
 +---------------------------+
 | | | | | | | | i n t e r o f f i c e
 | d | i | g | i | t | a | l |
 | | | | | | | | m e m o r a n d u m
 +---------------------------+

 To: Architecture distribution Date: 24 Jun 83
 From: Mike Uhler
 Dept: L.S.E.G.
 DTN: (8-)231-6448
 Loc/Mail stop: MRO1-2/E85
 Net mail: UHLER at IO

 Subject: Extended addressing
 Revision: 5

 Revision history

 Revision Date Changes
 5 07-Jul-83 Make one-word global byte pointers legal in
 section 0. Make JSA and JRA illegal for
 inter-section use.

 1.0 Introduction

 As we attempted to implement the EBOX microcode for Jupiter, we
 quickly discovered that there were some serious deficiencies in
 the documentation for what we were trying to implement. The most
 serious deficiency was in the area of rules for extended
 addressing, especially for the exception conditions. We found
 ourselves implementing the EBOX microcode partially from the
 Processor Reference Manual (PRM) but, more often than not, from a
 collection of old documentation, memos, and recollections of what
 was decided in the design of extended addressing.

 After spending two weeks attempting to decipher what the rules
 should be and comparing them with the KL10 implementation, I wound
 up with a large collection of notes concerning aspects of extended
 addressing which are either not documented or poorly documented.
 Several meetings of the PDP-10 Architecture Committee ensued, and
 this memo is an attempt to formalize my notes.

 The intent of the memo is to provide a description of extended
 addressing as defined by the PDP-10 architecture. This material

 Page 2

 really belongs in the Processor Reference Manual, and every
 attempt will be made to get it included in the next release of the
 manual. Note that certain implementations of the PDP-10
 architecture don't always conform to the descriptions given in the
 memo. These are descriptions of what SHOULD be implemented, not
 necessarily what IS implemented. However, all future PDP-10
 processors should conform to these descriptions.

 In order to make it easier for the reader, I've also added a lot
 of background, definitions, and descriptions of extended
 addressing that are found in other references. This additional
 discussion should make the overall structure of extended
 addressing more clear.

 In order to avoid swamping the reader with too much detail at any
 point, I sometimes intentionally ignore or understate certain
 important aspects of the examples that I use. These items are
 generally covered later in the memo. I also occasionally forward
 reference topics. Because of this organization, it may be best to
 make a quick first pass through the memo to pick out the
 highlights and then go back and make a more detailed pass.

 This memo assumes that the reader has at least a basic knowledge
 of the PDP-10 instruction set, the notation used to describe
 instructions, and the format of an instruction word. Readers who
 do not have this knowledge are referred to sections 1.4 through
 1.6 of the Processor Reference Manual and to the Macro Assembler
 Reference Manual.

 Page 3

 2.0 Reference materials

 The primary source of information about the instruction set is the
 Processor Reference Manual. Unfortunately, there are some
 inaccuracies and some omissions in the sections related to
 extended addressing. The "Extended Effective Address Calculation"
 flow chart on page 1-30 of the PRM is the best "description" of
 the effective address calculation algorithms and it is attached to
 this memo for the convenience of the reader.

 The KL10 Engineering Functional Spec contains several chapters
 related to this topic and has some interesting insights.
 Especially interesting are chapters 2.2, "User Interface to
 Extended Addressing", and 2.3, "Monitor Calling (MUUO, PXCT)".
 Along with these chapters is a hand-drawn flow chart by Tom
 Hastings entitled "Flow for Extended Addressing" that clears up
 several questions about EA-calc algorithms, especially in the area
 of PXCT. A copy of this flow chart is attached.

 Old memos describing the design of extended addressing and the
 implementation of extended addressing in TOPS-20 are also somewhat
 helpful.

 Finally, the KL10 microcode contains a few helpful comments about
 exception conditions in that implementation of extended
 addressing. It is in no sense "light reading", however.

 Page 4

 3.0 Historical summary of extended addressing

 PDP-10 processors prior to the model B KL10 implemented a virtual
 address space of 256K words. As programs and the operating
 systems grew, it became apparent that a virtual address space that
 was limited to 256K was insufficient for future expansion.
 Sometime in late 1973, an Extended Addressing Design Group was
 formed to evaluate proposals for increasing the virtual address
 space of the PDP-10. By early 1975, this group had agreed upon
 one proposal, and this proposal was documented in chapter 2.2 of
 the KL10 Engineering Functional Spec.

 This proposal increased the size of the virtual address space from
 256K words to 1 billion words by expanding the size of a virtual
 address from 18 bits to 30 bits. The virtual address space is
 logically divided into 4096 sections of 256K words each. The
 program may use these sections as separate logical entities or
 treat them as one large contiguous address space. Instructions,
 however, must explicitly transfer control between sections; they
 may not "fall" into the next section.

 The increase in the size of the virtual address space was
 accompanied by an increase in the size of PC, from 18 to 30 bits.
 This increase allowed a program to execute in any of the extended
 sections. The contents of bits 6-17 of PC were termed the "PC
 section".

 In order to allow an instruction to specify a full 30-bit virtual
 address, the rules for indexing and indirection were modified when
 PC section was non-zero. In addition, new instructions were
 defined to allow a program to jump to other sections.

 To insure compatibility with programs written for non-extended
 processors, section zero is treated exactly as it is on
 non-extended processors. This means that if a program is
 executing in section zero, nearly all instructions behave exactly
 as they would if the program were executed on a non-extended
 machine. Programs running in section zero cannot reference data
 in any other section (with one exception) and entry into another
 section is possible only with a few instructions (e.g., XJRSTF,
 XJRST, etc.).

 The first processor to implement extended addressing was the model
 B KL10. Due to hardware restrictions, this processor implemented
 only 32 of the 4096 sections of virtual address space. References
 to virtual sections above the implemented range cause a page fail
 trap to the monitor. The KC10 implements the full 30-bit virtual
 address space.

 Page 5

 4.0 Definition of terms

 Before we start looking at extended addressing, let's define some
 terms:

 o A virtual address is a 30-bit address used to reference a word
 in an address space. Although the address space can be
 considered to be one large, contiguous space, it is probably
 easier to consider it to be broken into sections of 256K words
 each. Bits 6-17 of the virtual address then specify the
 section number and bits 18-35 specify the word within the
 section. A virtual address looks like:

 6 17 18 35
 |---|
 | Section number | Word within section |
 |---|
 Virtual address format

 PC has the same format as a virtual address.

 o An address word is a word containing I, X, and Y fields (see
 the PRM for definitions for these fields) in either IFIW or
 EFIW (see below) format. An effective address calculation
 takes such a word as input. Thus, instructions, indirect
 words, and byte pointers are all examples of address words.

 o A local address is an 18-bit in-section address that, when
 combined with a default section number, specifies a full
 30-bit address. The section number is supplied by something
 other than the address word or index register.

 o A global address is a 30-bit address that supplies its own
 section number. Therefore, no default section need be
 applied.

 o A local index is an 18-bit displacement or address obtained
 from an index register used in an effective address
 calculation in section zero, or from an index register used in
 a non-zero section that has bit 0=1 or bits 6-17 equal zero.
 In a non-zero section, an index register containing a local
 index has one of the following formats:

 0 1 17 18 35
 |---|
 |1| Ignored | Local address (or offset)|
 |---|
 Local index format (bit 0 = 1)

 0 1 5 6 17 18 35
 |---|
 |0|Ignored| 0000 | Local address (or offset)|
 |---|
 Local index format (bits 6-17 = 0)

 Page 6

 o A global index is a 30-bit displacement or address obtained
 from an index register used in an effective address
 calculation in a non-zero section, that has bit 0=0 and bits
 6-17 non-zero. An index register containing a global index
 looks like:

 0 1 5 6 35
 |---|
 |0|Ignored| Global address with 6-17 non-zero |
 |---|
 Global index format

 o An instruction format indirect word (IFIW) is any indirect
 word in section zero, or an indirect word in a non-zero
 section that has bit 0=1 and bit 1=0 (instructions being
 executed are always interpreted in IFIW format). In this
 format, bit 13 is the indirect bit, bits 14-17 are the index
 register address, and bits 18-35 are the local memory address.
 An IFIW in a non-zero section looks like:

 0 1 2 12 13 14 17 18 35
 |---|
 |1|0| Ignored |I| X | Y |
 |---|
 IFIW format

 o An extended format indirect word (EFIW) is any indirect word
 in a non-zero section that has bit 0=0. In this format, bit 1
 is the indirect bit, bits 2-5 are the index register address,
 and bits 6-35 are the global memory address. An EFIW looks
 like:

 0 1 2 5 6 35
 |---|
 |0|I| X | Y |
 |---|
 EFIW format

 o An illegal indirect word is any indirect word in a non-zero
 section that has both bits 0 and 1 set to a 1. This type of
 indirect word is reserved for use by future hardware. If an
 EA-calc encounters this type of indirect word in a non-zero
 section, it will generate a page fail. The monitor cannot
 perform any user service as a result of this trap, including
 trapping to the user, since this would cause possible
 compatibility problems with future machines. An illegal
 indirect word looks like:

 0 1 2 35
 |---|
 |1|1| Reserved |
 |---|
 Illegal indirect word format

 Page 7

 o A one-word local byte pointer is any byte pointer whose P
 field is less than or equal to 36 and that has bit 12=0. In
 this type of byte pointer, bits 13-35 have the same format as
 an IFIW, and bits 0-11 specify the size and position of the
 byte. A one-word local byte pointer looks like:

 0 5 6 11 12 14 17 18 35
 |---|
 | P | S |0|I| X | Y |
 |---|
 One-word local byte pointer format

 o A one-word global byte pointer is any byte pointer whose P
 field is greater than 36. In this type of byte pointer, bits
 0-5 are an encoded representation of the size and position of
 the byte and bits 6-35 supply a full 30-bit address of the
 word containing the byte. A one-word global byte pointer
 looks like:

 0 5 6 35
 |---|
 |P,S enc | 30-bit address |
 |---|
 One-word global byte pointer format

 o A two-word global byte pointer is any byte pointer in a
 non-zero section whose P field is less than or equal to 36 and
 which has bit 12=1. As its name implies, this type of byte
 pointer consists of two words where bits 0-11 of the first
 word give the size and position of the byte and bit 12 must be
 a 1. The second word is either an IFIW or an EFIW and, when
 EA-calc'ed, supplies the address of the word containing the
 byte. A two-word global byte pointer looks like:

 0 5 6 11 12 17 18 35
 |---|
 | P | S |1|Reserved| Available to user |
 |---|
 | IFIW or EFIW |
 |---|
 Two-word global byte pointer format

 o A local stack pointer is any stack pointer in section zero, or
 a stack pointer in a non-zero section that has bit 0=1 or bits
 6-17 equal zero before incrementing or decrementing (exactly
 like a local index). Incrementing or decrementing such a
 stack pointer will operate on both halves of the pointer
 independently, suppressing carries out of bit 18.

 Page 8

 o A global stack pointer is a stack pointer in a non-zero
 section that has bit 0=0 and bits 6-17 non-zero before
 incrementing (exactly like a global index). Incrementing or
 decrementing such a stack pointer will treat the entire word
 as a 30-bit quantity.

 Page 9

 5.0 Effective Address Calculations

 No discussion of extended addressing is complete without talking
 about EA-calc's. An effective address calculation is performed on
 every instruction before it is executed. In addition, some
 instructions perform additional EA-calc's during the processing of
 the instruction (e.g. byte instruction EA-calc of the byte
 pointer).

 5.1 Description of the EA-calc algorithm

 The basic operation of an EA-calc is to process a so-called
 address word by adding the Y field of the word to the contents of
 the optional index register to compute a modified address. If the
 indirect bit is set in the address word, another word is fetched
 from the memory location addressed by the computed address and the
 entire process repeats until a word is found with the indirect bit
 not set. Sound simple? Well, let's look at the operation in a
 bit more detail.

 The address word can be of two different formats, IFIW or EFIW (an
 instruction is treated as an IFIW when it is EA-calc'ed). In
 addition, an index can be of two different formats, local or
 global. Note that in section zero, all address words are IFIWs
 and all indices are local by definition. The complexity involved
 in the EA-calc algorithm is the result of these multiple formats.

 Since the indirect bit simply causes another address word to be
 fetched and the EA-calc process to be repeated, we can fully
 characterize an EA-calc by looking at the combinations of IFIW,
 EFIW, and indices in local and global format. Let's look at these
 combinations one at a time.

 5.1.1 No indexing

 If no index register is specified in the address word, the EA-calc
 is strictly a function of the Y field in the address word. For an
 IFIW, the result is a local address. For example, both

 1,,100/ MOVE 1,200

 and

 1,,100/ MOVE 1,@150
 1,,150/ 400000,,200

 compute a local effective address of 200. In the first case, the
 only address word is the instruction itself, which is treated as
 an implicit IFIW. In the second case, there are two address
 words, the instruction and the indirect word, and the indirect
 word is in the IFIW format.

 Page 10

 For an EFIW, the result is a full 30-bit global address. For
 example,

 1,,100/ MOVE 1,@[1,,200]

 computes a global effective address of 1,,200 because the indirect
 word has a global format.

 5.1.2 IFIW with local index

 If the address word is an IFIW and the index is local, the result
 is a local address. The 18-bit address is computed by adding the
 Y field to the right half of the contents of the index register.
 For example:

 1,,100/ MOVE 1,[-1,,10]
 1,,101/ MOVE 2,@[400001,,200]

 The indirect word has an IFIW format, so bits 14-17 specify the
 index register address. Since the contents of the index register
 are negative, it is a local index and the EA-calc is performed by
 adding the Y field (200) to the right half of the index register
 (10) to produce a local effective address of 210.

 5.1.3 IFIW with global index

 If the address word is an IFIW and the index is global, the result
 is a 30-bit global address. The address is computed by adding
 bits 6-35 of the contents of the index register to the value of
 the Y field, that has been sign-extended from bit 18 into bits
 6-17. For example:

 1,,100/ MOVE 1,[2,,10]
 1,,101/ MOVE 2,-2(1)

 The second instruction word has an implicit IFIW format, so bits
 14-17 specify the index register address. Since the left half of
 the index register is positive non-zero, it is a global index and
 the EA-calc is computed by adding the Y field, after
 sign-extending it from bit 18 into bits 6-17 (7777,,-2), to bits
 6-35 of the contents of the index register (2,,10), producing a
 global effective address of 2,,6.

 Note that the sign extension allows Y to be used as a positive or
 negative constant offset to the global address in an index
 register. This offset is limited to +/- 128K.

 Page 11

 5.1.4 EFIW with global index

 If the address word is an EFIW, the index is always assumed to
 have the global format and the result is a 30-bit global address.
 The address is computed by adding bits 6-35 of the contents of the
 index register to bits 6-35 of the Y field. For example:

 1,,100/ MOVE 1,[2,,10]
 1,,101/ MOVE 2,@[010002,,200]

 The indirect word has an EFIW format, so bits 2-5 specify the
 index register address. The index is always global, so the
 EA-calc is computed by adding the Y field (2,,200) to bits 6-35 of
 the contents of the index register (2,,10) to produce a global
 effective address of 4,,210.

 5.1.5 References to section zero

 Note that the only way to reference section zero from a non-zero
 section is via an EFIW format indirect word with bits 6-17 equal
 zero. Indexing alone cannot be used to reference section zero,
 because an index with bits 6-17 equal zero is treated as a local
 address to the section from which the last address word was
 fetched.

 5.1.6 Summary of EA-calc rules

 The preceding sections can be summarized by the table that
 follows. This table gives the computation done for all
 combinations of address words and index registers formats plus an
 indication as to whether the result is local or global.

 Address
 Word Type

 IFIW EFIW
 ===
 || Y[18:35] || Y[6:35] ||
 None || || ||
 || Local || Global ||
 ===
 Index || Y[18:35]+(XR)[18:35] || Not Defined ||
 Reg Local || || (Actually the case ||
 Type || Local || below) ||
 ===
 || Y[18]*7777,,Y[18:35]+ || Y[6:35]+(XR)[6:35] ||
 Global || (XR)[6:35] || ||
 || Global || Global ||
 ===

 Page 12

 5.2 Results of an EA-calc

 When the microcode performs an EA-calc, it is simply following the
 rules described above and shown graphically in the EA-calc flow
 chart from the PRM. The result of this EA-calc is a 30-bit
 address and a 1-bit flag that indicates the address is local or
 global. These two pieces of information must be considered
 together whenever the results of the EA-calc are used; it is
 seldom, if ever, correct to consider the address without also
 considering the local/global bit.

 Every EA-calc carries a default section along during the
 calculation of the effective address. The initial default section
 for an EA-calc of an instruction is PC section. More generally,
 the default section is initially that from which the first address
 word was fetched. This default section is changed from the
 initial value if the EA-calc follows a global address into another
 section. In fact, the default section is always the section from
 which the last address word was fetched.

 If a local address is calculated using the rules given above, the
 default section is applied to complete the 30-bit address. If a
 global address is calculated, the default section is not used.

 The last iteration of the EA-calc (the computation done on the
 last address word that doesn't have the indirect bit set)
 determines whether or not the result of the EA-calc is local or
 global. If the result of the last iteration is a local address,
 the result of the EA-calc is local. Similarly, if the result of
 the last iteration is global, so is the entire EA-calc. The
 transitions of the local/global flag are indicated on the PRM flow
 chart by notations such as "E Global".

 The significant thing to remember is that a local EA-calc still
 results in a 30-bit address, even though 12 bits (the section
 number) were not explicitly supplied to the EA-calc routines as
 part of an address word or an index register.

 o An effective address calculation always computes 31 bits of
 information: a 30-bit address, and a 1-bit local/global flag.

 5.3 Simple EA-calc examples

 In the examples above, we ignored the fact that EA-calc's always
 produce a 30-bit address when we said that the result was a local
 address n. In the following examples, we emphasize that a full
 30-bit address is produced. Consider the following instruction:

 0,,200/ MOVE 1,100

 The EA-calc for this instruction results in a local EA.
 Therefore, the EA-calc computes the 30-bit address as 0,,100 and

 Page 13

 the 1-bit local/global flag as local. Since the EA is local, we
 know that the section number was defaulted from something, in this
 case, the PC section. We say that the effective address is 0,,100
 LOCAL (this notation is used throughout the rest of this
 discussion to specify all 31 bits of information).

 Let's consider a slightly more complex example:

 1,,200/ MOVE 1,@300

 1,,300/400000,,100

 As in the previous example, the effective address calculation
 computes a local address of 100. Since the address word was
 fetched from section 1, the result of the EA-calc is 1,,100 LOCAL.

 Let's look at a global EA-calc:

 1,,100/ MOVE 1,@[2,,200]

 In this case, the effective address calculation produces a global
 address of 2,,200 GLOBAL and no default section need be applied.

 Page 14

 6.0 Use of the local/global flag

 There are two uses for the local/global flag. First, it is used
 to determine if the address is actually an AC. If the address is
 local, and bits 18-35 are in the range 0 to 17, inclusive, the
 address references an AC, independent of bits 6-17. This means
 that a program can reference the ACs while running in any section,
 as long as the reference is local.

 Second, the local/global flag determines how to increment or
 decrement the address. If the address is local, incrementing or
 decrementing it suppresses carries from bit 17 to bit 18 and vice
 versa. That is, the address always wraps around in the current
 section if the right half is incremented past 2^18-1 or
 decremented past 0. A global address is handled as a full 30-bit
 quantity and overflow or underflow of the right half can affect
 the left half section number.

 6.1 AC references

 Let's look at several examples that make use of the local/global
 flag. First, let's compare what happens to AC references for
 local and global effective addresses.

 2,,100/ MOVE 1,@[400000,,5]

 The EA-calc for this instruction yields 2,,5 LOCAL, where the
 section number was defaulted to 2. Is this memory location 2,,5
 or AC 5? Because the EA-calc is local, the rule says that it is
 an AC reference and not a memory reference. On the other hand,
 the EA-calc for

 2,,100/ MOVE 1,@[2,,5]

 results in an EA of 2,,5 GLOBAL. Since the EA is global, this is
 a memory reference and not an AC reference.

 o EA-calc's which yield local addresses, where bits 18-35 of EA
 are in the range 0-17, inclusive, always refer to the ACs
 independent of the section number.

 Finally, there is the concept of "global AC address". This
 concept allows a program running in any non-zero section to make a
 global reference to the ACs by computing a global address in the
 first 16 (decimal) locations of section 1. Consider the following
 example:

 Page 15

 2,,100/ MOVE 1,@[1,,5]

 The EA-calc yields 1,,5 GLOBAL and because of the "global AC
 address" rule, the reference is to AC 5 instead of memory location
 1,,5.

 o An EA-calc which yields a global address to locations 0-17,
 inclusive, of section 1, refers to the ACs and not to memory.
 Such an address is called a global AC address.

 6.2 Incrementing EA

 Another use for the local/global flag computed as the result of an
 EA-calc is to determine how to increment the effective address.
 Let's look at two examples using DMOVE, one computing a local EA
 and one computing a global EA.

 2,,100/ DMOVE 1,@[400000,,777777]

 The EA-calc for this instruction results in an effective address
 of 2,,777777 LOCAL. The DMOVE instruction fetches two contiguous
 words from E and E+1, but what is E+1 in this case? Since the
 EA-calc resulted in a local address, incrementing E is done
 section-local, resulting in 2,,0 LOCAL for E+1. But this is a
 local reference to the ACs, so the two references for E and E+1 go
 to 2,,777777 (memory) and 2,,0 (AC). Note that the state of the
 local/global flag is maintained during the incrementing of EA.

 o Incrementing or decrementing a local address is always done
 relative to the original section, i.e., the addresses "wrap
 around" in section.

 o Incrementing a local address whose in-section part is 777777
 causes the address to wrap around into the ACs.

 Let's look at the corresponding global case:

 2,,100/ DMOVE 1,@[2,,777777]

 In this case, the EA-calc yields 2,,777777 GLOBAL. Because this
 is a global address, incrementing E to get the second word results
 in a reference to 3,,0 GLOBAL. Since this isn't a local address,
 the reference is made to memory location 3,,0 and not to AC 0.

 o Incrementing or decrementing a global address affects the
 entire address; i.e., section boundaries are ignored.

 o The process of incrementing or decrementing an address,
 whether the address is local or global, preserves the state of
 the local/global flag.

 Page 16

 7.0 Multi-section EA-calc's

 So far we have considered only EA-calc's that remain in one
 section. If the program is running in a non-zero section, a
 global quantity encountered during the EA-calc (from either an
 index register or indirect word) can cause the EA-calc to "change
 sections". An example will make this more clear:

 3,,100/ MOVE 1,@[200002,,100]
 2,,100/ 3,,200

 The EA-calc for this instruction computes a global address of
 2,,100 from the indirect word in the literal. Since the indirect
 bit is set in this word (bit 1 is the indirect bit in an EFIW),
 the EA-calc routine fetches the word at 2,,100 and continues the
 EA-calc. The final result of the EA-calc yields 3,,200 GLOBAL.
 This isn't a very interesting example, because it doesn't
 demonstrate the significance of the section change, so let's look
 at a slightly different example:

 3,,100/ MOVE 1,@[200002,,100]
 2,,100/ 400000,,200

 In this example, the first part of the EA-calc remains the same
 and the routine fetches the word at 2,,100. In this case,
 however, the result of the EA-calc yields a local address instead
 of a global one. But what section is the address local to? The
 rule says that a local address is always local to the section from
 which the address word was fetched. Since the EA-calc changed
 from section 3 to section 2 when the last address word was
 fetched, the EA-calc is relative to section 2 and the EA-calc
 yields 2,,200 LOCAL.

 o The default section for a local address is always that from
 which the address word was fetched.

 Now that we've seen what happens to EA-calc's that cross section
 boundaries, let's see what happens if the EA-calc enters section
 zero:

 3,,077/ MOVEI 3,1
 3,,100/ MOVE 1,@[200000,,100]
 0,,100/ 3,,200

 As with the example above, the EA-calc for this instruction
 fetches the word at 0,,100 and continues. But since the EA-calc
 entered section zero, this word is treated as an IFIW instead of
 an EFIW. Therefore, the 3 in the left half of 0,,100 is
 interpreted as the index register field instead of a global
 section number. Since AC 3 contains a 1, the EA-calc yields
 0,,201. In addition, the last address word was fetched from
 section zero, so the result is a local address.

 Page 17

 o An effective address calculation which "falls" into section
 zero always results in an effective address that is local (to
 section zero). Furthermore, the effective address calculation
 can never "get out" of section zero once it enters it because
 all addresses in section zero are treated as local. Further
 operations obey section zero rules.

 Page 18

 8.0 Special case instructions

 Other than modifications to the EA-calc algorithms when the PC is
 in a non-zero section, most instructions are unaffected by the
 addition of extended addressing. However, there are a few classes
 of instructions that behave differently on an extended machine
 from the way they would on a non-extended machine. This section
 describes the behavior of each class of instruction that has this
 characteristic.

 Examples in this section sometimes use the POINT pseudo-op to
 describe a byte pointer. For those readers who do not know what
 this pseudo-op generates, a description can be found in the Macro
 manual.

 8.1 Byte instructions

 The effective address calculation for a byte instruction addresses
 the byte pointer word(s). The instruction then does another
 EA-calc on the byte pointer after determining which one of the
 three possible byte pointer formats was supplied.

 8.1.1 Byte pointer interpretation

 The algorithm for determining the type of the byte pointer is as
 follows:

 +---------------+
 | P field > 36? | ----> One-word global
 +---------------+ Yes
 |No
 |
 V
 +---------------+
 +<---- | Section 0? |
 | Yes +---------------+
 | |No
 | |
 | V
 | +---------------+
 | | Bit 12=1? | ----> Two-word global
 | +---------------+ Yes
 | |No
 | |
 V V
 +--------------+-------------> One-word local

 Byte pointer decode algorithm

 The "Section 0?" test in the flow chart is based on where the
 first word of the two-word global byte pointer was fetched from

 Page 19

 and not on PC section. This is an important distinction if the
 byte instruction and the byte pointer are not in the same section.

 o For byte instructions, the test for the possibility of a
 two-word global byte pointer is done based on the section from
 which the first word of the byte pointer was fetched. That
 is, if the section from which the first word of the byte
 pointer was fetched is non-zero, the byte pointer may be
 global.

 8.1.2 Byte pointer EA-calc

 The default section for the byte pointer EA-calc is initially that
 from which the byte pointer was fetched. Once again, this may be
 different from PC section if the instruction and byte pointer are
 in different sections. If we realize that the byte pointer is
 really an address word, this is an extension of the rule that says
 local addresses are local to the section from which the address
 word was fetched. For example:

 3,,100/ LDB 1,@[2,,100]
 2,,100/ POINT 6,200,0

 In this example, the byte instruction is fetched from section 3.
 The EA-calc for the instruction follows an EFIW into section 2 and
 the byte pointer is fetched. The byte pointer is in one-word
 local format, so the EA-calc of the byte pointer results in a
 local address. But is the address local to section 3 (section
 containing the byte instruction) or 2 (section containing the byte
 pointer)? The rule says that byte pointer EA-calc's start off
 local to the section from which the byte pointer was fetched, so
 the EA-calc is local to section 2. The result of the EA-calc is
 therefore 2,,200 LOCAL.

 Note that, while the initial default section may be that
 containing the byte pointer, the default section may change if the
 EA-calc encounters a global quantity. For example:

 3,,100/ LDB 1,@[2,,100]
 2,,100/ POINT 6,@[200004,,100],0
 4,,100/ 400000,,200

 As in the previous example, the byte pointer is fetched from
 section 2. The byte pointer has the indirect bit set, so the byte
 pointer EA-calc follows the EFIW in the literal (which also has
 the indirect bit set) into section 4, where the final address word
 is fetched from location 4,,100. This final address word is an
 IFIW, so the result of the EA-calc is a local address. Even
 though the byte pointer EA-calc started in section 2, the result
 of the EA-calc is local to section 4, because that's where the
 last address word was fetched from. The byte pointer EA-calc
 results in an effective address of 4,,200 LOCAL.

 Page 20

 o For byte instructions, the initial default section for the
 byte pointer EA-calc is the section from which the byte
 pointer was fetched, which may not be the same section as that
 containing the byte instruction. Further, if the EA-calc
 results in a local address, the address is local to the
 section from which the last address word in the effective
 address calculation was fetched.

 8.2 EXTEND instructions

 Like the byte instructions, certain EXTEND instructions perform
 another EA-calc for the byte pointer (MOVSxx, CMPSxx, CVTBDx,
 CVTDBx, and EDIT). The AC field of the EXTEND instruction
 addresses a block of ACs, that contain the byte pointers. In
 addition, some EXTEND instructions perform an EA-calc on the
 extended opcode word, which is interpreted in IFIW format. The
 extended opcode word is addressed by the effective address of the
 EXTEND instruction.

 8.2.1 Byte pointer interpretation

 The algorithm for determining the byte pointer format is the same
 as that described for byte instructions with one exception. For
 EXTEND instructions, the "Section 0?" test in the flow chart is
 based on PC section.

 o For EXTEND instructions, the test for the possibility of a
 two-word global byte pointer is done based on PC section.
 That is, if PC section is non-zero, the byte pointers may be
 global.

 8.2.2 Byte pointer EA-calc

 The default section for the byte pointer EA-calc is initially PC
 section even if other parts of the EXTEND instruction are in other
 sections. For example:

 Page 21

 3,,100/ MOVEI 1,5 ;Source length
 3,,101/ MOVE 2,[POINT 7,200] ;Source byte pointer
 3,,102/ MOVEI 4,5 ;Destination length
 3,,103/ MOVE 5,[POINT 7,300] ;Destination byte pointer
 3,,104/ SETZB 3,6 ;Clear 2nd word of BPs
 3,,105/ EXTEND 1,@[2,,100]

 2,,100/ MOVSLJ ;Extended opcode is MOVSLJ
 2,,101/ 0 ;Fill character is 0

 In this example, the EXTEND instruction is in section 3 and the
 EA-calc of the instruction follows an EFIW into section 2. The
 EA-calc's for the one-word local byte pointers in ACs 2 and 5
 generate local addresses of 200 and 300 respectively. But are
 they local to section 3 (PC section) or to section 2 (section
 containing the extended opcode)? Because the byte pointers are
 fetched from the ACs, which are implicitly in PC section, the
 EA-calc is relative to PC section. Once again, this is a
 conceptual extension to the rule that local addresses are local to
 the section from which the address word (in this case, the byte
 pointer) was fetched.

 As with byte instructions, the default section of the EA-calc may
 change if the EA-calc encounters a global quantity. An example of
 this for the EXTEND instruction would be analogous to that for
 byte instructions given above.

 o For EXTEND instructions, the initial default section for the
 byte pointer EA-calc is PC section.

 One interesting aspect of this rule is demonstrated by the
 following example:

 3,,100/ MOVEI 1,5 ;Source length
 3,,101/ MOVE 2,[POINT 7,200] ;Source byte pointer
 3,,102/ MOVEI 4,5 ;Destination length
 3,,103/ MOVE 5,[POINT 7,300] ;Destination byte pointer
 3,,104/ SETZB 3,6 ;Clear 2nd word of BPs
 3,,105/ EXTEND 1,@[0,,100]

 0,,100/ MOVSLJ ;Extended opcode is MOVSLJ
 0,,101/ 0 ;Fill character is 0

 In this example, the EXTEND instruction is in a non-zero section
 (3) and the extended opcode is in section zero. Even though part
 of the processing of the instruction fell into section zero, the
 EA-calc of the byte pointers is still done relative to PC section.
 Hence, the result is the same as in the previous example.

 Page 22

 8.2.3 Extended opcode EA-calc

 Some EXTEND instructions also perform an EA-calc on the extended
 opcode word. In this case, the default section for the EA-calc is
 initially the section from which the extended opcode word was
 fetched. For example:

 3,,100/ MOVEI 1,5 ;Source length
 3,,101/ MOVE 2,[POINT 7,200] ;Source byte pointer
 3,,102/ MOVEI 4,5 ;Destination length
 3,,103/ MOVE 5,[POINT 7,300] ;Destination byte pointer
 3,,104/ SETZB 3,6 ;Clear 2nd word of BPs
 3,,105/ EXTEND 1,@[2,,100]

 2,,100/ MOVST 200 ;Extended opcode is MOVST
 2,,101/ 0 ;Fill character is 0

 As in the last example, the EXTEND instruction EA-calc follows an
 EFIW into section 2 to fetch the extended opcode word from
 location 2,,100. In this example, the extended opcode turns out
 to be a MOVST which addresses a translation table with the result
 of the EA-calc of the word. This EA-calc results in a local
 address which is local to the section from which the address word
 was fetched. Therefore, the table is read from locations starting
 at 2,,200 LOCAL.

 o The initial default section for the EA-calc of the extended
 opcode word under an EXTEND instruction is that from which the
 extended opcode word was fetched.

 8.2.4 EDIT pattern and mark addresses

 In addition to byte pointer type determination, the EDIT
 instruction under EXTEND interprets the pattern string and mark
 addresses differently based on PC section. If PC section is zero,
 both addresses are limited to 18-bit addresses in section zero and
 the result of setting bits 6-17 non-zero is undefined.
 Conversely, if PC section is non-zero, both addresses are treated
 as full 30-bit global addresses and no default sections are
 applied. An example of this is too complex to be given here and
 will be left as an exercise to the reader.

 8.3 JSP and JSR

 In a non-extended machine, these two instructions store the flags
 and an 18 bit PC before jumping to the effective address. This is
 also true if the instructions are executed in section zero of an
 extended machine. Because this format is insufficient to store a
 full 30-bit address, the operation of the instructions is modified
 when the PC is in a non-zero section. Instead of storing the

 Page 23

 flags and PC, these instructions store the full 30-bit PC
 (actually PC+1), omitting the flags. For example:

 2,,100/ JSP 1,200

 stores 2,,101 in AC 1 before jumping to location 2,,200.
 Similarly,

 2,,100/ JSR 200

 stores 2,,101 in 2,,200 before jumping to location 2,,201. Note
 that for JSR, the PC is stored in the word addressed by the
 effective address even if that address is in another section,
 e.g.,

 2,,100/ JSR @[3,,200]

 In this case, the EA-calc for the JSR results in an effective
 address of 3,,200 GLOBAL. Therefore, 2,,101 (PC+1) is stored in
 3,,200 (EA) before jumping to 3,,201 (EA+1).

 An interesting aspect of this is demonstrated by the following
 example:

 2,,100/ JSP 1,@[0,,100]

 Because the PC is in a non-zero section, the instruction stores
 2,,101 in AC 1 and then jumps to location 0,,100. But an attempt
 to return to the caller in section 2 via the usual JRST (1)
 instruction would fail, because the EA-calc of the return
 instruction, done in section zero, would fail to produce a 30-bit
 global address. As a result, it is difficult to write a
 subroutine in section zero that can be called via JSP or JSR from
 an arbitrary section.

 A final example illustrates the difference between a local and
 global EA for JSR:

 2,,200/ JSR 777777

 The EA-calc for this case results in a value of 2,,777777 LOCAL.
 Therefore, 2,,201 (PC+1) is stored in 2,,777777 (EA) and the
 destination of the jump is 2,,0 (EA+1 local). This is consistent
 with the rule that local addresses always wrap around in section
 when incremented.

 The global analogy is as follows:

 2,,200/ JSR @[2,,777777]

 In this case, the result of the EA-calc is 2,,777777 GLOBAL so the
 instruction stores 2,,201 (PC+1) into location 2,,777777 (EA) as
 in the last example. The difference is in the destination of the
 jump. Because the effective address is global, incrementing it
 produces 3,,0 GLOBAL (EA+1 global) as the destination of the jump.

 Page 24

 See the section on instruction fetches below for additional
 information on these two cases.

 o If PC is in a non-zero section, the JSP and JSR instructions
 store a full 30-bit PC in the appropriate place instead of
 storing flags and PC. This is true even if the destination of
 the jump is in section zero.

 8.4 Stack instructions

 In a non-extended machine (and an extended machine in section
 zero), the stack pointer typically contains a negative control
 count in the left half and an 18-bit address in the right half.
 Such a stack pointer is called a local stack pointer. Because
 this format is insufficient to hold a full 30-bit stack address,
 an additional format for stack pointers is allowable when the PC
 is in a non-zero section. In this format (called a global stack
 pointer), the stack pointer is positive, bits 6-17 are non-zero,
 and bits 6-35 of the word are interpreted as the global address of
 the stack.

 If the stack pointer is in local format, the stack address is
 local to PC section. For example:

 2,,100/ MOVE 17,[-100,,200]
 2,,101/ PUSH 17,300

 Because the left half of the stack pointer is negative, it is in
 local format. Therefore, the stack address is 2,,200 LOCAL,
 because the stack is local to PC section.

 o Local stack pointers are always local to PC section.

 o The test for the possibility of a global stack pointer is done
 based on PC section. That is, if PC section is non-zero, the
 stack pointer may be global.

 Note that a PUSH-type stack operation done on a local stack
 pointer that has overflowed (i.e., the left half of the pointer
 has gone to zero) changes the stack pointer to global format.

 The type of stack pointer also determines how the stack address is
 incremented or decremented. For example, consider the following:

 Page 25

 2,,100/ MOVE 17,[-100,,777777]
 2,,101/ PUSH 17,200

 The stack pointer in this example is local, so the stack address
 is 2,,777777 LOCAL. When the PUSH instruction increments the
 pointer, it does so section-local, resulting in an incremented
 stack address of 2,,0 LOCAL (which actually references AC 0). The
 stack pointer would then look like -77,,0.

 Let's look at the same example with a global stack pointer:

 2,,100/ MOVE 17,[2,,777777]
 2,,101/ PUSH 17,200

 With a global stack pointer, the increment is done globally,
 resulting in an incremented stack address of 3,,0 GLOBAL (which is
 memory location 0 in section 3). The stack pointer would then
 look like 3,,0.

 o Incrementing or decrementing a local stack pointer wraps
 around in section. Conversely, the same operation on a global
 stack pointer may cross section boundaries.

 In addition to the requirement for a global stack pointer to
 specify a full 30-bit stack address, the operation of the PUSHJ
 and POPJ instructions is modified when the PC is in a non-zero
 section. Like JSP and JSR, PUSHJ stores a full 30-bit PC (again,
 actually PC+1) on the stack, omitting the flags. Similarly, POPJ
 restores a full 30-bit PC from the stack instead of an 18-bit PC
 local to PC section. Let's look at some examples:

 2,,100/ MOVE 17,[-100,,200]
 2,,101/ PUSHJ 17,400

 Because PC section is non-zero, the PUSHJ stores 2,,102 on the
 stack at location 2,,201, which was addressed by a local stack
 pointer, and then jumps to location 2,,400. An updated stack
 pointer of -77,,201 is stored back into AC 17. Similarly:

 2,,400/ MOVE 17,[-77,,201]
 2,,401/ POPJ 17,

 restores the full 30-bit PC from stack location 2,,201 (addressed
 by the local stack pointer) and then stores an updated stack
 pointer of -100,,200 back into AC 17.

 This behavior has some interesting aspects, as the next example
 demonstrates:

 Page 26

 2,,100/ MOVE 17,[2,,200]
 2,,101/ PUSHJ @[0,,300]

 Because PC is in a non-zero section, the PUSHJ instruction stores
 a full 30-bit PC (2,,102) on the stack at location 2,,201
 (addressed by the global stack pointer). The jump is then made
 into section zero. But an attempt to return to the caller with a
 POPJ instruction will result in bedlam. In the first place, the
 global stack pointer will be interpreted as a local one in section
 zero. In addition, POPJ will assume that the stack word contains
 flags and PC and restore an 18-bit PC, local to section zero.

 As this example demonstrates, it isn't very practical to call
 subroutines in section zero, from a non-zero section, using the
 normal call/return conventions.

 o If PC is in a non-zero section, the PUSHJ instruction stores a
 full 30 bit PC on the stack. This is true even if the
 destination of the jump is in section zero and regardless of
 the format of the stack pointer.

 o If PC is in a non-zero section, the POPJ instruction always
 restores a full 30-bit PC from the stack.

 8.5 JSA and JRA

 These instructions use a format that is incompatible with extended
 addressing. Because they are also considered an obsolete method
 for subroutine call/return, no attempt has been made to find an
 alternate format for these instructions when executed in a
 non-zero section.

 For compatibility with section zero programs, these two
 instructions continue to work in non-zero sections. However,
 their use is restricted to intra-section operation, and all
 inter-section use is undefined.

 In the case of JSA, the effective address is calculated in the
 normal manner. However, if the EA-calc results in an address
 outside of PC section, the action of the instruction is undefined.
 For example, the results of:

 2,,100/ JSA 1,@[3,,200]

 are undefined because the effective address is in section 3 and PC
 section is section 2. Note that a JSA which computes a global
 effective address which addresses the last word of PC section is
 also undefined. Let's look at an example of why this is true:

 Page 27

 2,,100/ JSA 1,@[2,,777777]

 In this case, the microcode would store the contents of AC into
 2,,777777 and attempt to jump to E+1. But because EA is global,
 the computation of E+1 would result in 3,,0 GLOBAL which is
 outside of PC section.

 The normal usage of JRA is of the form JRA AC,(AC) and the
 operation of the instruction is defined to take this into account.
 After the normal effective address calculation is performed, PC
 section is appended to the in-section addresses in AC to form the
 address of where the old contents of AC were stored and the new PC
 address. This forces all references to be in PC section. For
 example,

 2,,201/ MOVE 1,[200,,101]
 2,,202/ JRA 1,(1)

 restores AC from location 2,,200 (PC section plus contents of AC
 left) and then jumps to 2,,101 (EA in PC section).

 These definitions for JSA and JRA are consistent with the
 operation of the instructions in section zero.

 o The use of JSA and JRA in a non-zero section is restricted to
 the case where the EA-calc results in an address in PC
 section. All inter-section usage is undefined.

 8.6 LUUOs

 In a non-extended machine, LUUOs trap via a pair of locations (40
 and 41) in exec or user virtual memory. Because this scheme is
 insufficient to support extended addressing, the operation of
 LUUOs is modified if the PC is in a non-zero section. In this
 circumstance, the LUUO is processed through a four-word block
 which is addressed by a word in the exec or user process tables.
 See the PRM for more details.

 o If PC is in a non-zero section, LUUOs trap through a four-word
 block addressed by a location in the EPT (exec LUUO) or UPT
 (user LUUO).

 8.7 BLT

 The format used for source and destination addresses by BLT is
 insufficient to represent two 30-bit addresses. As a result, the
 XBLT instruction was added to the instruction set to allow block
 transfers from one arbitrary 30-bit address to another. Despite

 Page 28

 this, BLT is still useful for intra-section block transfers, and
 the operation of the instruction has been changed slightly.

 The initial source address is constructed by taking the 18-bit
 address in the left half of the AC and appending it to the section
 number and local/global flag from the effective address.
 Similarly, the initial destination address is constructed from the
 18-bit address in the right half of the AC and the section number
 and local/global flag from the effective address. This means that
 transfers are always to and from the same section as that
 specified by the effective address, which need not necessarily be
 the same as PC section. Source and destination addresses are then
 incremented, section-local (even if EA is global) until the
 destination address is equal to EA. For example:

 2,,100/ MOVE 1,[200,,300]
 2,,101/ BLT 1,@[3,,302]

 In this example, the EA-calc for the BLT results in 3,,302 GLOBAL.
 Using the rules above, the initial source and destination
 addresses would be 3,,200 GLOBAL and 3,,300 GLOBAL. Therefore,
 the following transfer would take place:

 3,,200 => 3,,300
 3,,201 => 3,,301
 3,,202 => 3,,302

 Let's look at an example that demonstrates the significance of
 incrementing the addresses section-local:

 2,,100/ MOVE 1,[777776,,300]
 2,,101/ BLT 1,@[3,,302]

 As in the previous example, EA is 3,,302 GLOBAL and the initial
 destination address is 3,,300 GLOBAL. In this case, the initial
 source address is 3,,777776 GLOBAL and the following transfer
 takes place:

 3,,777776 => 3,,300
 3,,777777 => 3,,301
 3,,0 => 3,,302

 Note that the source address was incremented section-local even
 though it was a global address.

 It is important to note that the local/global flag must be
 included in constructing the initial source and destination
 addresses even though the addresses are always incremented
 section-local. This is because the check for an AC reference is
 done by including this flag. Let's look at two examples, one
 whose EA is local and one whose EA is global:

 Page 29

 2,,100/ MOVE 17,[1,,200]
 2,,101/ BLT 17,201

 In this case, the result of the EA-calc for the BLT is 2,,201
 LOCAL. Therefore, the initial source and destination addresses
 are 2,,1 LOCAL and 2,,200 LOCAL, respectively. Because the source
 is a local address whose in-section part is in the range 0-17, it
 references AC 1. Now let's look at the global case:

 2,,100/ MOVE 17,[1,,200]
 2,,101/ BLT 17,@[2,,201]

 In this case, the result of the EA-calc for the BLT is 2,,201
 GLOBAL. Therefore, the initial source and destination addresses
 are 2,,1 GLOBAL and 2,,200 GLOBAL, respectively. In this case,
 the source address references memory location 2,,1 instead of the
 ACs because the effective address is global. In both cases,
 however, the addresses are incremented section-local.

 o The initial source and destination addresses for BLT are
 constructed by appending the appropriate half of the AC to the
 section number and local/global flag from the effective
 address. Incrementing of source and destination addresses is
 always done section-local independent of the state of the
 local/global flag. However, the determination of AC reference
 is done via the normal rules by including the local/global
 flag.

 8.8 XBLT

 The XBLT instruction is the one exception to the rule that a
 section zero program cannot reference data in non-zero sections.
 In this one case, the contents of AC+1 (source pointer) and AC+2
 (destination pointer) are always treated as 30-bit global
 addresses, even if the PC is in section zero. This means that a
 program running in section zero can allocate a non-zero section
 and XBLT code or data into it without having to jump into a
 non-zero section to do it.

 o The source and destination addresses for XBLT are always
 interpreted as full 30-bit global addresses, even if the PC is
 in section zero.

 This means that the final addresses left in AC+2 and AC+3 at the
 end of the XBLT may be inaccessible by other instructions in
 section zero. For example:

 Page 30

 0,,100/ MOVEI 1,777777 ;Word count
 0,,101/ MOVEI 2,20 ;Source address
 0,,102/ MOVE 3,[2,,100] ;Destination address
 0,,103/ EXTEND 1,[XBLT]

 In this example, the transfer is from 0,,20 to 2,,100, and the
 number of words transferred is 256K-1. The final source and
 destination addresses left in ACs 2 and 3 are 1,,17 and 3,,77
 respectively.

 o For XBLT, the final values stored in AC+2 and AC+3 for source
 and destination addresses are computed by adding the initial
 word count to the initial source and destination addresses.
 This computation is the same in all sections, including
 section zero.

 8.9 JRSTF

 If the PC is in a non-zero section, JRSTF traps as an MUUO. This
 is because JRSTF is usually used with an indirect word or index
 register with PC flags in the left half. It is quite likely that
 these flags would be mistaken for a global section number.

 o If PC is in a non-zero section, JRSTF traps as an MUUO.
 XJRSTF should be used in a non-zero section.

 8.10 XMOVEI and XHLLI

 Unlike other immediate instructions that use only 18 bits of the
 effective address, these two instructions operate on all 30 bits
 of EA. XMOVEI returns the full 30-bit effective address in AC.
 XHLLI stores the section number of the effective address in the
 left half of AC, leaving the right half unchanged.

 One important implication of these two instructions is that they
 convert a local reference to an AC in any non-zero section into
 the global form. For example:

 2,,100/ XMOVEI 1,6

 The EA-calc of the XMOVEI results in 2,,6 LOCAL, which is a local
 reference to AC 6. This result is then converted to the global AC
 address of 1,,6 before being loaded into AC 1.

 This conversion is not done if the AC reference is local to
 section zero. For example:

 Page 31

 2,,100/ XMOVEI 1,@[200000,,6]

 In this example, the EA-calc follows an indirect EFIW into section
 zero. The result of the EA-calc is therefore 0,,6 LOCAL, which is
 a local reference to AC 6. Because the effective address is in
 section zero, it is not converted to the global form and 0,,6 is
 stored in AC 1.

 o If the effective address of an XMOVEI or XHLLI is a local
 reference to an AC in a non-zero section, the AC address is
 converted to a global AC address before being loaded into AC.

 8.11 XCT

 With the exception of the modification of the EA-calc rules in a
 non-zero section, the XCT instruction operates in the same manner
 as on a non-extended machine. The operation of the instruction
 being executed, however, may be affected. This section describes
 these cases and gives examples to demonstrate them.

 8.11.1 Default section for EA-calc

 If an instruction is executed by an XCT, the initial default
 section for the EA-calc of that instruction is the section from
 which the instruction was fetched. This may be different from PC
 section if the XCT and the executed instruction are in different
 sections. For example:

 3,,100/ XCT @[2,,100]

 2,,100/ MOVE 1,200

 In this example, the XCT instruction is in section 3 and the
 executed instruction is in section 2. The Ea-calc for the MOVE
 yields a local address, which is local to the section from which
 the MOVE was fetched. Therefore, the result of the EA-calc is
 2,,200 LOCAL. This rule allows one to XCT an instruction in
 another section and have local references generated by the
 executed instruction be local to the section containing the
 instruction.

 Page 32

 o The initial default section for the EA-calc of an instruction
 executed by XCT is that from which the instruction was
 fetched.

 8.11.2 Relationship with skip and jump instructions

 When a skip instruction is XCTed, the skip is always relative to
 PC section, i.e., the section containing the XCT (first XCT if
 there is a chain of XCTs). This is true even if the skip
 instruction is in another section. For example:

 3,,100/ XCT @[2,,300]

 2,,300/ SKIPA 1,200

 In this example, an XCT in section 3 executes a skip instruction
 in section 2. Because this instruction always skips, the next
 instruction is taken from location 3,,102 (PC+2), not 2,,302
 (instruction+2). However, the EA-calc of the SKIPA instruction
 results in 2,,200 LOCAL, so the contents of location 200 in
 section 2 are stored in AC.

 o If an XCT executes a skip instruction, the skip is always
 relative to PC section, even if the skip instruction is in
 another section.

 The following example demonstrates the effect of XCTing a jump
 instruction:

 3,,100/ XCT @[2,,100]

 2,,100/ JRST 200

 In this example, an XCT in section 3 executes a jump instruction
 in section 2. The EA-calc for the JRST results in an address
 local to section 2, so the next instruction is taken from 2,,200,
 not 3,,200.

 o If an XCT executes a jump instruction that jumps, the next
 instruction is fetched from the effective address of the jump.
 This is true even if the XCT and the jump are in different
 sections and the EA-calc of the jump results in a local
 address whose section is different from PC section.

 Page 33

 8.11.3 PC storing instructions

 When an XCT executes an instruction that stores PC as part of the
 operation of the instruction (e.g., PUSHJ, JSP, etc.), the value
 stored is relative to PC section (i.e., the XCT) and not the
 section of the executed instruction. For example:

 3,,100/ XCT @[2,,200]

 2,,200/ JSP 1,300

 In this example, an XCT in section 3 executes a JSP in section 2.
 The next instruction is fetched from location 2,,300 because the
 EA-calc of the JSP is local to section 2. However, the PC stored
 in AC 1 is 3,,101 (XCT+1), not 2,,201 (JSP+1).

 o If an XCT executes an instruction that stores PC as part of
 its execution, the value stored is relative to the XCT and not
 the executed instruction.

 8.11.4 Local stack references

 When an XCT executes a stack instruction that uses a local stack
 pointer, the stack pointer is local to PC section and not to that
 containing the stack instruction. For example:

 3,,077/ MOVE 17,[-100,,300]
 3,,100/ XCT @[2,,200]

 2,,200/ PUSH 17,400

 In this example, an XCT in section 3 executes a PUSH in section 2.
 Since the EA-calc for the PUSH results in a local address, the
 datum to be pushed is in the same section as the PUSH instruction
 (at location 2,,400). However, the stack pointer is local to PC
 section, not the section containing the PUSH. Therefore, the
 datum is stored on the stack at location 3,,301.

 o If an XCT executes a stack instruction whose stack pointer is
 local, the stack is local to PC section, not the section
 containing the stack instruction.

 8.11.5 Generalizations for XCT

 The examples above cover specific relationships between XCT and
 the executed instruction. There are really two generalizations
 (one of which was given above) that can be made about XCT, as
 follows:

 Page 34

 1. The initial default section for the EA-calc of an XCTed
 instruction is that from which the instruction was fetched,
 and not the section from which the XCT was fetched.

 2. Any test of PC section for determining whether section zero
 rules or non-zero section rules apply is done based on the
 section from which the XCT instruction was fetched (the first
 one if there is a chain of XCTs). That is, PC section doesn't
 change because an XCT executes an instruction in another
 section.

 Page 35

 9.0 Summary of default sections for EA-calc

 After covering all the special case instructions, it is worthwhile
 to summarize the rules regarding the initial default section
 number for EA-calc's. The initial default section for any EA-calc
 is that from which the address word was fetched. This is true for
 the simple cases as well as the more complex cases. The following
 table gives the initial default section for the various kinds of
 EA-calc:

 EA-calc class Initial default section
 _______ _____ _______ _______ _______

 Instruction PC section

 XCTed instruction Section containing the executed
 instruction

 Byte instruction Section containing the byte pointer
 byte pointer

 EXTEND instruction PC section
 byte pointer

 EXTEND instruction Section containing the opcode word
 opcode word

 Local stack PC section
 pointer

 Page 36

 10.0 Section zero vs. non-zero section rules

 As the previous discussion of special case instructions indicates,
 some instructions do different things based on a test for section
 zero. However, this test isn't always on PC section. We have
 intentionally left out examples that demonstrate some of the
 boundary conditions that make extended addressing hard to document
 to avoid confusing the reader before the simple cases are
 understood. This section includes examples of these boundary
 conditions, and summarizes the rules for testing to see if section
 zero rules apply.

 The first example illustrates the test for the possibility of a
 global byte pointer:

 3,,100/ LDB 1,@[0,,200]
 0,,200/ 000640,,300
 0,,201/ 400000,,400

 In this example, the byte instruction is in section 3 and the byte
 pointer is in section 0. Note that bit 12 is set in the byte
 pointer which, if global byte pointers are allowed, would indicate
 a two-word global byte pointer. Is this byte pointer interpreted
 as a one-word local or two a word global byte pointer? The rule
 given in a previous section says that the test is made based on
 the section from which the byte pointer was fetched. Therefore,
 bit 12 is ignored, the byte pointer is interpreted in one-word
 local format, and the byte is fetched from the word at location
 0,,300.

 Let's look at a similar case involving both XCT and EXTEND:

 3,,100/ MOVEI 1,5 ;Source length
 3,,101/ MOVE 2,[440740,,500] ;Source b.p. (1st wd)
 3,,102/ MOVE 3,[5,,100] ;Source b.p. (2nd wd)
 3,,103/ MOVEI 4,5 ;Destination length
 3,,104/ MOVE 5,[440740,,300] ;Destination b.p. (1st wd)
 3,,105/ MOVE 6,[5,,200] ;Destination b.p. (2nd wd)
 3,,106/ XCT @[0,,100] ;Execute EXTEND in section 0

 0,,100/ EXTEND 1,200

 0,,200/ MOVSLJ ;Extended opcode is MOVSLJ
 0,,201/ 0 ;Fill character is 0

 In this example, the XCT is in section 3 and the entire EXTEND
 instruction is in section zero. Both the source and destination
 byte pointers have bit 12 set, which means they may be interpreted
 as two-word global pointers. But are they? The rule given in a
 previous section says that the test is made based on PC section,
 which is non-zero. Therefore, the byte pointers are two-word
 global and the string is moved from 5,,100 to 5,,200. If this
 seems like an anomaly, remember that the test is based on PC
 section because the byte pointers are fetched from the ACs.
 References to ACs addressed by the AC field of the instruction are

 Page 37

 always made in PC section.

 A final example combines an XCT with a JSR:

 3,,100/ XCT @[0,,200]

 0,,200/ JSR 300

 In this example, the XCT is in section 3 and the JSR is in section
 zero. The EA-calc of the JSR is local to section zero, so the
 destination of the jump is 0,,301. But what is stored in 0,,300?
 The rule given in a previous section says that the test is based
 on PC section. Therefore, we store a full 30-bit PC (3,,101) into
 location 0,,300.

 o The test for section zero rules vs. non-zero section rules is
 done based on PC section for all cases except byte
 instructions. This is true even if the instruction is an XCT
 which executes an instruction in another section (including
 section zero).

 o The test for section zero rules vs. non-zero section rules
 for a byte instruction is done based on the section from which
 the byte pointer was fetched.

 It is important to realize that PC section may be different from
 that containing the instruction being executed if an XCT (or chain
 of XCTs) is involved. PC section is always that from which the
 original instruction (the XCT if that instruction is involved) was
 fetched. This is a subtle distinction, but it is important in
 testing for section zero rules.

 Page 38

 11.0 Special consideration for ACs

 On the PDP-10, the ACs are both general purpose registers and also
 part of the virtual address space of every program. This dual use
 is convenient but also confusing when one is attempting to
 understand the rules of extended addressing. This section
 describes some of the aspects of the relationship between extended
 addressing and the use of the ACs.

 11.1 AC references

 An AC can be referenced in one of four ways as follows:

 1. As a general purpose register through the AC field of an
 instruction.

 2. As an index register through the index register field of an
 instruction or indirect word.

 3. As a local memory reference to the first 16 (decimal)
 locations of any section.

 4. As a global memory reference to the first 16 (decimal)
 locations of section 1.

 In this discussion, we are concerned with the last two uses.

 The rules for extended addressing say that memory references in
 section zero are always local. Therefore, a section zero memory
 reference can reference the ACs only if it is to the first 16
 (decimal) locations in section zero. On the other hand, a memory
 reference in a non-zero section can reference the ACs in two
 different ways. If the memory reference is local, the ACs appear
 in the virtual address space of every section as the first 16
 locations. For example, both

 2,,100/ MOVE 1,2

 and

 5,,100/ MOVE 1,2

 reference AC 2 even though the addresses are local to different
 sections.

 In addition, the ACs may be referenced in a section-independent
 way via a reference to global address 1,,n, where n is in the
 range 0-17, inclusive. This means that an AC address can be
 passed between two routines running in a non-zero section, even if
 the routines are in different sections. For example:

 Page 39

 5,,100/ MOVE 16,[1,,6] ;Get global AC address for AC
 5,,101/ PUSHJ 17,@[3,,200] ; 6 and call routine
 :
 :
 3,,200/ MOVE 1,(16) ;Use global XR to fetch data

 In this example, the calling routine in section 5 places the
 global AC address for AC 6 into AC 16 and calls a routine in
 section 3. Because 1,,6 is a global AC address, the called
 routine interprets the index in global format and the data is
 fetched from AC 6.

 Note that an address of the form 1,,n, where n is in the range
 0-17, will always reference the ACs, whether the address is local
 or global. If the address is local, the reference is a local
 reference to the ACs in section 1. If the address is global, it
 is a global AC reference to the ACs.

 o An address of the form 1,,n, where n is in the range 0-17,
 inclusive, refers to the ACs whether it is a local or global
 address. Therefore, such an address can be used to refer to
 the ACs even if the state of the local/global bit is not
 known.

 11.2 Instruction fetches

 All instruction fetches are made as local references, even though
 the PC is a full 30-bit address. Therefore, an instruction is
 fetched from the ACs whenever bits 18-35 of PC are in the range
 0-17, inclusive, independent of the section number. Consider the
 following example:

 1,,100/ XJRST [3,,2]

 This instruction sets the PC to 3,,2. However, the next
 instruction fetch will come from AC 2 because it is made as a
 local reference.

 This behavior can have some implications for instructions that
 also store information before changing PC. Consider the following
 example:

 1,,100/ JSR @[3,,2]

 The JSR stores the current PC into memory location 3,,2 and then
 changes the PC to 3,,3. The next instruction is then fetched from
 AC 3 because of the local reference, but the old PC is in memory
 and must be fetched with a global reference.

 o Instruction fetches from C(PC) are always made as local
 references even if PC was previously set to a global address.

 Page 40

 This means that instruction fetches from the first 16
 (decimal) locations of any section cause the instruction to be
 fetched from the ACs.

 11.3 Storing PC

 If an instruction that stores PC as part of its execution is
 fetched from the ACs, the PC is stored as a full 30-bit address if
 PC is in a non-zero section. For example:

 3,,100/ MOVE 4,[JSP 2,200]
 3,,101/ JRST 4

 In this example, the MOVE instruction stores a JSP into AC 4, and
 the JRST instruction computes a local effective address that
 references the ACs. PC is set to 3,,4, but the next instruction
 is fetched from AC 4 because instruction fetches are always made
 as local references. Therefore, the next instruction to be
 executed is the JSP. Because PC section is non-zero (it is still
 3), the JSP must store a full 30-bit PC into AC 2. The important
 thing to realize is that PC is 3,,4 and is not 0,,4 (a section
 zero AC address) or 1,,4 (a global AC address). Therefore the JSP
 stores 3,,5 (remember, it stores PC+1) into AC 2 and jumps to
 3,,200.

 o If an instruction that is fetched from AC stores PC as part of
 its execution, the PC stored is a full 30-bit address
 including PC section, if PC section is non-zero.

 11.4 Storing EA for LUUO, MUUO and page fails

 When an LUUO or MUUO is executed or an instruction page fails, the
 microcode stores some information about the exception in a block
 addressed by a word fetched from the UPT or EPT. The information
 stored includes the effective address (or reference address in the
 case of page fail) for the instruction that caused the exception.
 If the resulting effective address is a local reference to an AC
 in a non-zero section, the microcode converts this address to a
 global AC reference before storing it in the block. This is the
 same rule used for XMOVEI and XHLLI.

 Page 41

 o If the effective address of an LUUO or MUUO, or an instruction
 that causes a page fail results in a local reference to the
 ACs in a non-zero section, the microcode converts the local AC
 reference to a global AC address before storing the result.

 11.5 An example

 Consider the following example that brings together all of these
 rules:

 3,,100/ MOVE 6,[001000,,10]
 3,,101/ JRST 6

 In this example, the MOVE stores an LUUO (opcode 001) into AC 6
 and the JRST sets PC to 3,,6. The following list indicates the
 significant actions that are performed to process the LUUO:

 1. The EA-calc for the LUUO is performed and the result is 3,,10
 LOCAL.

 2. Because PC section is non-zero, the LUUO must be processed
 through a four-word block addressed by a location in the UPT.

 3. PC+1 must be stored as a full 30-bit address, including
 section number. The value stored is 3,,7.

 4. Because the EA-calc of the LUUO resulted in a local reference
 to AC 10, it must be converted to a global AC address before
 it is stored in the block. The value stored is therefore
 1,,10.

 Page 42

 12.0 PXCT

 When the monitor is invoked by an MUUO, page fail, etc., the
 address space of the process that caused the invocation is
 potentially different from that of the monitor. In order to
 provide a communications mechanism between the monitor and the
 so-called "previous context", the PXCT (for Previous context XCT)
 instruction was defined. Although PXCT is normally considered as
 a separate topic from extended addressing, there are interactions
 between the two that make it desirable to talk about them
 together.

 Because PXCT is legal only in exec mode, there is no need to
 define a new opcode for the instruction. Rather, the normal XCT
 opcode is used, and a non-zero AC field distinguishes a PXCT from
 a normal XCT. The opcode name PXCT is simply a notational
 convenience to emphasize that the executed instruction is making
 previous context references.

 12.1 Previous context

 For the purposes of this discussion, "previous context" is defined
 by three processor state variables: Previous Context Section
 (PCS), Previous Context User (PCU), and Previous AC Block (PAB).
 PCS is a 12-bit state register (5 on the KL10) that gives the
 value of PC section in the previous context at the time of the
 event that invoked the monitor. PCU is a 1-bit register that
 indicates that the previous context was user mode (as opposed to
 exec mode). PAB is a 3-bit register that gives the AC block
 number used by the previous context (there are typically multiple
 AC blocks implemented by a machine, 8 in both KL10 and KC10. The
 so-called "current ac block" is addressed by another 3-bit state
 register called Current AC Block, or CAB). Therefore, the
 previous context includes both the address space and ACs that were
 in use at the time of the event that invoked the monitor.

 When a context change occurs as the result of an MUUO, page fail,
 interrupt, etc., the previous context state variables are set
 according to a set of rules that are defined for each type of
 context change. The specific rules aren't important for the
 purpose of this discussion and the reader is referred to other
 sources for more information. The important point is that the
 state variable are set as the result of the context change.

 In addition to being set on a context change, the monitor may also
 set the state variables explicitly when it desires to make an
 asynchronous reference to previous context.

 These previous context state registers then direct references to
 the previous context as described below. Note that the previous
 context need not always be user mode. It is exec mode in cases
 where the monitor makes a request of itself, such as the execution
 of an MUUO by the monitor.

 Page 43

 12.2 Use of the previous context state variables

 The state registers PCS, PCU, and PAB hold information necessary
 to make a previous context memory or AC (as memory or index
 register) reference. This section describes the use for each
 register.

 PCS is a 12-bit state variable that gives the value of PC section
 in the previous context. It is used in the PXCT EA-calc algorithm
 as described below to provide a default section number for a local
 EA-calc. It is also used as the basis for the test for section
 zero in some instructions that behave differently in non-zero
 sections as described below. (For most instructions, the effect
 is as if the instruction were executed in previous context.)

 PCU is a 1-bit state variable that indicates that the previous
 context was user mode. PCU is used to select the address space
 for a previous context memory reference. That is, if the
 reference is to previous context and PCU is set, the reference is
 made to the user address space as mapped through the UPT.
 Conversely, if the reference is to previous context and PCU is not
 set, the reference is to the exec address space as mapped through
 the EPT.

 PAB is a 3-bit state variable that gives the AC block number for
 the previous AC block. If an index register or AC is referenced
 in previous context, PAB gives the number of the AC block
 containing the data.

 12.3 References to previous context

 The PXCT mechanism allows the monitor to execute an instruction
 such that certain references of the executed instruction are made
 to the previous context. Conceptually, these references are made
 as if the PXCTed instruction were being executed in the previous
 context.

 It is important to understand exactly which operations are
 modified by PXCT. The instruction fetch and EA-calc of the PXCT
 instruction and the fetch of the executed instruction are always
 done in current context. In addition, all AC references (as the
 result of bits 9-12 of the executed instruction) are made to the
 current context ACs. The only difference between an instruction
 executed under PXCT and one that is not is the way certain memory
 and index register references are made. In particular, the
 EA-calc of the executed instruction may reference indirect words
 and index registers in previous context. Also, memory and AC
 references made as the result of the EA-calc may be to previous
 context. Exactly which references are made in previous context is
 determined by the type of instruction that is being executed and
 by the bits set in the AC field of the PXCT instruction.

 Page 44

 12.4 Applicable instructions

 Not all instructions may be executed via PXCT. The use of PXCT is
 limited to instructions that are useful to the monitor, and no
 attempt is made to trap those cases that aren't applicable. The
 instructions that may be executed are as follows:

 MOVE class instructions
 Halfword class instructions
 EXCH
 XMOVEI, XHLLI
 BLT (with restrictions), XBLT
 Arithmetic (integer and floating point) instructions
 Boolean instructions
 DMOVE class instructions
 CAI and CAM class instructions
 SKIP, AOS, and SOS class instructions
 Logical test instructions
 PUSH and POP (with restrictions)
 Byte class instructions
 MOVSLJ (with restrictions)
 MAP

 All other instructions are inapplicable, and the results of
 executing an inapplicable instruction are undefined. Note that
 this list explicitly excludes all instructions that jump.

 12.5 Interpretation of the AC field bits

 The four bits of the AC field of the PXCT instruction determine
 which memory references of the executed instruction are made to
 previous context. For most PXCTed instructions, the AC field bits
 are logically grouped into two pairs (9-10 and 11-12) to control
 how EA-calc and data references are performed. Within each pair,
 the first bit (the generic "E control bit") causes index register
 and address word references to come from previous context during
 an EA-calc. The second bit (the generic "D control bit") causes
 data fetches as the result of instruction execution to come from
 previous context. When considered as a whole, bits 9-12 of the AC
 field are named "E1", "D1", "E2", and "D2" but the generic names
 ("E" and "D") may be used when it is clear which bits control the
 reference in question.

 Not all executed instructions use both pairs of bits. In fact,
 the great majority of applicable instructions use only bits 9 and
 10; bit 9 for the EA-calc of the PXCTed instruction and bit 10
 for the data reference made as the result of that EA-calc. A
 notable example of the use of bits 11 and 12 to control previous
 context references is the byte instructions. In this case, bit 11
 controls the EA-calc of the byte pointer and bit 12 controls the
 data reference to the word containing the byte. Some instructions
 use other combinations of bits, e.g., BLT, EXTEND (MOVSLJ and
 XBLT), and stack instructions.

 Page 45

 The previous context memory references controlled by each AC field
 bit may be summarized by the following table:

 Bit References made in previous context if bit is 1

 9 (E1) Effective address calculation of instruction (index
 registers, indirect words).

 10 (D1) Memory operands specified by EA, whether fetch or store
 (e.g, PUSH source, POP or BLT destination); byte
 pointer.

 11 (E2) Effective address calculation of byte pointer; source in
 EXTEND (e.g., XBLT or MOVSLJ source); effective address
 calculation of source byte pointer in EXTEND (MOVSLJ).

 12 (D2) Byte data; source in BLT; destination in EXTEND (e.g.,
 XBLT or MOVSLJ destination); effective address
 calculation of destination byte pointer in EXTEND
 (MOVSLJ).

 There are obviously a limited number of valid combinations of AC
 field bits for those instructions that may be PXCTed. The
 following table gives the legal combinations. The "AC" column
 gives the AC field value for the equivalent bits, e.g., the AC
 column would contain a 4 for a 0 1 0 0 bit string.

 E1 D1 E2 D2
 Instructions AC 9 10 11 12 References

 General 4 0 1 0 0 Data
 14 1 1 0 0 E, data

 PUSH, POP 4 0 1 0 0 Data
 14 1 1 0 0 E, data

 Immediate 10 1 - 0 0 E (no data reference)

 BLT 5 0 1 0 1 Source data, destination data
 15 1 1 0 1 E, source data, destination
 data

 XBLT 2 0 0 1 0 Source data
 1 0 0 0 1 Destination data
 3 0 0 1 1 Source data, destination data

 Page 46

 Byte 1 0 0 0 1 Byte data
 3 0 0 1 1 Pointer E, byte data
 7 0 1 1 1 Pointer, pointer E, byte data
 17 1 1 1 1 E, pointer, pointer E, byte
 data

 MOVSLJ 1 0 0 0 1 Destination pointer E,
 destination data
 2 0 0 1 0 Source pointer E, source data
 3 0 0 1 1 Source pointer E, destination
 pointer E, source data,
 destination data

 Note that BLT, PUSH, POP, and MOVSLJ have restrictions on what
 memory references can be PXCTed. For BLT, all references,
 optionally including the EA-calc, must be done in previous
 context. The results of PXCTing a BLT where source but not
 destination or destination but not source is in previous context
 are undefined. The LDPAC and STPAC instructions should be used to
 transfer the previous ACs to and from current context. In all
 other cases, XBLT must be used to transfer data between current
 and previous context.

 For PUSH and POP, the stack must always be in current context.
 This means that previous context references for PUSH and POP are
 limited to the EA-calc and data reference made to the location
 addressed by the EA-calc. PUSH and POP therefore reduce to the
 "general" case.

 For MOVSLJ, if source or destination data is in previous context,
 the source or destination byte pointer EA-calc must be done in
 previous context also. If the monitor wishes to force a current
 context EA-calc for a previous context data reference, it can
 compute the effective address of the byte word and use a one- or
 two-word global byte pointer. The microcode will still do the
 EA-calc in previous context, but no previous context defaults will
 be applied.

 12.6 Modifications to the EA-calc algorithm

 The appropriate "E" and "D" control bits from the AC field of the
 PXCT instruction are used to modify an EA-calc done on the
 executed instruction or a subsequent EA-calc done by the
 instruction (e.g., byte pointer). This modification involves pre-
 and post-processing the normal effective address calculation
 algorithms to conditionally include PCS at two points.

 If the appropriate "E" control bit is set, the initial default
 section for the EA-calc is set to PCS. Since the "E" control bit
 also controls previous context indirect word and index register
 references, this means that the entire EA-calc is done in previous
 context. If the "E" control bit is not set, the initial default

 Page 47

 section for the EA-calc is that from which the address word was
 fetched, and the EA-calc is done in current context.

 When the normal EA-calc is completed, the resulting value is
 post-processed. If the result of the EA-calc was a local address
 AND the "E" control bit was not set AND the "D" control bit was
 set, the section number of the EA-calc is replaced by PCS. Note
 that the local/global flag remains local if this is done.

 The application of PCS at the end of the EA-calc may seem to make
 no sense at first glance, so let's take a closer look at it.
 Remember that the purpose of PXCT is to allow the monitor to
 reference data in the previous context as if the user had supplied
 it. If the user supplies a local address in, for example, a JSYS
 argument, the monitor should make the data reference local to the
 section in which the user was running. By applying PCS at the end
 of the EA-calc as indicated above, the microcode automatically
 makes the reference to the correct section.

 This algorithm may be described by the following flow chart:

 Page 48

 +-----------------+
 | Set initial |
 | default section |
 +-----------------+
 |
 V
 +-----------------+
 | "E" control |No
 | bit set? |---->-+
 +-----------------+ |
 |Yes |
 V V
 +-----------------+ |
 | Initial default | |
 | section := PCS | |
 +-----------------+ |
 |<--------------+
 V
 +-----------------+
 | Perform normal |
 | EA-calc |
 +-----------------+
 |
 V
 +-----------------+
 | "D" control |
 | bit set? |
 | AND |
 | "E" control |No
 | bit not set? |---->-+
 | AND | |
 |EA-calc resulted | |
 | in a | |
 | Local address? | V
 +-----------------+ +---> Final EA
 |Yes |
 V A
 +-----------------+ |
 | EA[6:17] := PCS | |
 +-----------------+ |
 | |
 V A
 +--->-----------+

 PXCT EA-calc algorithm

 Page 49

 Assume that PCS is 1 and consider the following example:

 2,,100/ PXCT 4,[MOVE 1,100]

 MOVE is one of the "general" class of opcodes, so bits 9 and 10 of
 the PXCT AC field control the previous context references. In
 this example, bit 9 (The "E1" bit) is off and bit 10 (the "D1"
 bit) is on. Therefore, the EA-calc is done in current context
 with a result of 2,,100 LOCAL. Because the "D1" bit is on, the
 "E1" bit is off, and the result of the EA-calc is local, the PXCT
 EA-calc algorithm applies PCS to bits 6-17 of the EA-calc. The
 final effective address is therefore 1,,100 LOCAL and the data
 reference is made to that location in previous context.

 Let's look at another example. Assume that PCS is 2 and that the
 following locations exist in previous context:

 2,,200/ 200003,,300

 3,,300/ 400000,,400

 In current context, the following instruction is executed:

 1,,100/ PXCT 14,[MOVE 1,@200]

 In this example, both the "E1" and "D1" bits are on in the PXCT AC
 field. Therefore, the EA-calc is done in previous context and the
 initial default section for the EA-calc is set to 2 (PCS).
 Location 2,,200 in previous context contains an indirect EFIW that
 the EA-calc follows into section 3. The final address word
 fetched from previous context location 3,,300 is in IFIW format,
 so the result of the EA-calc is local to the section from which
 the address word was fetched. The result of the EA-calc is 3,,400
 LOCAL. Because the "D1" bit is also set, the MOVE fetches data
 from previous context location 3,,400.

 A final example demonstrates the result of an EA-calc that
 references an AC. Assume that PCS is 3.

 2,,100/ PXCT 4,[MOVE 1,2]

 As with the first example, the EA-calc is done in current context
 and PCS is applied to bits 6-17 of the result to produce an
 effective address of 3,,2 LOCAL. Just as in the non-PXCT case,
 this is a local reference to AC 2. Because the "D1" bit is set,
 the reference is made to previous context AC 2 in the AC block
 specified by PAB.

 Page 50

 o The EA-calc of a PXCTed instruction may be pre- or
 post-processed as directed by the AC field control bits of the
 PXCT instruction. Except for this additional processing, the
 EA-calc algorithms and results are exactly the same as for the
 non-PXCT case. This includes the uses for the local/global
 flag.

 12.7 Section zero vs. non-zero section rules

 Of the instructions that may be PXCTed, there are three types
 (stack, byte, and MOVSLJ) that operate differently in non-zero
 sections and section zero. When one of these instructions is
 PXCTed, the test for zero/non-zero rules may not be the same as
 the test when there is no PXCT involved. The interaction of PXCT
 with each of the instruction types is covered separately below.

 12.7.1 Stack instructions

 When no PXCT is involved, the test for the possibility of a global
 stack pointer is done based on PC section. When a PUSH or POP
 instruction is PXCTed, the previous context references are limited
 to the EA-calc and the datum addressed by the EA-calc, and the
 stack reference is always made in current context. Because the
 stack is in current context, the interpretation of the stack
 pointer type is made based on the current context PC section and
 is not dependent on PCS. For example, assume that PCS is 0.

 2,,100/ MOVE 1,[3,,1000]
 2,,101/ PXCT 4,[PUSH 1,200]

 In this example, PC section is non-zero and the stack pointer in
 AC 1 has a global format. The test to determine whether the stack
 pointer is allowed to be global is still made based on PC section
 (even though there is a PXCT involved), and not on PCS.
 Therefore, the stack pointer is indeed global and previous context
 location 0,,200 is pushed onto the stack in current context
 location 3,,1001.

 o When a stack instruction (PUSH, POP) is PXCTed, the test for
 the possibility of a global stack pointer is done based on PC
 section.

 o When a stack instruction is PXCTed, local stack pointers are
 always local to PC section.

 Page 51

 12.7.2 Byte instructions

 Normally, the byte instruction test for the possibility of global
 byte pointers is done based on the section from which the byte
 pointer was fetched. When a byte instruction is PXCTed, this rule
 continues to apply, with extensions to include the possibility
 that the byte pointer may be fetched from previous context. This
 is best explained with several examples.

 Assume that PCS is 0 and that the following locations exist in
 previous context:

 0,,100/ 400000,,200

 0,,200/ 12

 In current context, the following instruction is executed:

 2,,300/ PXCT 3,[LDB 1,400]

 2,,400/ 000640,,0
 2,,401/ 400020,,100

 For PXCT of byte instructions, bits 9 (E1) and 10 (D1) direct the
 EA-calc of the byte instruction and the fetch of the byte pointer.
 Bits 11 (E2) and 12 (D2) direct the EA-calc of the byte pointer
 and the fetch of the word containing the byte. In this example,
 the "D1" bit is off, so the byte pointer is fetched from current
 context location 2,,400. Bit 12 is on in the byte pointer, and a
 test must be made to see if it may be global. The byte pointer is
 global because it was fetched from current context section 2, and
 the fact that PCS is zero is not considered.

 The "E2" bit and the "D2" bit of the PXCT AC field are both on, so
 the byte pointer EA-calc is done in previous context. The second
 word of the two-word global byte pointer has the indirect bit set,
 and the next address word is fetched from previous context
 location 0,,100. The final result of the EA-calc is 0,,200 LOCAL
 in previous context and bits 30-35 of that word are extracted and
 placed in current context AC 1.

 Let's look at a similar example in which the byte pointer is also
 fetched from previous context. Once again assume that PCS is 0
 and the previous context contains the following locations:

 0,,400/ 000640,,100
 0,,401/ 400000,,200

 0,,100/ 10
 0,,200/ 20

 In current context, the following instruction is executed:

 2,,300/ PXCT 7,[LDB 1,400]

 Page 52

 In this case, the "D1" bit of the PXCT AC field is set, so the
 byte pointer is fetched from previous context location 0,,400. As
 in the last example, bit 12 is set in the byte pointer. But
 because the byte pointer was fetched from previous context section
 0, bit 12 is ignored and the byte pointer is interpreted in
 one-word local format. The EA-calc is done in previous context
 and results in an effective address of 0,,100 LOCAL. The byte is
 then fetched from bits 30-35 of previous context location 100.

 o When a byte instruction is PXCTed, the test for the
 possibility of a global byte pointer is done based on the
 section from which the byte pointer was fetched. This is true
 independent of whether the byte pointer is fetched from
 current or previous context.

 This interpretation, while correct architecturally, causes some
 problems for TOPS-20 as it is implemented today because TOPS-20
 copies byte pointers from the previous context into current
 context. Ideally, when a JSYS does a byte instruction on behalf
 of the user, the byte pointer would be interpreted exactly as if
 the user had executed the byte instruction. Thus, if the byte
 pointer were fetched from section 0, it would be interpreted as a
 local pointer; if it were fetched from any other section, it
 would be interpreted as possibly being global. This can be
 accomplished by using PXCT 7, as indicated in the example above.

 Because TOPS-20 copies the byte pointer from the previous context
 into current context, one that looks like a global byte pointer
 will be interpreted as a global byte pointer even if it is fetched
 from previous context section zero. This is because the monitor
 typically runs in a non-zero section and the PXCTed byte
 instruction fetches the byte pointer from current context. Hence
 the test for the possibility of a global byte pointer is made
 based on current context section rather than previous context
 section.

 12.7.3 EXTENDed MOVSLJ instruction

 If no PXCT is involved, the MOVSLJ test for the possibility of a
 global byte pointer is made based on PC section. If a PXCT is
 involved, the test is more complex because it is based on PC
 section if the PXCT control bit for the byte pointer is off and on
 PCS if the PXCT control bit is on. For example, assume that PCS
 is zero and that previous context contains the following
 locations:

 0,,200/ ASCII|ABCDE|

 0,,300/ ASCII|FGHIJ|

 Page 53

 In current context, the following instruction sequence is
 executed:

 3,,100/ MOVEI 1,5 ;Source length
 3,,101/ DMOVE 2,[440740,,200 ;Source BP (word 1)
 400000,,300] ;Source BP (word 2)
 3,,102/ MOVEI 4,5 ;Destination length
 3,,103/ DMOVE 5,[440740,,400 ;Destination BP (word 1)
 400000,,500] ;Destination BP (word 2)
 3,,104/ PXCT 2,[EXTEND 1,600] ;PXCT the MOVSLJ

 3,,600/ MOVSLJ ;Extended opcode is MOVSLJ
 3,,601/ 0 ;Fill character is 0

 In this example, the "E2" bit is set in the PXCT AC field, which
 indicates that the source EA-calc and string reference are to be
 made to previous context. Conversely, the "D2" bit is off, which
 indicates that the destination EA-calc and string references are
 to be made to current context.

 Because the source-in-previous control bit is set in the PXCT AC
 field, the test for the possibility of a global source byte
 pointer is made based on PCS. In this case, PCS is zero, so bit
 12 is ignored in the byte pointer and it is interpreted in
 one-word local format. The byte pointer EA-calc results in 0,,200
 LOCAL in previous context.

 On the other hand, the destination-in-previous control bit is not
 set, so the test for the possibility of a global destination byte
 pointer is made based on PC section. Since PC section is non-zero
 and bit 12 is set, the byte pointer is interpreted in two-word
 global format, and the byte pointer EA-calc results in 3,,500
 LOCAL in current context.

 The result is to transfer the string "ABCDE" from previous context
 location 0,,200 to current context location 3,,500.

 o When a MOVSLJ instruction is PXCTed, the test for the
 possibility of a global byte pointer is done based on PC
 section if the appropriate PXCT control bit is off. If the
 bit is on, the test is done based on PCS.

 APPENDIX A

 EA-CALC FLOWCHARTS

 The following pages contain the EA-calc flowcharts from the
 Processor Reference Manual (page 1-30) and from the KL10
 Engineering Functional Spec.

 Page Index-1

 INDEX

 AC references 38
 global 38
 local 38
 Address word 5

 BLT 27
 AC references 28
 source and destination addresses 28
 Byte instructions 18
 Byte pointer decode 18
 Byte pointer EA-calc
 byte instructions 19
 EXTEND instructions 20
 Byte pointer type
 byte instructions 18
 EXTEND instructions 20

 EA-calc 9
 algorithm 9
 EFIW with global index . . . 11
 IFIW with global index . . . 10
 IFIW with local index . . . 10
 no indexing 9
 section 0 11
 summary 11
 byte instructions 18
 byte pointers 19
 default section 12
 default sections 35
 EXTEND instructions 20
 flowcharts A-1
 local or global result 12
 local/global flag 14
 multi-section 16
 results 12
 section zero 16
 Effective address calculation . 9
 EFIW 6
 EXTEND instructions 20
 byte pointer EA-calc 20
 byte pointer type 20
 extended opcode EA-calc . . . 22
 Extended addressing
 EA-calc 9
 historical summary 4
 reference materials 3
 terms 5
 address word 5
 EFIW 6
 global address 5

 Page Index-2

 global index 6
 global stack pointer 7
 IFIW 6
 illegal indirect word . . . 6
 local address 5
 local index 5
 local stack pointer 7
 one-word global byte pointer 7
 one-word local byte pointer 7
 two-word global byte pointer 7
 virtual address 5
 Extended format indirect word . 6
 Extended opcode EA-calc 22

 Global AC address 14
 Global address 5
 Global index 6
 Global stack pointer 7
 Global stack pointers 24

 IFIW 6
 Illegal indirect word 6
 Incrementing EA 15
 Instruction fetches 39
 Instruction format indirect word 6

 JRA 26
 EA-calc 26
 JRSTF 30
 JSA 26
 EA-calc 26
 JSP 22
 storing PC 23
 JSR 22
 storing PC 23

 Local AC references 14
 Local address 5
 Local index 5
 Local stack pointer 7
 Local stack pointers 24
 Local/global flag 14
 LUUO 27

 Multi-section EA-calc 16

 Non-zero section rules 36

 One-word global byte pointer . . 7
 One-word local byte pointer . . 7

 PAB 42 to 43
 PC store 40
 PCS 42 to 43
 PCU 42 to 43

 Page Index-3

 Previous context
 applicable instructions . . . 44
 references 43
 state registers 42
 use 43
 PXCT 42
 AC field bits 44
 EA-calc algorithm 46
 flow chart 48
 local/global flag
 byte instructions 51
 MOVSLJ 52
 stack instructions 50

 Section zero rules 36
 Stack instructions 24
 storing PC 25
 Stack pointers 24
 default section 24
 incrementing 24
 Storing EA 40

 Two-word global byte pointer . . 7

 Virtual address 5

 XBLT 29
 non-zero section references . 29
 XCT 31
 default section for EA-calc . 31
 local stack references 33
 PC storing instructions . . . 33
 skip and jump instructions . . 32
 stack instructions 33
 XHLLI 30
 AC references 30
 XMOVEI 30
 AC references 30

