generalizations
(one of which was given above) that can be nade about XCT, as
fol | ows:
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The initial default section for the EA-calc of an XCTed
instruction is that fromwhich the instruction was fetched
and not the section fromwhich the XCT was fetched.

Any test of PC section for determ ning whether section zero
rules or non-zero section rules apply is done based on the
section fromwhich the XCT instruction was fetched (the first
one if there is a chain of XCTs). That is, PC section doesn't
change because an XCT executes an instruction in another
section.
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9.0 Summary of default sections for EA-calc

After covering all the special case instructions, it is worthwhile
to summarize the rules regarding the initial default section
nunber for EA-calc's. The initial default section for any EA-calc
is that fromwhich the address word was fetched. This is true for
the sinple cases as well as the nore conplex cases. The follow ng
table gives the initial default section for the various kinds of
EA-cal c

EA-cal c cl ass Initial default section
I nstruction PC section
XCTed instruction Section cont ai ni ng t he execut ed

i nstruction

Byte instruction Section containing the byte pointer
byte pointer

EXTEND i nstruction PC section
byte pointer

EXTEND i nstruction Section containing the opcode word
opcode word

Local stack PC section
poi nt er
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10.0 Section zero vs. non-zero section rules

As the previous discussion of special case instructions indicates,
some instructions do different things based on a test for section
zero. However, this test isn't always on PC section. W have
intentionally left out exanples that denonstrate sonme of the
boundary conditions that nmake extended addressing hard to docunent
to avoid confusing the reader before the sinple cases are
understood. This section includes exanples of these boundary
condi tions, and sunmarizes the rules for testing to see if section
zero rul es apply.

The first exanple illustrates the test for the possibility of a
gl obal byte pointer

3,,100/ LDB 1, @O0, , 200]
0,,200/ 000640, , 300
0,,201/ 400000, , 400

In this exanple, the byte instruction is in section 3 and the byte
pointer is in section O. Note that bit 12 is set in the byte
poi nter which, if global byte pointers are allowed, would indicate
a two-word global byte pointer. |Is this byte pointer interpreted
as a one-word local or two a word gl obal byte pointer? The rule
given in a previous section says that the test is nade based on
the section fromwhich the byte pointer was fetched. Therefore
bit 12 1is ignored, the byte pointer is interpreted in one-word
|l ocal format, and the byte is fetched fromthe word at |ocation
0, , 300.

Let's look at a simlar case involving both XCT and EXTEND

3,,100/ MOVElI 1,5 ; Source length

3,,101/ MOVE 2,[440740,,500] ;Source b.p. (1st wd)

3,,102/ MOVE 3,[5,, 100] ; Source b.p. (2nd wd)

3,,103/ MOVEI 4,5 ; Destination |ength

3,,104/ MOVE 5,[440740,,300] ;Destination b.p. (1st wd)
3,,105/ MOVE 6,[5,, 200] ; Destination b.p. (2nd wd)
3,,106/ XCT @O,, 100] ; Execute EXTEND in section O

0,, 100/ EXTEND 1, 200

0,, 200/ MOVSLJ ; Ext ended opcode is MOVSLJ
0,,201/ O ;Fill character is O

In this example, the XCT is in section 3 and the entire EXTEND
instruction is in section zero. Both the source and destination
byte pointers have bit 12 set, which neans they nmay be interpreted
as two-word global pointers. But are they? The rule given in a
previous section says that the test is made based on PC section,

which is non-zero. Therefore, the byte pointers are two-word
global and the string is noved fromb5,,100 to 5,,200. If this
seens like an anonmaly, renmenber that the test is based on PC

section because the byte pointers are fetched from the ACs.
Ref erences to ACs addressed by the AC field of the instruction are
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al ways nmade in PC section.

A final exanple conbines an XCT with a JSR
3,,100/ XCT @O, , 200]
0,,200/ JSR 300

In this exanmple, the XCT is in section 3 and the JSRis in section
zero. The EA-calc of the JSRis local to section zero, so the
destination of the jump is 0,,301. But what is stored in O0,, 3007
The rule given in a previous section says that the test is based
on PC section. Therefore, we store a full 30-bit PC (3,,101) into
| ocation O,, 300

o0 The test for section zero rules vs. non-zero section rules is
done based on PC section for all cases except byte
instructions. This is true even if the instruction is an XCT
which executes an instruction in another section (including
section zero).

0 The test for section zero rules vs. non-zero section rules
for a byte instruction is done based on the section from which
the byte pointer was fetched.

It is inportant to realize that PC section nay be different from
that containing the instruction being executed if an XCT (or chain
of XCTs) is involved. PC section is always that from which the
original instruction (the XCT if that instruction is involved) was
fetched. This is a subtle distinction, but it is inportant in
testing for section zero rules.
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11.0 Special consideration for ACs

On the PDP-10, the ACs are both general purpose registers and al so
part of the virtual address space of every program This dual use
is convenient but also confusing when one is attenpting to
under st and the rules of extended addressing. This section
descri bes sone of the aspects of the relationship between extended
addressi ng and the use of the ACs.

11.1 AC references
An AC can be referenced in one of four ways as foll ows:

1. As a general purpose register through the AC field of an
i nstruction.

2. As an index register through the index register field of an
instruction or indirect word.

3. As a Ilocal nenory reference to the first 16 (decinmal)
| ocati ons of any section.

4. As a global nenory reference to the first 16 (decinmal)
| ocations of section 1.

In this discussion, we are concerned with the | ast two uses.

The rul es for extended addressing say that nenory references in
section zero are always local. Therefore, a section zero nenory
reference can reference the ACs only if it is to the first 16
(decimal) locations in section zero. On the other hand, a nenory
reference in a non-zero section can reference the ACs in two
different ways. |If the nenory reference is local, the ACs appear
in the virtual address space of every section as the first 16
| ocations. For exanple, both

2,,100/ MOVE 1,2
and
5,,100/ MOVE 1,2

reference AC 2 even though the addresses are local to different
sections.

In addition, the ACs may be referenced in a section-independent
way via a reference to global address 1,,n, where nis in the
range 0-17, inclusive. This neans that an AC address can be
passed between two routines running in a non-zero section, even if
the routines are in different sections. For exanple
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5,,100/ MOVE 16,[1,, 6] ; Get gl obal AC address for AC
5,,101/ PUSH] 17, @3,,200] ; 6 and call routine

3,, 200/ NDVE 1, (16) ;Use global XR to fetch data

In this exanple, the calling routine in section 5 places the
global AC address for AC 6 into AC 16 and calls a routine in
section 3. Because 1,,6 is a global AC address, the called
routine interprets the index in global format and the data is
fetched fromAC 6

Note that an address of the form1l,,n, wheren is in the range

0-17, wll always reference the ACs, whether the address is |loca
or global. |If the address is local, the reference is a Iloca
reference to the ACs in section 1. |If the address is global, it

is a global AC reference to the ACs.

0 An address of the form1,,n, where nis in the range 0-17
inclusive, refers to the ACs whether it is a local or globa
address. Therefore, such an address can be used to refer to
the ACs even if the state of the local/global bit is not
known.

11.2 Instruction fetches

Al'l instruction fetches are nmade as | ocal references, even though
the PC is a full 30-bit address. Therefore, an instruction is
fetched fromthe ACs whenever bits 18-35 of PC are in the range
0-17, inclusive, independent of the section nunber. Consider the
foll owi ng exanpl e

1,,100/ XJRST [3,, 2]

This instruction sets the PC to 3,,2. However, the next
instruction fetch wll come from AC 2 because it is nmade as a
| ocal reference

Thi s behavior can have sonme inplications for instructions that
al so store informati on before changing PC. Consider the follow ng
exanpl e:

1,,100/ JSR @3, , 2]

The JSR stores the current PCinto nenory location 3,,2 and then
changes the PCto 3,,3. The next instruction is then fetched from
AC 3 because of the local reference, but the old PCis in nenory
and nmust be fetched with a gl obal reference

0 Instruction fetches from C(PC) are always nmde as |oca
references even if PC was previously set to a gl obal address.
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This neans that instruction fetches from the first 16
(decimal) | ocations of any section cause the instruction to be
fetched fromthe ACs.

11.3 Storing PC

If an instruction that stores PC as part of its execution is
fetched fromthe ACs, the PCis stored as a full 30-bit address if
PCis in a non-zero section. For exanple:

3,,100/ MOVE 4,[JSP 2, 200]
3,,101/ JRST 4

In this exanple, the MOVE instruction stores a JSP into AC 4, and
the JRST instruction conmputes a local effective address that
references the ACs. PCis set to 3,,4, but the next instruction
is fetched from AC 4 because instruction fetches are al ways nade
as local references. Therefore, the next instruction to be
executed is the JSP. Because PC section is non-zero (it is still
3), the JSP nust store a full 30-bit PCinto AC 2. The inportant
thing to realize is that PCis 3,,4 and is not 0,,4 (a section
zero AC address) or 1,,4 (a global AC address). Therefore the JSP
stores 3,,5 (remenber, it stores PC+l) into AC 2 and junps to
3,, 200.

o If an instruction that is fetched fromAC stores PC as part of
its execution, the PC stored is a full 30-bit address
i ncluding PC section, if PC section is non-zero.

11.4 Storing EA for LUUO, MJUO and page fails

When an LUUO or MJUO i s executed or an instruction page fails, the
m crocode stores sone information about the exception in a bl ock
addressed by a word fetched fromthe UPT or EPT. The information
stored includes the effective address (or reference address in the
case of page fail) for the instruction that caused the exception.
If the resulting effective address is a local reference to an AC
in a non-zero section, the microcode converts this address to a
global AC reference before storing it in the block. This is the
same rul e used for XMOVElI and XHLLI.
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o If the effective address of an LUUO or MJUO, or an instruction
that causes a page fail results in a local reference to the
ACs in a non-zero section, the mcrocode converts the |local AC
reference to a global AC address before storing the result.

11.5 An exanple

Consi der the followi ng exanple that brings together all of these
rul es:

3,,100/ MOVE 6, [ 001000, , 10]
3,,101/ JRST 6

In this exanple, the MOVE stores an LUUO (opcode 001) into AC 6
and the JRST sets PCto 3,,6. The following list indicates the
significant actions that are perforned to process the LUUO

1. The EA-calc for the LUUO is perforned and the result is 3,,10
LOCAL.

2. Because PC section is non-zero, the LUUO nust be processed
t hrough a four-word bl ock addressed by a |ocation in the UPT.

3. PC+l nust be stored as a full 30-bit address, including
section nunber. The value stored is 3,,7.

4. Because the EA-calc of the LUUO resulted in a local reference
to AC 10, it nust be converted to a global AC address before
it is stored in the bl ock. The value stored is therefore
1,, 10.
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12.0 PXCT

When the nmonitor is invoked by an MJUO page fail, etc., the
address space of the process that caused the invocation is
potentially different fromthat of the nonitor. In order to

provide a conmmunications nechanism between the nonitor and the
so-cal l ed "previous context", the PXCT (for Previous context XCT)
instruction was defined. Although PXCT is normally considered as
a separate topic fromextended addressing, there are interactions
between the two that make it desirable to talk about them
t oget her.

Because PXCT is legal only in exec nobde, there is no need to
define a new opcode for the instruction. Rather, the normal XCT
opcode is used, and a non-zero AC field distinguishes a PXCT from
a nornmal XCT. The opcode nane PXCT is sinply a notationa
conveni ence to enphasi ze that the executed instruction is naking
previ ous context references.

12.1 Previous context

For the purposes of this discussion, "previous context" is defined
by three processor state variables: Previ ous Context Section
(PCS), Previous Context User (PCU), and Previous AC Block (PAB)

PCS is a 12-hit state register (5 on the KL10) that gives the
val ue of PC section in the previous context at the tinme of the

event that invoked the nonitor. PCUis a 1-bit register that
i ndi cates that the previous context was user node (as opposed to
exec node). PAB is a 3-bit register that gives the AC bl ock

nunber used by the previous context (there are typically multiple
AC bl ocks inplemented by a machine, 8 in both KL10 and KC10. The
so-called "current ac block" is addressed by another 3-bit state
register called Current AC Block, or CAB). Therefore, the
previ ous context includes both the address space and ACs that were
in use at the time of the event that invoked the nonitor.

When a context change occurs as the result of an MJUO page fail
interrupt, etc., the previous context state variables are set
according to a set of rules that are defined for each type of
context change. The specific rules aren't inportant for the
pur pose of this discussion and the reader is referred to other
sources for nore information. The inportant point is that the
state variable are set as the result of the context change

In addition to being set on a context change, the nonitor may al so
set the state variables explicitly when it desires to nake an
asynchronous reference to previous context.

These previous context state registers then direct references to
the previous context as described below Note that the previous
context need not always be user node. It is exec npde in cases
where the nonitor makes a request of itself, such as the execution
of an MJUO by the nonitor.
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12.2 Use of the previous context state vari abl es

The state registers PCS, PCU and PAB hold information necessary
to make a previous context nenory or AC (as nenory or index
register) reference. This section describes the use for each
register.

PCS is a 12-bit state variable that gives the value of PC section

in the previous context. It is used in the PXCT EA-calc algorithm
as described below to provide a default section nunber for a | ocal
EA-cal c. It is also used as the basis for the test for section

zero in sone instructions that behave differently in non-zero
sections as described below. (For npbst instructions, the effect
is as if the instruction were executed in previous context.)

PCUis a 1-bit state variable that indicates that the previous
context was user node. PCUis used to select the address space
for a previous context nmenory reference. That is, if the
reference is to previous context and PCU is set, the reference is
made to the wuser address space as mapped through the UPT.
Conversely, if the reference is to previous context and PCU is not
set, the reference is to the exec address space as mapped through
t he EPT.

PAB is a 3-bit state variable that gives the AC block nunber for
the previous AC block. If an index register or ACis referenced
in previous context, PAB gives the nunber of the AC block
cont ai ni ng the data.

12.3 References to previous context

The PXCT mechanismallows the nobnitor to execute an instruction
such that certain references of the executed instruction are nade
to the previous context. Conceptually, these references are mnade
as if the PXCTed instruction were being executed in the previous
cont ext .

It is inmportant to wunderstand exactly which operations are
nmodi fied by PXCT. The instruction fetch and EA-cal c of the PXCT
instruction and the fetch of the executed instruction are always
done in current context. |In addition, all AC references (as the
result of bits 9-12 of the executed instruction) are nade to the
current context ACs. The only difference between an instruction
execut ed under PXCT and one that is not is the way certain nenory
and index register references are nmade. In particular, the
EA-cal ¢ of the executed instruction nay reference indirect words
and index registers in previous context. Also, nmenory and AC
references made as the result of the EA-calc may be to previous
context. Exactly which references are nmade in previous context is
determ ned by the type of instruction that is being executed and
by the bits set in the AC field of the PXCT instruction.
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12.4 Applicable instructions

Not all instructions may be executed via PXCT. The use of PXCT is
limted to instructions that are useful to the nmonitor, and no
attenpt is nade to trap those cases that aren't applicable. The
instructions that may be executed are as foll ows:

MOVE cl ass instructions

Hal fword cl ass instructions

EXCH

XMOVE! , XHLLI

BLT (with restrictions), XBLT
Arithnmetic (integer and floating point) instructions
Bool ean i nstructions

DMOVE cl ass i nstructions

CAl and CAM cl ass instructions

SKI P, ACS, and SCS cl ass instructions
Logi cal test instructions

PUSH and POP (with restrictions)

Byte class instructions

MOVSLJ (with restrictions)

MAP

Al'l other instructions are inapplicable, and the results of
executing an inapplicable instruction are undefined. Note that
this list explicitly excludes all instructions that junp.

12.5 Interpretation of the ACfield bits

The four bits of the ACfield of the PXCT instruction deternine
which nenory references of the executed instruction are nmade to
previous context. For npbst PXCTed instructions, the ACfield bits
are logically grouped into two pairs (9-10 and 11-12) to control
how EA-cal c and data references are perforned. Wthin each pair,
the first bit (the generic "E control bit") causes index register
and address word references to cone fromprevious context during
an EA-calc. The second bit (the generic "D control bit") causes
data fetches as the result of instruction execution to cone from
previous context. Wen considered as a whole, bits 9-12 of the AC
field are naned "E1", "D1", "E2", and "D2" but the generic nanes
("E'" and "D') may be used when it is clear which bits control the
reference in question

Not all executed instructions use both pairs of bits. In fact,
the great mpjority of applicable instructions use only bits 9 and
10; bit 9 for the EA-calc of the PXCTed instruction and bit 10
for the data reference nmmde as the result of that EA-calc. A
not abl e exanple of the use of bits 11 and 12 to control previous
context references is the byte instructions. |In this case, bit 11
controls the EA-calc of the byte pointer and bit 12 controls the
data reference to the word containing the byte. Sone instructions
use other conbinations of bits, e.g., BLT, EXTEND (MOVSLJ and
XBLT), and stack instructions.
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The previous context menory references controlled by each AC field
bit nmay be summari zed by the follow ng table:

Bit Ref erences made in previous context if bit is 1

9 (El1) Effective address calculation of instruction (i ndex
regi sters, indirect words).

10 (D1) Menory operands specified by EA, whether fetch or store
(e.q, PUSH source, POP or BLT destination); byt e
poi nter.

11 (E2) Effective address calculation of byte pointer; source in
EXTEND (e.g., XBLT or MOVSLJ source); effective address
cal cul ation of source byte pointer in EXTEND ( MOVSLJ)

12 (D2) Byte data; source in BLT, destination in EXTEND (e.g.,

XBLT  or MOVSLJ destination); ef fective addr ess
calculation of destination byte pointer in EXTEND
(MOVSLY) .

There are obviously a |imted nunber of valid conbinations of AC
field bits for those instructions that may be PXCTed. The
following tabl e gives the legal conbinations. The "AC' colum
gives the AC field value for the equivalent bits, e.g., the AC
colum would contain a 4 for a 0 1 0 0 bit string.

El D1 E2 D2
I nstructions AC 9 10 11 12 Ref er ences
Cener al 4 0 1 0 O Dat a
14 1 1 0 O E, data
PUSH, POP 4 0 1 0 O Dat a
14 1 1 0 E, data
| medi at e 10 1 - 0 O E (no data reference)
BLT 5 0 1 0 1 Source data, destination data
15 1 1 0 1 E, source data, destination
dat a
XBLT 0 Sour ce dat a

Desti nati on data
Source data, destination data

R OoR
RO
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Byt e 1 0 0 0 1 Byt e data
3 0 0 1 1 Pointer E, byte data
7 0 1 1 1 Pointer, pointer E, byte data
17 1 1 1 1 E, pointer, pointer E, byte
dat a
MOVSLJ 1 0 0 0 1 Desti nation poi nt er E,
destinati on data
2 0 0 1 o0 Source pointer E, source data
3 0 0 1 1 Source pointer E, destination
poi nt er E, source dat a,

destinati on data

Note that BLT, PUSH, POP, and MOVSLJ have restrictions on what

menory references can be PXCTed. For BLT, all references,
optionally including the EA-calc, nust be done in previous
cont ext . The results of PXCTing a BLT where source but not

destination or destination but not source is in previous context
are undefined. The LDPAC and STPAC instructions should be used to
transfer the previous ACs to and from current context. In al
other cases, XBLT nust be used to transfer data between current
and previous context.

For PUSH and POP, the stack nust always be in current context.
This neans that previous context references for PUSH and POP are
limted to the EA-calc and data reference nmade to the |location
addressed by the EA-calc. PUSH and POP therefore reduce to the
"general " case.

For MOVSLJ, if source or destination data is in previous context,
the source or destination byte pointer EA-calc nust be done in
previous context also. |If the nonitor wishes to force a current
context EA-calc for a previous context data reference, it can
conpute the effective address of the byte word and use a one- or
two-word global byte pointer. The microcode will still do the
EA-calc in previous context, but no previous context defaults wll
be appli ed.

12.6 Modifications to the EA-calc al gorithm

The appropriate "E' and "D' control bits fromthe AC field of the
PXCT instruction are wused to nodify an EA-calc done on the
executed instruction or a subsequent EA-calc done by t he
instruction (e.g., byte pointer). This nodification involves pre-
and post-processing the normal effective address calculation
algorithns to conditionally include PCS at two points.

If the appropriate "E" control bit is set, the initial default
section for the EA-calc is set to PCS. Since the "E' control bit
al so controls previous context indirect word and index register
references, this neans that the entire EA-calc is done in previous
context. If the "E" control bit is not set, the initial default
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section for the EA-calc is that fromwhich the address word was
fetched, and the EA-calc is done in current context.

When the normal EA-calc is conpleted, the resulting value is
post - processed. If the result of the EA-calc was a | ocal address
AND the "E" control bit was not set AND the "D' control bit was
set, the section nunber of the EA-calc is replaced by PCS. Note
that the local/global flag remains local if this is done.

The application of PCS at the end of the EA-calc may seemto nake
no sense at first glance, so let's take a closer look at it.
Rermenber that the purpose of PXCT is to allow the nonitor to
reference data in the previous context as if the user had supplied
it. If the user supplies a |local address in, for example, a JSYS
argunment, the nonitor should nake the data reference local to the
section in which the user was running. By applying PCS at the end
of the EA-calc as indicated above, the microcode automatically
nmakes the reference to the correct section.

This al gorithm nay be described by the following flow chart:



_________________ +
Set initial |
default section
_________________ +
|
V
_________________ +
"E" control | No
bit set? [ ---->-
_________________ +
| Yes
V
_________________ +
Initial default |
section : = PCS
_________________ +
| <---emmemee -
_________________ +
Perform normal |
EA-cal c |
_________________ +
|
V
_________________ +
"D' control |
bit set? |
AND |
"E" control | No
bit not set? |---->-
AND |
EA-cal c resulted
in a |
Local address?
_________________ +
| Yes
V
................. +
EA[ 6: 17] := PCS
................. +
I
V
Fom e Do

PXCT EA-cal c al gorithm

EA
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Assune that PCS is 1 and consider the followi ng exanpl e:
2,,100/ PXCT 4,[ MOVE 1, 100]

MOVE is one of the "general" class of opcodes, so bits 9 and 10 of

the PXCT AC field control the previous context references. In
this exanple, bit 9 (The "E1" bit) is off and bit 10 (the "D1"
bit) is on. Therefore, the EA-calc is done in current context

with a result of 2,,100 LOCAL. Because the "D1" bit is on, the
"E1" bit is off, and the result of the EA-calc is |local, the PXCT
EA-calc algorithmapplies PCS to bits 6-17 of the EA-calc. The
final effective address is therefore 1,,100 LOCAL and the data
reference is made to that location in previous context.

Let's |l ook at another exanple. Assune that PCSis 2 and that the
followi ng |ocations exist in previous context:

2,,200/ 200003, , 300
3,,300/ 400000, , 400

In current context, the following instruction is executed
1,,100/ PXCT 14, [ MOVE 1, @00]

In this exanmple, both the "E1" and "D1" bits are on in the PXCT AC
field. Therefore, the EA-calc is done in previous context and the
initial default section for the EA-calc is set to 2 (PCS)
Location 2,,200 in previous context contains an indirect EFIWthat
the EA-calc follows into section 3. The final address word
fetched from previous context location 3,,300 is in |IFIWformt,
so the result of the EA-calc is local to the section from which
the address word was fetched. The result of the EA-calc is 3,,400
LOCAL. Because the "D1" bit is also set, the MWE fetches data
from previous context |ocation 3,,400.

A final exanple denobnstrates the result of an EA-calc that
references an AC. Assunme that PCS is 3.

2,,100/ PXCT 4,[ MOVE 1, 2]

As with the first exanple, the EA-calc is done in current context
and PCS is applied to bits 6-17 of the result to produce an
ef fective address of 3,,2 LOCAL. Just as in the non-PXCT case,
this is a local reference to AC 2. Because the "D1" bit is set,
the reference is nade to previous context AC2 in the AC block
speci fied by PAB
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o The EA-calc of a PXCTed instruction my be pre- or
post - processed as directed by the AC field control bits of the
PXCT instruction. Except for this additional processing, the
EA-calc algorithns and results are exactly the same as for the
non- PXCT case. This includes the uses for the |ocal/globa
flag.

12.7 Section zero vs. non-zero section rul es

O the instructions that may be PXCTed, there are three types
(stack, byte, and MOWSLJ) that operate differently in non-zero
sections and section zero. Wwen one of these instructions is
PXCTed, the test for zero/non-zero rules nmay not be the sane as
the test when there is no PXCT involved. The interaction of PXCT
with each of the instruction types is covered separately bel ow.

12. 7.1 Stack instructions

When no PXCT is involved, the test for the possibility of a gl obal
stack pointer is done based on PC section. Wen a PUSH or POP
instruction is PXCTed, the previous context references are limted
to the EA-calc and the datum addressed by the EA-calc, and the
stack reference is always nmade in current context. Because the
stack is in current context, the interpretation of the stack
poi nter type is nade based on the current context PC section and
i s not dependent on PCS. For exanple, assune that PCS is O.

2,,100/ MOVE 1,[3,,1000]
2,,101/ PXCT 4,[PUSH 1, 200]

In this example, PC section is non-zero and the stack pointer in
AC 1 has a global format. The test to deternine whether the stack
pointer is allowed to be global is still nmade based on PC section
(even though there is a PXCT involved), and not on PCS
Therefore, the stack pointer is indeed gl obal and previ ous context
location 0,,200 is pushed onto the stack in current context
| ocation 3,,1001.

0 When a stack instruction (PUSH POP) is PXCTed, the test for
the possibility of a global stack pointer is done based on PC
section.

o When a stack instruction is PXCTed, |ocal stack pointers are
al ways | ocal to PC section.
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12.7.2 Byte instructions

Normal Iy, the byte instruction test for the possibility of gl obal
byte pointers is done based on the section fromwhich the byte
poi nter was fetched. Wen a byte instruction is PXCTed, this rule
continues to apply, wth extensions to include the possibility
that the byte pointer may be fetched from previ ous context. Thi s
is best explained with several exanpl es.

Assune that PCS is 0 and that the following locations exist in
previ ous context:

0,, 100/ 400000, , 200
0,,200/ 12

In current context, the following instruction is executed
2,,300/ PXCT 3,[LDB 1, 400]

2,,400/ 000640,,0
2,,401/ 400020, , 100

For PXCT of byte instructions, bits 9 (E1l) and 10 (Dl1) direct the
EA-calc of the byte instruction and the fetch of the byte pointer.
Bits 11 (E2) and 12 (D2) direct the EA-calc of the byte pointer
and the fetch of the word containing the byte. |In this exanple,
the "D1" bit is off, so the byte pointer is fetched from current
context location 2,,400. Bit 12 is on in the byte pointer, and a
test nust be nmade to see if it may be global. The byte pointer is
gl obal because it was fetched fromcurrent context section 2, and
the fact that PCSis zero is not considered.

The "E2" bit and the "D2" bit of the PXCT AC field are both on, so
the byte pointer EA-calc is done in previous context. The second
word of the two-word gl obal byte pointer has the indirect bit set,
and the next address word is fetched from previous context
| ocation 0,,100. The final result of the EA-calc is 0,,200 LOCAL
in previous context and bits 30-35 of that word are extracted and
pl aced in current context AC 1.

Let's look at a sinmlar exanple in which the byte pointer is also
fetched from previous context. Once again assune that PCSis O
and the previous context contains the follow ng |ocations:

0,, 400/ 000640, , 100
0,,401/ 400000, , 200

0,,100/ 10
0,, 200/ 20

In current context, the following instruction is executed

2,,300/ PXCT 7,[LDB 1, 400]
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In this case, the "D1" bit of the PXCT ACfield is set, so the
byte pointer is fetched from previous context |ocation 0,,400. As
in the last exanple, bit 12 is set in the byte pointer. But
because the byte pointer was fetched from previ ous context section
0, bit 12 is ignored and the byte pointer is interpreted in
one-word local fornat. The EA-calc is done in previous context
and results in an effective address of 0,,100 LOCAL. The byte is
then fetched frombits 30-35 of previous context |ocation 100.

o Wien a byte instruction is PXCTed, the test for t he
possibility of a global byte pointer is done based on the
section fromwhich the byte pointer was fetched. This is true
i ndependent of whether the byte pointer is fetched from
current or previous context.

This interpretation, while correct architecturally, causes sone
problens for TOPS-20 as it is inplenented today because TOPS- 20
copies byte pointers from the previous context into current
cont ext. Ideal |y, when a JSYS does a byte instruction on behalf
of the user, the byte pointer would be interpreted exactly as if
the wuser had executed the byte instruction. Thus, if the byte
poi nter were fetched fromsection O, it would be interpreted as a
| ocal pointer; if it were fetched fromany other section, it
woul d be interpreted as possibly being global. This can be
acconpl i shed by using PXCT 7, as indicated in the exanple above.

Because TOPS-20 copies the byte pointer fromthe previous context
into current context, one that |ooks |like a global byte pointer
will be interpreted as a global byte pointer even if it is fetched
from previous context section zero. This is because the nonitor
typically runs in a non-zero section and the PXCTed byt e
instruction fetches the byte pointer fromcurrent context. Hence
the test for the possibility of a global byte pointer is nade
based on current context section rather than previ ous context
secti on.

12. 7.3 EXTENDed MOVSLJ instruction

If no PXCT is involved, the MOVSLJ test for the possibility of a
gl obal byte pointer is nade based on PC section. |If a PXCT is
i nvol ved, the test is nore conplex because it 1is based on PC
section if the PXCT control bit for the byte pointer is off and on
PCS if the PXCT control bit is on. For exanple, assune that PCS
is zero and that previous context contains the follow ng
| ocati ons:

0,,200/ ASCl | | ABCDE|

0,,300/ ASC || FGHI J|
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In current context, the following instruction sequence is
execut ed:
3,,100/ MOVElI 1,5 ; Source length
3,,101/ DMOVE 2,[440740,, 200 ; Source BP (word 1)
400000, , 300] ; Source BP (word 2)
3,,102/ MOVEI 4,5 ; Destination |ength
3,,103/ DMOVE 5, [ 440740, , 400 ; Destination BP (word 1)
400000, , 500] ; Destination BP (word 2)
3,,104/ PXCT 2,[ EXTEND 1, 600] ; PXCT the MOVSLJ
3,,600/ MOVSLJ ; Ext ended opcode is MOVSLJ
3,,601/ O ;Fill character is O

In this exanple, the "E2" bit is set in the PXCT AC field, which
indicates that the source EA-calc and string reference are to be
made to previous context. Conversely, the "D2" bit is off, which
indicates that the destination EA-calc and string references are
to be made to current context.

Because the source-in-previous control bit is set in the PXCT AC
field, the test for the possibility of a global source byte
pointer is made based on PCS. In this case, PCSis zero, so bit
12 is ignored in the byte pointer and it is interpreted in
one-word local format. The byte pointer EA-calc results in 0,,200
LOCAL in previous context.

On the other hand, the destination-in-previous control bit is not
set, so the test for the possibility of a global destination byte
pointer is made based on PC section. Since PC section is non-zero
and bit 12 is set, the byte pointer is interpreted in two-word
gl obal format, and the byte pointer EA-calc results in 3,,500
LOCAL in current context.

The result is to transfer the string "ABCDE" from previ ous cont ext
| ocation 0,,200 to current context location 3,,500.

o Wen a MWSLJ instruction is PXCTed, the test for the
possibility of a global byte pointer is done based on PC
section if the appropriate PXCT control bit is off. If the
bit is on, the test is done based on PCS
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EA- CALC FLOANCHARTS

The following pages contain the EA-calc flowharts from the
Processor Ref erence Manual (page 1-30) and from the KL10
Engi neeri ng Functional Spec.
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