TOPS- 20 DDT Manual

El ectronic distribution with Autopatch Tape 16

OPERATI NG SYSTEM

SOFTWARE:

August 1987

Thi s manual descri bes the use
of TOPS-20 DDT, the Dynamic
Debuggi ng Tool for MACRO 20
prograns.

Thi s manual updat es t he
TOPS- 20 DDT Manual printed for
TOPS-20 6.1. This version of
the nmanual is not printed and
is not available from DI G TAL
in printed form It is
distributed on the Autopatch
tape #16 for TOPS-20 in . MEM
file format only. You can
print this file on any
printer; page |length has been
set at 58 lines. Change bars
i ndi cate changes and bullets
i ndicate data deletions since
the previous version of this
manual .

TOPS-20 V6.1

DDT V44C(670)

di gital equi pnent corporation mar | boro, massachusetts



First Printing, May 1985
Aut opat ch Revi si on, August 1987

The information in this docunent is subject to change w thout notice
and should not be construed as a commtnent by Digital Equipnent
Corporation. Digital Equiprment Corporation assunmes no responsibility
for any errors that nmay appear in this docunent.

The software described in this docunment is furnished under a |icense
and may only be used or copied in accordance with the terns of such
| i cense.

No responsibility is assunmed for the use or reliability of software on
equi pnrent that is not supplied by DIG TAL or its affiliated conpani es.

Copyright (C 1985, 1987, Digital Equi pment Corporation.
Al Rights Reserved.

The following are trademarks of Digital Equi pnment Corporation:

DEC DECnet I AS
DECUS DECsystem 10 MASSBUS
Digital Logo DECSYSTEM 20 PDT

PDP DECwri ter RSTS
UNI BUS Dl BOL RSX

VAX EduSyst em VNS

VT



CONTENTS

PREFACE
CHAPTER 1 | NTRODUCTI ON TO DDT
1.1 SYMBOLI C DEBUGAE NG . .
1.2 TOPS- 20 VARI ANTS OF DDT
CHAPTER 2 GETTI NG STARTED W TH DDT
2.1 | NTRODUCTI ON .
2.2 LOADI NG DDT
2.3 BASI C FUNCTI ONS
2.3.1 Error Conditions .
2.3.2 Basi ¢ Concepts . .
2.3.3 Starting and Stoppi ng the Pr ogram
2.3.4 Exami ni ng and Modi fying Menory .
2.3.5 Executing Program I nstructions . .
2.4 A SAMPLE DEBUGGE NG SESSI ON USI NG DDT .
2.5 PROGRAMM NG W TH DDT IN M ND .
CHAPTER 3 DDT COVIVAND FORNMAT
3.1 COVMAND SYNTAX .
3.2 | NPUT TO DDT .
3.2.1 Val ues in DDT ExpreSS| ons
3.2.2 Operators in DDT Expressions .
CHAPTER 4 DI SPLAYI NG AND MODI FYI NG MEMORY

Dl SPLAY MODES . .

1 Defaul t Displ ay Nbdes

2 Sel ecting Display Mdes

DI SPLAYI NG EXPRESSI ONS .

DI SPLAYI NG BYTE PO NTERS . . .

DI SPLAYI NG AND DEPCSI TI NG I N I\/EI\/[RY .
1 Commands that Use the Current Location .

Commands that Use the Location Sequence Stack
3 Commands that Use an Address within the Conmand

DI SPLAYI NG ASCI Z STRI NGS .

ZERO NG MEMCORY . . .

AUTOVATI C WRI TE- ENABLE

AUTOVATI C PAGE CREATION . . .
DI SPLAYI NG PAGE ACCESSI BI LI TY I NFCRI\/ATI C]\I
WATCHI NG A MEMORY LOCATI ON .

TTY CONTROL MASK .

PrArrARrABAIAEARAAEARAAEARS
PRPOO~NOUARRARMWNRER
N

]

B
e

NNNNNNDNDDN

POOOUMWNPREPR

NN
1 1

N

A BABMDDADN
P O~NOONREPF



CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

5

goaoaoaoaoooa
CUNRWNNNNNER

~

NNNNNNNNNAN
RPOONOUIAWN R

©

LCoovovvoo
NRNNNDNRN R

10. 1
10. 2
10. 3

arwWNBEF

A WNPE

CONTRCOLLI NG PROGRAM EXECUTI ON

BEG NNI NG EXECUTI ON
USI NG BREAKPQO NTS
Setting Breakpoints .
Proceedi ng from Breakpoints
Condi ti onal Breakpoints
The "Unsolicited" Breakpoint .
EXECUTI NG EXPLI CI T | NSTRUCTI ONS
S| NGLE- STEPPI NG | NSTRUCTI ONS .
EXECUTI NG SUBROUTI NES AND RANCES (]: I NSTRUCTI O\IS
Si ngl e- St eppi ng " Dangerous" |nstructions .
USER- PROGRAM CONTEXT

SEARCHI NG FOR DATA PATTERNS | N DDT

MANI PULATI NG SYMBOLS | N DDT

OPENI NG AND CLOSI NG SYMBOL TABLES
DEFI NI NG SYMBCLS .

SUPPRESSI NG SYMBCL TYPEQJT

KI LLI NG SYMBOLS . .

CREATI NG UNDEFI NED SYI\/BClS

FI NDI NG WHERE A SYMBCL | S DEFI NED
SEARCHI NG FOR SYMBOLS . .

LI STI NG UNDEFI NED SYMBOLS

LI STI NG SYMBOLS

LOCATI NG SYMBOL TABLES W TH PROGRAM DATA VECTORS .

I NSERTI NG PATCHES W TH DDT

FI LDDT

| NTRODUCTI ON .

USI NG FI LDDT . .
FI LDDT Comrands
Synbol s Coe
Conmands to Est abl i sh For rrats and Paraneters .
Commands to Access the Target and Enter DDT
Exiting FILDDT .

PRI VI LEGED MODES OF DDT
MDDT .

KDDT .
EDDT .

NN NN ENIENENEN
OUUIUTADNWWN R

LOLOLOLIOLOLOLO
OO WERPF

10-4



CHAPTER 11

CHAPTER 12

12.
12.
12.
12.
12.

12.
12.
12.
12.
12.
12.

APPENDI X A

I NDEX

FI GURES

TABLES

ODODOD-FI\)I\)I\)
WNEFRPPFRPWNPE

U'IU'Ibb-l}bbww
NFRPORMRWNENPRE

WwwN P

~oauu s

PHYSI CAL AND VI RTUAL ADDRESSI NG COMVANDS

EXTENDED ADDRESSI NG

LOADI NG DDT | NTO AN EXTENDED SECTION . . . . . . 12-1
EXAM NI NG AND CHANGI NG MEMORY . . . . . . . . . 12-2
BREAKPO NTS . . e 2
The Breakpoi nt BI ock .o e ... 12-2
Enabl i ng and Di sabling Int er-sectl on
Breakpoints . . .. . . . 12-3
DI SPLAYI NG SYMBOLS I N N(]\IZERO SECTI O\IS .. .. 12-4
DEFAULT SECTION NUMBERS . . . . . . . . . . . . 12-5
Per manent Default Section . . . . . . . . . . 12-6
Fl oating Default Section . . . . . . . . . . . 12-6
EXECUTI NG SI NGLE | NSTRUCTIONS . . .. . . . 12-8
ENTERI NG PATCHES | N EXTENDED SECTI O\IS .. . . . 12-8

ERROR MESSAGES

GLOSSARY

Sample Program X.MAC . . . . . . . . . . . . . . 21
Annot at ed Debuggi ng Session . . e ... 2-12
Term nal Display of Debugging SeSSI on . . . . . 2-20
DDT Sessi on Show ng Col unmar Qut put .. . . . . 4-25
Annot ated Patching Session . . . . . . 84

Terninal Display of Patching After an Instruct| on 8-5
Termi nal Display of Patching Before an Instruction 8-6

Conmands that Return Val ues :
Ef fects of Operators Wen Eval uatl ng EXpI’eSSI ons .
Eval uati on of Synbolic Display Mde .

DDT Di spl ay Mdes .o

Conmands to Displ ay ExpreSS| ons

DDT Commands to Display Menory . e
TTY Control Mask . . . . . . . . . . . . . . .. 4
Br eakpoi nt Locations of Interest . . . . . . . . . b
User - Program Context vValues . . . . . . . . . . b

BEEPOW

]
N

1
ONPOOOA~PFLOW

1
[EEN



Vi



PREFACE

MANUAL OBJECTI VES AND AUDI ENCE

This manual explains and illustrates the features of TOPS-20 DDT, the
debugger for MACRO 20 prograns. Although TOPS-20 DDT can be used to
debug the conpil ed code of prograns witten in higher-Ilevel |anguages,
this manual illustrates the use of TOPS-20 DDT to debug prograns
witten in MACRO 20 only.

This manual is both an introduction to the basic functions of TOPS-20
DDT and a reference guide to all TOPS-20 DDT commands and functions.

Thi s manual assunes that the reader is famliar wth wusing TOPS-20,
has done sone programmng in MACRO 20, and is familiar with the fornat
of MACRO 20 instructions.

STRUCTURE OF THI S DOCUMENT

Thi s manual has 12 chapters, one appendi x, and one gl ossary.

0 Chapter 1 introduces the concept of synbolic debugging and
descri bes the variants of TOPS-20 DDT.

0 Chapter 2 describes |oading TOPS-20 DDT with vyour program
di scusses basic TOPS-20 DDT conmands, and illustrates a
sanpl e debuggi ng sessi on.

0 Chapter 3 explains the syntax of a DDT conmand. Chapter 3
al so describes expressions to enter data and expl ai ns how
TOPS- 20 DDT eval uat es expressi ons.

0 Chapter 4 discusses how to exam ne and nodify a program using

TOPS- 20 DDT.

0 Chapter 5 describes the use of TOPS-20 DDT to control program
execution: how to start, stop, and nonitor the running of a
program



OTHER

O her

0 Chapter 6 explains howto perform searches of a programs
address space using TOPS-20 DDT.

0 Chapter 7 discusses the manipul ati on of program synbol s using
TOPS- 20 DDT.

0 Chapter 8 describes how to use the TOPS-20 DDT patching
function to insert and test a new series of instructions in
your program w t hout reassenbling the program

0 Chapter 9 describes the use of FILDDT.

0 Chapter 10 describes the use of the privileged DDTs: KDDT
and NMDDT.

0 Chapter 11 describes special-use comands that control
physical and virtual addressing. These comands are useful
primarily when runni ng EDDT and FI LDDT.

0 Chapter 12 describes the use of DDT in non-zero sections
(NzS) .

0 Appendi x A explains DDT and FILDDT error messages.

0 The glossary defines inmportant TOPS-20 DDT ternmns.

DOCUMENTS

docunments to which the reader shoul d have access are:

(0]

MACRO Assenbl er Ref erence Manual

TOPS- 20 LI NK Ref erence Manual

TOPS- 20 Commands Ref er ence Manual

DECsyst em 10/ DECSYSTEM 20 Processor Reference Manual

TOPS- 10/ TOPS- 20 RSX- 20F Syst em Ref erence Manual

Viii



CONVENTI ONS

The follow ng conventions are used in this manual in the

description

of DDT conmands and concepts.

{}

(peri od)

addr

c
expr
filnam

instr

Curly brackets (braces) indicate that the encl osed item
i s optional

The address contained in DDT's | ocation
call ed the current |ocation

counter; also

A synmbolic location within a program a synbolic or
absolute address in nenory, an AC, or ".", the current
| ocati on.

A single ASCIl or SIXBIT character.
Any expression that is legal in DDT
One or nore conponents of a file specification.

Any instruction in the PDP-10 nmachi ne instruction set.

| ocati on sequence stack

n
page
synbol

t ext

wor d

<ESC>
<ESC><ESC>

<CTRL/ X>

<BKSP>
<LF>
<RET>

<TAB>

A circular stack of nmenory locations that is wused to
store the addresses of certain previously referenced
| ocati ons.

A nureric argunent.
A page in nmenory. A page equals 512 words of nenory.
A synbol nane of up to 6 RADI X50 characters.

Any string of ASCII or SIXBIT characters.

Any 36-bit val ue occupyi ng one word of nenory.
Represents pressing the ESCAPE or ALTMODE key once.
Represents pressing the ESCAPE or ALTMODE key twi ce

Represents pressing a key (represented by X) at the
sane time as you press the key | abeled CTRL.

represents pressing the BACKSPACE key or <CTRL/ H>.
Represents pressing the LI NE FEED key.
Represents pressing the RETURN key.

Represents pressing the TAB key or <CTRL/I>.



Nunbers are in octal radix unless otherw se specified.

Exanpl es of interaction between the user and DDT show wuser input in
| owercase and DDT out put in uppercase.

The synbol s <BKSP>, <CTRL/x>, <ESC>, <LF> <RET> and <TAB> always
represent user input.

NOTE

The descriptions of many DDT commands |ist the actions
and effects of those conmands. The actions and
effects mmy not occur in precisely t he or der
specified, but this has no effect on the user.






CHAPTER 1

I NTRODUCTI ON TO DDT

DDT is a utility programyou can use to help you debug your MACRO 20
prograns. This nanual describes how to use the DDT utility.

1.1 SYMBCLI C DEBUGE NG

It is sonetines difficult to understand precisely the operation of a
program by reading the source code. DDT is a tool for interactively
exani ning the operation of a MACRO- 20 program while it is running.
DDT is wuseful for finding programmi ng errors (bugs) in progranms that
do not run correctly. You can also use DDT to analyze the flow of
control in a programthat is to be revised or rewitten.

Wth DDT, you can interrupt the execution of your programat |ocations
(breakpoints) you choose, and then exam ne and nodify the program s
address space as required. You can execute instructions one-by-one to
check whether the effect of each instruction is what is intended. You
can then set other breakpoints in your program before continuing
execution.

When you refer to programlocations and val ues, DDT allows you to use
the synbols that are defined in the programrather than absolute
val ues and addresses. This makes it nuch easier to refer to the
source listing and to find specific locations in menory.

After nodifying the programis instructions or data, you can exit DDT

and save (with the nonitor-level SAVE conmand) the changed version of
the program for further testing.

1.2 TOPS-20 VARI ANTS CF DDT

There are several variants of DDI, each wuseful wunder specific
circumstances or for specific tasks.



I NTRODUCTI ON TO DDT

The variants of TOPS-20 DDT are:

o EDDT
o FILDDT
o KDDT
o NMDDT
o RDDT
o SDDT
o UDDT
o XDDT

EDDT is used to debug prograns that run in executive nobde (such as
BOOT), and is described in Chapter 10.

FILDDT is used to exam ne and patch disk files and structures. You
can also use FILDDT to examine the running nonitor. FILDDT is
described in Chapter 9.

KDDT is used to debug and patch nonitor .EXE files and the running
nonitor, and is described in Chapter 10.

MDDT is used to debug and patch the running nmonitor, and is described
in Chapter 10.

RDDT is a relocatable variant of DDT that can be wused to debug
prograns in user node. If your programis in nenory (and has been
| oaded with RDDT as below), you invoke RDDT by entering (at TOPS-20
command | evel ):

START

You | oad RDDT with your program by running LINK as foll ows:

@l NK
* MYPROG, SYS: RDDT. REL/ GO

where MYPROG i s the nane of your program Loading RDDT. REL with your
program does not prevent you fromusing other LINK features. You nust
| oad RDDT. REL last, or its start address is lost. RDDI.REL is wusefu
in situations where you do not wish to have DDT | oaded at its default
| ocati on.

This exanple shows only the mnimal steps required to load the
rel ocatable DDT with your program See the LINK Reference Manual for
further information about using LINK

1-2



I NTRODUCTI ON TO DDT

SDDT is a "stub" that places XDDT in its own section, wth system
synbols defined as in MONSYM and MACSYM SDDT is the DDT variant
i nvoked when, at TOPS-20 command | evel, you enter:

SDDT

SDDT exists so that entering SDDT i nvokes DDT version 44 in the sane
manner as previous versions.

UDDT is a "stub" that resides in your user programis section if the
program has a TOPS-10-style entry vector and the programentry vector
is in section zero. This is done for conpatibility with progranms that
use |locations 770000, 770001 and 770002. |If you load a programin
section zero and the program has a TOPS-10-style entry vector, when
you use the DDT conmand, the EXEC |oads the UDDT stub into your
program s section at address 770000. UDDT then |oads XDDT into the
hi ghest - nunbered free (nonexistent) section (if XDDT is not already
| oaded), and starts XDDT

XDDT is the DDT variant normally used to debug user prograns. |f you
| oad your programin a nonzero section or the program does not have a
TOPS- 10-style entry vector, the DDT command causes the EXEC to |oad
XDDT directly into the highest-nunbered free section. XDDT is also
i nvoked by the SDDT and UDDT stubs. |If you type in XDDT while at
TOPS-20 command level, the EXEC |oads XDDT into section zero, with
system synbol s defi ned.

1-3



1-4



CHAPTER 2

GETTI NG STARTED W TH DDT

2.1 | NTRODUCTI ON

This chapter is an introduction to using DDT. It describes how to
load DDT with your program and shows how to perform basic DDT
functions. It then illustrates a sanple session debugging a sinple

MACRO- 20 program using basic DDT functions. You can use DDT to debug
prograns, using only the commands described in this chapter. Once you
are famliar wth using these commands, you may wish to learn how to
use the conmands and functions that are described in the rest of the
manual , to perform nore sophisticated debuggi ng.

The commands used in this chapter are described only in sufficient
detail for the debugging task being perforned; all comrands are
t horoughly described in Chapters 3 through 11 of this docunent.

The best way to learn is by doing. You will learn the conmands and
techni ques discussed in this manual if you use them as you read about
them [If you have a MACRO 20 programthat you wish to debug, use it
to practice the commands discussed here. |If not, type in the program
X.MAC listed in Figure 2-1

2.2 LOADI NG DDT

It is much easier to debug a program when you can use the synbols that
are defined in the program For you to be able to use program
synbol s, DDT nmust have access to your programis synmbol table. One way
to provide this access is to use the TOPS-20 DEBUG command to | oad DDT
with your program and retain your programsynbols. Load an existing
MACRO- 20 programwith the TOPS-20 DEBUG comand as fol | ows:

DEBUG fi | nam



GETTI NG STARTED W TH DDT

where filnamis the nane of your MACRO-20 program The follow ng
appears on your termnal (if your .REL file is older than your .MAC
file, MACRO 20 reassenbles your program otherwise the second line
does not appear):

@EBUG PROG

MACRO  fil nam

LI NK: Loadi ng

[ LNKDEB DDT executi on]

DDT
where filnamis the nanme of your MACRO-20 program (with default

extension .MAC). The last line (DDT) indicates that DDT is | oaded,
and is ready to accept your conmands.

2.3 BASI C FUNCTI ONS

You nmust be able to performcertain basic functions to interactively
debug a program Basic DDT functions are:

0 starting the program

0 stopping the program at specified |ocations
0 exam ning and nodi fyi ng nenory

0 executing programinstructions one-at-a-tine
0 continuing execution of the program

o0 deleting input

0 exiting DDT

You nust give DDT commmands to tell DDT what functions to perform DDT
does not wait for a line termnator (such as a carriage return) to

i ndi cate the end of your command. |Instead, DDT reads your comrands
character-by-character as you enter them Wen you enter a DDT
command, you al nost never have to press the RETURN key. This manua

explicitly indicates the occasions when a command requires you to
press the RETURN key.

NOTE

You must press the ESCAPE key as part of entering many
DDT conmands. This manual uses the symbol <ESC> to
i ndi cate where you press the ESCAPE key. When you
press the ESCAPE key, DDT displays a dollar sign ($)
on the screen. DDT never displays <ESC> when you
press the ESCAPE key.

2-2



GETTI NG STARTED W TH DDT

NOTE

This manual uses the synbols <BKSP>, <ESC>, <LF>
<RET>, and <TAB> to indicate where you press the
BACKSPACE, ESCAPE, LINE FEED, RETURN, and TAB keys,
respectively. This manual also uses the synbol
<CTRL/ X> to indicate where you sinultaneously press
the CONTROL key and the key indicated by X. These
synbol s ALWAYS i ndicate where you press the specific
keys noted here. You need NEVER enter the characters
<BKSP>, <ESC>, <LF>, <RET>, <TAB>, or <CIRL/X>, to
enter a DDT command.

Your commands appear on the screen as you type them Use the DELETE
key to delete partially entered conmands character-by-character. |If
you try to delete nore characters than you have entered, DDT displ ays:

XXX

You can delete an entire command |line with <CTRL/U>. Wen you do, DDT
di spl ays:

XXX
To exit DDT, enter:
<CTRL/ Z>

The other basic DDT functions are described in the rest of this
chapt er.

2.3.1 Error Conditions

| f DDT cannot execute a command, it displays a nessage to let you
know. The nmessage nay be only a single character (such as Mor U, for
Mul tiply-defined synmbol or Undefined synbol), a question mark (?), or
a conplete nessage string. For nost errors, DDT also sets a pointer
to the error string, so that if DDT did not display it, you can enter
a command to display the error string. The error string is available
for display until another error occurs, when DDT changes the pointer.
To display the error string that describes the |ast DDT error, enter:

<ESC>?

(press the ESCAPE key, followed by a question nmark).

2-3



GETTI NG STARTED W TH DDT

2.3.2 Basic Concepts

A very useful DDT concept is that of the current |[|ocation. The
current location is a nmenory |location that you have referenced, either
implicitly or explicitly, with your last command, and that 1is the
default point of reference of your next conmand. The current |ocation
can be thought of as the location "where you are". The synmbol "."
(period) refers to the address of the current |ocation, and can be
used as an argunent in DDT commands

The | ocation counter is a DDT pointer that contains the address of the
current location. The |location counter perforns a function simlar to
that of a bookmark. You can enter a conmand to display the contents
of a specific location but not change the address of the current
| ocation, in order to maintain a specific point of reference for your
next comand. Most DDT commands change the address of the current
| ocation, and therefore also change the Ilocation counter. The
comrands that do not change the current |ocation are so indicated

The open location is a nenory word that can be nodified by your next
conmand. DDT "opens" the location as a result of a command you give
to examne or nodify menory. There is never nore than one |ocation
open at any given tine. The open location is usually also the current
| ocati on.

To find the synbolic address of the current |ocation, enter:

(a period foll owed by an underscore)

This causes DDT to display the follow ng:
ADDR1+n

where ADDRL is a | abel defined in your program and n is the offset of
the current location from that |label (if the current location is
ADDR1, DDT does not display +n).

Anot her useful DDT concept is that of the current quantity. This is a
value that is the contents of the last word that DDT di splayed, or the
val ue that you | ast deposited in nmenory. The current quantity is the
nost recent of those values. Many DDT conmands use argunents that
default to the current quantity.

The | ocation sequence stack is a DDT storage area used to store the
addresses of previous current |locations. Certain DDT commands store
the address of the current location on the |ocation sequence stack.
O her DDT commands change the address of the current location to an
address that has already been stored on the |ocation sequence stack
The location sequence stack functions in a fashion simlar to
inserting place-markers in a source code listing, to be able to "get
back" to prior references

2-4



GETTI NG STARTED W TH DDT

2.3.3 Starting and Stopping the Program

When your programis |oaded and DDT is ready to accept your comands
(as indicated by DDT appearing on the term nal display), you can begin
execution of your programat its start address by entering

<ESC>G

Unl ess you set one or nore breakpoints before you start the program
your program runs either to conpletion or until it comrts a fatal
error. A breakpoint is a location in a program s executabl e code that
has been nmodified so that if the programattenpts to execute the
instruction at that |ocation, <control passes to DDI before the
instruction is executed

The conmand to set a breakpoint is:
addr <ESC>B

where addr is the address at which to stop execution. If the
user-program PC reaches addr, DDT interrupts execution of the program
before the program executes the instruction at the specified address.
When DDT interrupts program execution at a breakpoint, it changes the
current |location to the breakpoint and opens the current |ocation (the
br eakpoi nt).

Whi | e program execution is stopped at a breakpoint, you can display
and change the contents of instruction and data words, renobve
breakpoi nts, set new breakpoints, and execute instructions one at a

tinme (single-step). As you examine nenory, you may find an
instruction that is incorrect, and nodify it. You can also examne
and nodi fy data words in nenory. After nodifying incorrect

instructions and data in nenory, you can inmediately execute the
instructions to check the effects of the nodifications, w thout having
to reassenbl e the source code.

Once you have nmde your changes, you can continue program execution at
the place where execution was interrupted, restart the programat the

begi nning, or start execution at any other |ocation you choose. The
program wll run to conpletion, wuntil it reaches a breakpoint, or
until it gets a fatal error

2-5



GETTI NG STARTED W TH DDT

2.3.4 Exam ning and Modifying Menory
One command to exam ne nenory is
addr/
where addr is the address of the nenory word you wsh to examne
(display), and can be nuneric or synbolic. DDT displays the contents

of the word located at addr. |If the opcode field (bits 0-8) of the
menory word natches a recognized instruction or user-defined OPDEF,

DDT di splays the contents of addr as an instruction (or OPDEF). |
DDT finds (in the synbol table) any of the values to be displayed, DDT
di spl ays those synbol s rather than the numeric val ues. For exanpl e,

either of the follow ng display |ines mght appear on your terminal
(dependi ng on the address and contents of the word):

ADDR1/ MOVE 2, SYML
ADDR1+5/ SYML, , SYM
where ADDRL, SYML, and SYM2 have been defined in the program

If you enter a synbol that DDT does not find in the synbol table, DDT
sounds the terminal buzzer or bell, and displays U on the screen. |If
you enter a synbol that is defined as a |local synbol in nore than one
nodul e, DDT sounds the term nal buzzer or bell and displays M You
can elimnate the nultiply-defined synbol problem by "opening" the
synbol table of the nmodule in which the correct synbol is defined.
See Chapter 7 (Manipulating Synbols in DDT) for nore information.

When searching for a synbol to display, DDT uses global synbols in
preference to local synbols. However, DDT searches the "open" synbo
table first, and treats |local synbols found in the open synbol table
as global synbols. If DDT finds only a local synbol that is not in
the open synbol table, DDT displays the synbol with a pound-sign (#)
appended to the synbol. For exanple, DDT m ght display:

ADDR#/ MOVE 2, SYML#

See Chapter 7 (Manipulating Synbols in DDT) for nmore information on
synbol s and synbol tables.

The conmand addr/ changes the current location to addr and opens the
word at addr.

If you omt addr from an exam ne-nmenory conmmand, such as addr/, DDT
uses the current quantity to determ ne the address of the location to
di splay. For exanple, after DDT displays the contents of ADDRL+5 as
above, if you enter "/", DDT displays the contents of the word | ocated
at SYM2. The display |line then appears:

ADDR1+5/ SYML, , SYM2 / val ue

2-6



GETTI NG STARTED W TH DDT

where value is the contents of the word |located at SYM2. By default,
DDT di splays value synbolically if it can.

The conmand / by itself (without addr) does not <change the current
| ocati on. Both forns of the / conmand open the | ocation displayed,
enabling you to nodify the location with your next command.

Anot her very useful conmand for examining nenory is <TAB>. Thi s
command starts a new display |line before displaying the contents of
addr, nmking the display easier to read. For exanple, if you enter

<TAB> after DDT displays the address and contents of ADDRL+5 (as
above) on your termnal, the term nal display appears:

ADDR1+5/ SYML, , SYM? <TAB>
SYMe/ val ue

where value is the contents of the word |ocated at SYM. <TAB> does
not appear on the screen, but is shown above to indicate where you
press the <TAB> key. <TAB> changes the current |location to SYM2 and
opens the word at SYM2. In this exanple, the current quantity becones
val ue.

<TAB> al so stores the address of the current |ocation (ADDRL+5) on the
| ocati on sequence stack before changing the current |ocation to the
| ocation just displayed (SYM2). DDT uses the |ocation sequence stack
to "renmenber" previous values of the location counter. To "get back"
to the previous current |ocation, enter:

<ESC><RET>

In the above exanple, after you press <TAB> at ADDR1+5, DDT displays
the contents of SYM2 and changes the current location to SYM. Wen
you enter <ESC><RET>, DDT changes the current location to ADDRL1+5,
opens the location at ADDRL+5, and again displays the contents of
ADDR1+5.

If you use the command addr<TAB>, DDT deposits addr in the open
location and closes the |ocation before opening the |location at addr
and displaying its contents. <TAB> by itself does not deposit
anything, but does save the current |ocation on the |ocation sequence
stack, making <TAB> nore useful than / (slash by itself).

You can display and open the word after the current |location by
ent eri ng:

<LF>

2-7



GETTI NG STARTED W TH DDT

DDT changes the current location to the next word in nenory, starts a
new | i ne, and displays the address of the (new) current location (as a
synbol or a synbol plus an offset, if it can find a corresponding
synbol in the synbol table), displays the contents of the current
| ocation, and opens the current location. For exanple, to display the
next word in nenory after ADDRL1+5, enter:

<LF>

DDT changes the current |ocation to ADDRL+6, starts a new line, and
di spl ays the address and contents of ADDRL1+6. The screen display then
appears as foll ows:

ADDR1+5/ SYML, , SYM <LF>
ADDR1+6/ -1,, SYMB

Note that DDT does not display the characters <LF>. <LF> does not
af fect the | ocation sequence stack

Enteri ng anot her <LF> causes DDT to display and open the next word.

To di splay and open the word previous to the current |ocation, enter:
<BKSP>

DDT changes the current location to the previous word, starts a new

line, displays the address and contents of the (new) current |ocation,

and opens the current location. <BKSP> does not affect the [|ocation

sequence stack. For exanple, if you enter <BKSP> to open and display

the location before ADDR1+5, the screen appears as foll ows:

ADDR1+5/ SYML, , SYM <BKSP>
ADDR1+4/ -3,, SYMm

Not e that <BKSP> does not appear on the screen
To change the contents of the open | ocation, enter
val ue<RET>

where val ue can be an instruction, a synbol, or a numeric expression.

For exanple, if you enter the conmand LABL2/, DDT displays the
contents of the nenory word at LABL2, and "opens" that word. |If the
word at LABL2 contains:

MOVE 1, SYML
and you wi sh to change SYML to SYM2, enter

MOVE 1, SYM2<RET>

2-8



GETTI NG STARTED W TH DDT

DDT stores the new instruction in the |location at LABL2 and "closes"
the |ocation. DDT does NOT display <RET>. The term nal display
appears as follows (your input is in |owercase):

| abl 2/ MOVE 1, SYML nove 1, syn2<RET>

The current location is still LABL2, but there is no open |ocation
To check whether the instruction is now correct, you can enter

A

to display the contents of the current |ocation. The screen display
now appears (your input is in |owercase):

| abl 2/ MOVE 1, SYML nove 1, syn2<RET>
v MOVE 1, SYM

After entering a command to display and open a location, if you enter:
val ue<LF>

DDT stores the new val ue, changes the current |location to the next

location in nenory, starts a new display |ine and opens and di spl ays

the new current location. The exanple above would then appear as

follows (your input is in |owercase):

| abl 2/ MOVE 1, SYML nove 1, syn2<LF>
LABL2+1/ CONTENTS

where CONTENTS is the value stored at LABL2+1

2.3.5 Executing Program Instructions

When you have interrupted program execution at a breakpoint, you can
execute the next instruction (the one at the breakpoint), by entering:

<ESC>X

DDT executes the instruction, displays the results of executing the
instruction, and displays the address and contents of the next
instruction to be executed. This command changes the current |ocation
to the next instruction to be executed. For exanple, assunme that the
next instruction to be executed is |ocated at LABEL1, which contains:

MOVE 1, VARI BL

2-9



o————

GETTI NG STARTED W TH DDT

If the word at VARIBL contains SYML, when you enter <ESC>X, DDT starts
a new |l ine and displ ays:

1/ SYmL VARI BL/ SYML
LABEL1+1/ instr

where instr is the contents of LABEL1+1, and is the next instruction
to be execut ed. You can continue to execute instructions
one-at-a-tinme by entering successive <ESC>X commands. This is known
as si ngl e- st eppi ng.

To execute a subroutine, enter:

<ESC><ESC>X

DDT executes the subroutine and returns control to you if the
subroutine returns to a location +1, +2, or +3 fromthe instruction
that calls the subroutine. DDT changes the current location to the
address of the next instruction to be executed.

To continue execution of the program until the next breakpoint or
until program conpletion, enter:

<ESC>P
DDT starts the program running again, beginning with the next
i nstruction to be executed. If you did not single-step any
i nstructions, the program begins by executing the instruction at the
breakpoint. |If you have executed any instructions by single-stepping,

t he program continues where you stopped. The effect is as if the
program were running w thout DDT in control

2.4 A SAVPLE DEBUGE NG SESSI ON USI NG DDT

This section describes a debuggi ng session using DDT. The program
being debugged is X MAC, shown in Figure 2-1. The program and the
sanpl e session are for illustration only. There are many styles of

progranm ng and debugging, and these exanpl es are descriptive rather
than prescriptive in intent.

You will understand this section and | earn the commands descri bed nore

easily if you type in the programlisted in Figure 2-1 and use the
commands as they are descri bed.

2-10



GETTI NG STARTED W TH DDT

Sanpl e Program X. MAC

MONSYM
X

P, PWORD

| DX, TABLE1L

P, ADDEM

| DX, TABLE1L

RO, ANSVER( | DX)
0

RO, X( 1 DX)

RO, Y( 1 DX)

RO, ANSVER( | DX)
P,

3

| OND STKSI Z, STACK

Figure 2-1
SEARCH
TI TLE
RO=0
| DX=6
P=17
START: : MOVE
MOVE
PUSHJ
MOVE
MOVE
JFCL
HALTF%
ADDEM  MOVE
ADD
MOVE
POPJ
TABLE1l: BLOCK
==0
==1
ANSWER==2
STKSI Z==10
PWORD
STACK: BLOCK
END

Figure 2-2 is an annotated session debugging X MAC
In the annot ated sessi on,
user input
about

Fi gure
the left,
comment s

2-1.

STKSI Z
START

is in the center

the session are on the right.
way it appears on the term nal

Fi gu

actual | y appears on the term nal

The program

subrouti ne

third

DDT does not display <LF>

is

desi gned
The tabl e contains three el enents.
add the first two elements of the table and store the
el enment
i nput or out put
usi ng DDT, and the result

bef ore
routines in the program
is checked while in DDT.

to pass

returning to

NOTE

t he

<RET>,

; ACO
;| NDEX REG STER
: STACK COUNTER

; Set up stack counter
;Address of table with X & Y
;Do the addition

; Address of table

;Answer to RO

;Al'l done!

; Load X

X+ Y

; St ore answer
Return

;3 words

i OfFfset for X

i OfFfset for Y
;OFfset for answer
: Stack size

; Stack pointer

: St ack

t he
the DDT term na
| ower case, and

program
in

re 2-3 shows the session as

address of a table

result in
t he mai n program
The table is

or <TAB>. These are

shown in the sanple session to indicate user input.

2-11

di splay is on
expl anat ory
This is not always the

to
The subroutine is to

There are no
initialized



GETTI NG STARTED W TH DDT

NOTE

DDT does not display the AC field of an instruction if
it is zero. This means that if your program contains
the instruction MWE RO,LABL1, where R0=0, DDT
di spl ays the instruction as MOVE LABLL.

Figure 2-2: Annotated Debuggi ng Session

SCREEN DI SPLAY USER | NPUT

@

debug X<RET>

MACRO X

LI NK: Loadi ng

[ LNKDEB DDT executi on]
DDT

MOVE P, PVWORD#

. JBDA+1/ MOVEI | DX, TABLE1#

EXPLANATI ON
TOPS- 20 pronpt.

Begi n the session by entering
"debug x<RET>", where x is the
name of your MACRO program

MACRO reassenbl es your program
(if needed), and LINK | oads
your programw th DDT. DDT

di spl ays the "DDT" pronpt.

start/ Begi n exam ni ng code at
| abel " START".
DDT di splays the instruction
at START.

<LF> Press <LF> to display the next

2-12

i nstruction.

The first synmbol in this
program happens to coinci de
with .JBDA, a JOBDAT synbol .
When DDT scans the synbo
table, it finds .JBDA before
it finds START, and displ ays
.JBDA instead. DDT stil
accepts START as an input
synbol .

Al so note the pound-sign (#)
appended to TABLEl and
PWORD. PWORD and TABLEl are
| ocal synbols that are not
in the open synbol table.



GETTI NG STARTED W TH DDT

Figure 2-2: Annotated Debuggi ng Session (Cont.)

SCREEN DI SPLAY USER | NPUT
. ] bda<ESC>k
X<ESC>:
<TAB>
TABLE1/ 0
2<LF>

TABLE1+1/ 0

2-13

EXPLANATI ON

Ent er . bda<ESC>k

to suppress DDT typeout of
synbol .JBDA. DDT will

di spl ay START rather than
. JBDA from now on.

Enter the nodul e nane (X)
foll owed by <ESC> and a
colon to open the synbol
tabl e associated with

X. DDT will not append any
nor e pound- si gns.

Press <TAB> to start a new
di splay line, evaluate the
current quantity as if it
were an instruction, and

di splay the contents of the
| ocati on addressed by the Y
field of the instruction.
(Entering / (slash) displays
the same word as <TAB>, but
does not start a new line.)
<TAB> al so saves your pl ace
(l'i ke a bookmark) on the

| ocati on sequence stack, so
you can get back here easily.

When you enter the <TAB>
conmmand, DDT di spl ays the
address and the contents of
the | ocation. The first

el enent of the table contains
zero. The <TAB> conmmand al so
opens the location.

Enter "2" followed by <LF> to
deposit the value "2" in the
first element, and to open and
di spl ay the second el ement.

The second el enment contains
zero.



GETTI NG STARTED W TH DDT

Figure 2-2: Annotated Debuggi ng Session (Cont.)

SCREEN DI SPLAY USER | NPUT

3<LF>

TABLE1+2/ 0

<ESC><RET>
START+1/ MOVEI | DX, TABLE1

<LF>
START+2/ PUSHJ P, ADDEM

. <ESC>b

<ESC>g

$1B>>START+2/ PUSHJ P, ADDEM

<ESC><ESC>x

2-14

EXPLANATI ON

Enter "3" followed by <LF> to
deposit the value "3" in the
second el enent and open and
di splay the third el enent.
The addition to be perforned
by the programis 2+3

The third el enent (the answer)
contains zero.

Press <ESC>, then press <RET>
to return to the address you
saved on the | ocation sequence
st ack.

DDT di spl ays the address and
contents of the last |ocation
you di spl ayed before you
entered <TAB>.

Press <LF> to | ook at the
next | ocati on.

This is the call to the
subroutine that does the
conput ati on.

Enter ".", press <ESC>, and
enter "b" to set a

br eakpoi nt at the current

| ocati on.

Enter <ESC>g to start
pr ogram executi on

DDT di spl ays the breakpoi nt
nunber, the address of the

br eakpoi nt, and the
instruction at the breakpoint.
This instruction has not yet
been execut ed.

Press <ESC> twice, then
enter "x" to |let DDT
execut e the subroutine.



GETTI NG STARTED W TH DDT

Figure 2-2: Annotated Debuggi ng Session (Cont.)

SCREEN DI SPLAY USER | NPUT EXPLANATI ON

START+3/ MOVEI | DX, TABLEL DDT returns fromthe
subroutine at the next
instruction, and displays the
address and contents of the
instruction. |If thereis a
"skip return”, DDT displays
"<SKI P>" if the program
ski pped one instruction. |If
the programskips 2 or 3
i nstructions, DDT displays
"<SKIP n>", where nis the
nunber of instructions
ski pped.

<ESC>x Press <ESC> and enter "x"
to execute the instruction.

| DX/ TABLE1 TABLEL DDT di spl ays the address and
contents of IDX (the result of
executing the instruction),
and al so displays "TABLEl"
(the result of evaluating the
Y field of the instruction).

START+4/ MOVE 2( | DX) DDT then starts a new |line and
di spl ays the address and
contents of the next
instruction. Note that
DDT does not display the
zero in the AC field of
the instruction.

<ESC><TAB> Press <ESC>, then <TAB> to
di splay the contents of the
| ocati on addressed by the
i nstruction, using any
i ndexi ng and indirection.
(I'f you onmt <ESC>, DDT uses
only the Y field, without
i ndexi ng and indirection.)

TABLE1+2/ 0 The | ocati on addressed by the
instruction is TABLE1+2, and
its contents is zero. This is
the table el ement that
contai ns the answer, which
shoul d be 5

2-15



GETTI NG STARTED W TH DDT

EXPLANATI ON

Press <BKSP> to see the
previous elenent in the table.

This el ement contains 3. That

is correct.

Figure 2-2: Annotated Debuggi ng Session (Cont.)
SCREEN DI SPLAY USER | NPUT

<BKSP>
TABLE1+1/ 3

<BKSP>

TABLE1/ 2

st art <ESC>b

<ESC>g

$2B>>START/

MOVE P, PWORD

<ESC>x

P/ -10,, PMAORD  PWORD/

START+1/ MOVEI | DX, TABLE1

2-16

Press <BKSP> again to check
the previous el ement.

This el enent contains 2. That
is also correct. One way to
find the error is to

si ngl e-step through the

progr am

Enter "start", press <ESC>,
and enter "b" to set a

br eakpoi nt at the begi nning of
t he program

Press <ESC> and enter "g" to
start the program again.

DDT di spl ays the breakpoi nt
nunber, and the address and
contents of the instruction
at the breakpoint.

Press <ESC>, then enter
execute the instruction.
instructi on noves a nmenory
word to a register.

to
Thi s

X

-10, , PAORD

DDT di spl ays the address and
new contents of the register,
and the address and contents
of the menory word.

DDT t hen di spl ays the address
and contents of the next
i nstruction.



GETTI NG STARTED W TH DDT

Figure 2-2: Annotated Debuggi ng Session (Cont.)

SCREEN DI SPLAY USER | NPUT EXPLANATI ON

<ESC>x Press <ESC>, then enter "x" to
execute this instruction,
whi ch noves an i nmedi ate val ue
to a register.

| DX/ TABLE1 TABLEL DDT di spl ays the address and
new contents of the register,
and the i medi ate val ue.

START+2/ PUSH] P, ADDEM DDT then di splays the address
and contents of the next
i nstruction.

<ESC>x Press <ESC>, then enter "x"
to execute the instruction.

P/ -7,, STACK DDT di spl ays the address and
new contents of the stack
poi nter used by the PUSHJ.

<JUwWP> DDT di spl ays "<JUMP>" if the
change in PCis |ess than one
or greater than 4.

ADDEM MOVE O( | DX) DDT di spl ays the address and
contents of the next
instruction to be executed.

<ESC>x Press <ESC> and enter "x" to
execute the instruction.

o/ 2 TABLE1/ 2 The instruction noved the
contents of the word at
TABLE1 (which is 2) to ACO.
Looks OK so far.

ADDEM+1/ ADD 1( | DX) DDT di spl ays the next
i nstruction.

<ESC>x Press <ESC> and enter "x"
to execute the instruction.

o/ 5 TABLE1+1/ 3 The instruction added the
contents of the word at
TABLE1+1 (which is 3) to ACO,
whi ch now contains 5. OK

2-17



GETTI NG STARTED W TH DDT

Figure 2-2: Annotated Debuggi ng Session (Cont.)

SCREEN DI SPLAY USER | NPUT

ADDEMF2/  MOVE 2(1 DX)

o/ 0 TABLE1+2/ 0

ADDEM+3/ POPJ P, 0

ADDEMF2/  MOVE 2(1 DX)

EXPLANATI ON

DDT di spl ays the next
i nstruction.

Press <ESC> and enter "x"
to execute the instruction.

The instruction noved the
contents of the word at
TABLE1+2 to ACO. The MOVE
instructi on at ADDEM+2 shoul d
be MOVEM

DDT di spl ays the next
instruction (as a result of
the <ESC>x).

Press <BKSP> to display and
open the location with the
incorrect instruction.

DDT di spl ays the previous
instruction. This is the
i ncorrect instruction.

nmovem r 0, answer (i dx) <RET>

MOVEM 2( | DX)

$2B>>START/ MOVE P, PWORD

Enter the new instruction
and press <RET>.

Check the current |ocation
to see what you deposited.

Looks OK.

Set a breakpoint at
".", the current |ocation.

Restart the program at
t he begi nni ng.

DDT di spl ays the breakpoi nt
i nformation.

Press <ESC> and enter "p" to
proceed from breakpoint 2
to the next breakpoint.



GETTI NG STARTED W TH DDT

Figure 2-2:

SCREEN DI SPLAY USER | NPUT

$1B>>START+2/ PUSH] P, ADDEM
<ESC>p
$3B>>ADDEM+2/ MOVEM 2( | DX)
<ESC>x
o/ 5 TABLE1+2/ 5

ADDEM+3/ POPJ P, 0
st art +4<ESC>b
<ESC>p
$4B>>START+4/ MOVE 2( | DX)
<ESC>x
o/ 5 TABLE1+2/ 5
START+5/ JFCL O
<CTRL/ Z>
@

2-19

Annot at ed Debuggi ng Session (Cont.)

EXPLANATI ON

DDT di spl ays the breakpoint
i nformation.

Proceed from breakpoi nt 1.

DDT di spl ays the breakpoint
information. This is the
i nstruction you changed.

Singl e-step the instruction
to watch what it does.

The instruction noves the
contents of ACO to the word
at TABLE1l+2. K!!

DDT al so di spl ays the address
and contents of the next
i nstruction.

Set a breakpoint at
START+4 to check the results.

Proceed from breakpoi nt 3.

DDT di spl ays the breakpoi nt
i nformation.

Singl e-step the instruction.

The instruction noves the
contents of the word at
TABLE1+2 to ACO. The new
value of ACO is 5. !

DDT di spl ays the address and

contents of the next
i nstruction.

Quit.

Back at TOPS-20 conmand | evel .



GETTI NG STARTED W TH DDT

Figure 2-3 shows the session as it actually appears on the terninal
screen. Again, wuser input is in |owercase. Coments on the right
i ndi cate where you enter characters that do not echo.

Figure 2-3: Terminal Display of Debuggi ng Session

@lebug x

MACRO X

LI NK: Loadi ng

[ LNKDEB DDT executi on]

DDT

start/ MOVE P, PWORD# Enter <LF>.

. JBDA+1/ MOVE! | DX, TABLE1# . | bda$k x$: Ent er <TAB>.
TABLE1/ 0 2 Enter <LF>.
TABLE1+1/ 0 3 Enter <LF>.
TABLE1+2/ 0 $ Ent er <ESC><RET>.
START+1/ MOVE! | DX, TABLE1 Enter <LF>.

START+2/ PUSHI P, ADDEM . $b $g
$1B>>START+2/ PUSHI P, ADDEM  $$x
START+3/ MOVEI | DX, TABLE1 $x

| DX/ TABLE1 TABLE1

START+4/ MOVE 2( 1 DX) $ Ent er <ESC><TAB>.
TABLE1+2/ 0 Ent er <BKSP>.
TABLE1+1/ 3 Ent er <BKSP>.

TABLEL/ 2 start$b  $g
$2B>>START/ MOVE P, PAORD  $x

P/ -10, , PWORD PWORD/ -10, , PAORD
START+1/ MOVEI | DX, TABLE1 $x

| DX/ TABLE1 TABLE1
START+2/ PUSH] P, ADDEM  $x

P/ -7,, STACK
<JUMP>
ADDEM  MOVE O(IDX)  $x

o/ 2 TABLEL/ 2
ADDEM+1/  ADD 1(1DX)  $x

o/ 5 TABLE1+1/ 3
ADDEM+2/  MOVE 2(1DX)  $x

o/ 0 TABLE1+2/ 0
ADDEM+3/ POPJ P, 0 Ent er <BKSP>.
ADDEM#2/ MOVE 2( | DX) nmovem r 0, answer (i dx) Enter <RET>.
v MOVEM 2( | DX) .$b  $g
$2B>>START/ MOVE P, PAORD  $p
$1B>>START+2/ PUSH] P, ADDEM  $p
$3B>>ADDEM+2/ MOVEM 2( | DX) $x

o/ 5 TABLE1+2/ 5
ADDEM+3/ POPJ P, 0 start +4%b $p
$4B>>START+4/ MOVE 2( | DX) $x

o/ 5 TABLE1+2/ 5
START+5/ JFCL O NZ

@

2-20



GETTI NG STARTED W TH DDT

2.5 PROGRAMM NG W TH DDT IN M ND
There are a few MACRO 20 programm ng techniques that nmake debugging
with DDT easier. These techniques primarily concern the use of |abels
and synbol s.
Label s that neaningfully describe (perhaps menonically) the function
of the code are nore helpful when examining code and setting
breakpoints than labels that are alphanunerically coded (such as
A0001) .
When using synbols as offsets into tables, you can prevent DDT from
di spl aying the offset synbol in place of the synbol's nunmeric value if
you define the synbol in this way:

synbol ==expr essi on

Synbol is still entered in the synbol table, and you can use synbol as
i nput to DDT, but DDT does not display symbol on output.

For exanple, if you have defi ned:
OFFSET==3

DDT di splays the contents of a word that contains the value of 3 as:
addr/ 3

rat her than:
addr/ OFFSET

where addr is the address of the word. See the MACRO Assenbler
Ref erence Manual for nore information about defining synbols.

2-21



2-22



CHAPTER 3

DDT COVIVAND FORVAT

3.1 COWAND SYNTAX
The conpl ete syntax of a DDT command is:
{argl<}{arg2>}{arg3}{ <ESC>{ <ESC>}{arg4}}c{arg5}

where argl, arg2, arg3, arg4, and arg5 are argunents to the command c.
Argl, arg2, and arg3 can be any |legal DDT expression. Argl nust be
followed by a left angle bracket (<), and arg2 nust be followed by a
right angle bracket (>). Arg4 can only be a number. Arg5 is a text
argunent of the form

[ text/ or c<ESC>

where text is a string of characters, the slashes (/) are delimters
that can be any character not contained in text, and c is a single
character.

DDT commands never use all five argunents. Each argunent is optiona
or required according to the syntax of the specific comand. Mst DDT
commands are not nore conplicated than:

ar g3<ESC>c or ar g3<ESC>ar g4c

You can enter al phabetic conmands and text arguments in uppercase or
| ower case

An argunent to a command can be the result of executing another
comand. For exanple, you can enter a command to evaluate a text
string, and then enter another conmmand to deposit in nmenory the result
of evaluating the text string. The entire conmand |ine would be:

"/ abcd/ <RET>
where /abcd/ is the argument to the command " (quotation mark). The

function of the quotation mark command is to evaluate the string
(abcd) within the delimters (/) as a left-justified ASCI| string.

3-1



DDT COVIVAND FORVAT

The left-justified ASCII string abcd is then the argunent to the
command <RET> (entered by pressing the RETURN key). The function of
the <RET> conmmand is to deposit an argunment (in this case, the string
abcd) into the open location. The " conmand is described in this
chapter, and the <RET> command is described in Chapter 4 (D splaying
and Modi fying Menory).

Most conmands produce results that are immediately visible, such as
commands that display the contents of nenory |ocations. However,
comands such as those that invoke search functions or those that
evaluate text expressions (as above) nmay not produce inmediately
visible results. |If you enter a question mark (?) while DDT is
perform ng a function invoked by one of these commands, DDT displays a
nessage that tells you what DDT is currently doing. For exanple, such
a nmessage might be

Sear chi ng: addr/ val ue

where addr is the address that DDT is to next test as part of a
search, and value is the contents of the nenory |ocation at addr.
Still other commands return values that DDT does not display, but can
use as argunments to ot her conmands.

3.2 [INPUT TO DDT

You enter argunments to DDT as expressions. An expression can be a
single value, or a conbination of two or nore values with one or nore

operators.

3.2.1 Values in DDT Expressions
Val ues in DDT expressions can be:
o octal or decimal integers
o floating point nunbers
0 synbols
o values that are returned by comrmands
o text

To enter an octal integer value, sinply enter the integer in octa
digits. For exanple

70707065



DDT COVIVAND FORVAT

To enter a decinmal integer value, enter the integer in decimal digits
and follow the value with a decimal point. For exanple

9876.

To enter a floating point nunber, use regular or scientific notation.
For exanple, you can enter the value .034 as one of the follow ng

. 034
3.4E-2

Note that 1. is a decimal integer, while 1.0 is a floating point
number .

To enter a synbol as a value in an expression, type in the synmbol nane
as defined in your program To enter an undefined synbol that you can
define later, enter:

synbol #

where synbol is the synbol that you will later define. See Chapter 7
(Manipulating Synbols in DDT) for nore information about wusing
undefi ned synbol s.

You can enter a command that returns a value as a value in an
expressi on. DDT commands that return values and the val ues they
return are listed in Table 3-1.

Tabl e 3-1: Conmands that Return Val ues
COVMAND VALUE RETURNED VALUE ALSO
KNOWN AS
The address of the current |ocation.

<ESC>. The address of the next user program $.
instruction to be executed.

<ESC><ESC>. The previous val ue of "<ESC>.". $S.

<ESC>nB The address of the DDT |ocation that $nB
contai ns the address of breakpoint n.

<ESC>nl The address of the DDT |ocation that
contains the saved nachine state flags
(user - program cont ext).

<ESC>nM The address of DDT "nask" n.

<ESC>Q The current quantity. $Q

3-3



DDT COVIVAND FORVAT

Table 3-1: Commands that Return Values (Cont.)

COVIVAND VALUE RETURNED VALUE ALSO
KNOWN AS
<ESC><ESC>Q The current quantity, with halves $3Q
swapped.
<ESC>nU The address of the DDT |ocation that

contains the argurment (or default) that
was given in the virtual addressing
conmand: expr <ESC>nU

The conmands <ESC>nB, <ESC>nl, <ESC>nM and <ESC>nU, return val ues that
are t he addresses of locations internal to DDIT, which contain
information that you can use and nodify. For brevity, these comands
are said to address those internal DDT | ocati ons.

For exanple, the command <ESC>nB returns (but does not display) the

address of the DDT location that contains the address of breakpoint n,

and the conmand addr/ (address foll owed by slash) displays the contents

of the location at addr. To display the address of breakpoint n, enter:
<ESC>nB/

where you enter the command <ESC>nB as the expression for DDT to
eval uate as addr.

You can enter text to be interpreted in the foll ow ng ways:
o left-justified ASCII strings
o left-justified SIXBIT strings
0 single right-justified ASCII characters
0 singleright-justified SIXBIT characters
o RADI X50 words

You can enter text expressions in uppercase or |owercase. DDT
translates strings to uppercase for SIXBIT or RAD X50 text as required.

The termlong text string refers to an expression in a DDT conmand that
is a string of text characters that requires nore than one 36-bit
expression for full evaluation. You can enter long text strings in
SIXBIT and ASCI| as DDT expressions. |If you use a long text string as
an expression, DDT assunes that you will enter a comand that deposits
the expression in nenory.




DDT COVIVAND FORVAT

DDT evaluates the string one 36-bit expression at a tine. After
evaluating the first 36-bit expression, DDT deposits the expression in
the open location, <closes the open Ilocation, and opens the next
| ocati on.

DDT t hen eval uates the next 36-bit expression contained in the string,
and deposits that expression in the (new) open location. This process
continues until you enter ¢, the command. |f you enter a comand that
does deposit to nmenory, DDT deposits the final 36-bit expression in the
open | ocation, and updates the location counter according to the rules
of that particular command. The current quantity is the last 36-bit

expressi on that DDT eval uat ed.

If you do not enter a command that deposits to nenory, DDT uses, as the
argunent to the command, the 36-bit expression that was | ast eval uated.
Al'l other 36-bit expressions that were evaluated as part of the string
have been deposited, and the current and open |ocations were updated
accordingly. The current quantity is then the last 36-bit expression
that DDT eval uat ed.

If there is no open |ocation when you begin typing the |long text string,
DDT evaluates only the first 36-bit expression, ignores the rest of the
string, and uses the first 36-bit expression as the argunent to the
conmand. The current quantity is then the first 36-bit expression that
DDT evaluated in the string. |f you enter a command that deposits to
menory, it has no effect because there was no open | ocation

The syntax to enter an ASCI| string is

“/text/
where text is the string, and the slashes (/) represent any printing
character that is not contained within text. DDT evaluates the string

as a series of 36-bit expressions, each in 7-bit ASCI f or mat
(left-justified), with all unused bits reset.

For exanple, if you enter
"+abc/ def +

DDT eval uates one 36-bit expression as the 7-bit ASCI| string abc/d in
bits 0-34, and bit 35 reset. |If there is no open |ocation, DDT uses
that expression as the argunent to the command, and that expression
becones the current quantity.

If there is an open | ocation, DDT deposits abc/d in the open |ocation,
closes it, and opens the next location in nmenory. DDT then evaluates a
second 36-bit expression as the 7-bit ASCI| string ef in bits 0-13, and
bits 14-35 reset. The last 36-bit expression eval uated becones the
current quantity.



DDT COVIVAND FORVAT

NOTE

You cannot use this format to enter an ASCI| string that
begi ns Wi th t he ESCAPE character, because <ESC
tern nates t he command t hat enters a single
right-justified ASCIlI character (in this case, your
i ntended delimter).

The syntax to enter a SIXBIT string is

<ESC>"/text/

where text is the string, and the slashes (/) represent any printing
character that is not contained within text. DDT evaluates the string

as a series of 36-bi t expr essi ons, each in SIXBIT format
(left-justified), with any unused bits in the |ast 36-bit expression
reset. DDT translates |owercase characters to uppercase; all other

non-SI XBIT characters cause DDT to sound your term nal buzzer or bel
and di splay a question mark.

For exanple, if you enter
<ESC>"/ gwer t yu/

DDT eval uates one 36-bit expression as the SIXBIT string QNERTY in bits
0- 35. If there is no open |location, DDT uses that expression as the
argunent to the command, and that expression becones the current
quantity.

If there is an open |ocation, DDT deposits QAERTY in the open |ocation,
closes it, and opens the next location in nmenory. DDT then evaluates a
second 36-bit expression as the SIXBIT character U in bits 0-5, wth
bits 6-35 reset. The last 36-bit expression eval uated becones the
current quantity.

The syntax to enter a right-justified ASCII character is

" c<ESC>

where ¢ is the character. DDT evaluates this as one 36-bit expression
with the 7-bit ASCI| character ¢ in bits 29-35, and bits 0-28 reset.



DDT COVIVAND FORVAT

The syntax to enter a right-justified SIXBIT character is

<ESC>" c<ESC>

where c is the character. DDT evaluates one 36-bit expression with the
SIXBIT character c¢ in bits 30-35, and bits 0-29 reset. DDT translates
| owercase characters to uppercase; all other non-SI XBI T characters cause
DDT to sound your term nal buzzer or bell and display a question nmark.

The syntax to enter a RADI X50 word is

t ext <ESC>5"
where text is any string of RADI X50 characters up to six characters
| ong. DDT eval uates one 36-bit expression with bits 0-3 reset and the

RADI X50 string text in bits 4-35. DDT ignores any characters in text
after the sixth.

For exanple, if you enter
poi uyt r <ESC>5"

DDT eval uates one 36-bit expression with bits 0-3 reset and the RADI X50
string POUYT in bits 4-35. DDT ignores the character r. DDT
transl ates | owercase characters to uppercase. Characters in text not in
the RADI X50 character set that are DDT conmmands use, as an argunent to
the command, any characters already entered. Characters in text not in
the RADI X50 character set that are not DDT conmands cause DDT to sound
your term nal buzzer or bell and display a question mark.

3.2.2 OQperators in DDT Expressions

When you enter an expression, DDT eval uates the expression to create a
36-bit quantity but does not necessarily wuse all 36 bits when it
executes the command. For exanple, you can enter a conplete MACRO
instruction when giving an argunent to a conmand that requires an
address, but DDT uses only the address specified by the instruction (and
ignores the rest of the evaluated expression) when it executes the
comand.

Table 3-2 lists DDI's expression operators and the effects those
operators produce on the evaluation. The termvalue so far represents
the accunul ated 36-bit value resulting fromeval uati on of the expression
to that point.




Table 3-2

OPERATOR

=+

(apostrophe)

space

DDT COVIVAND FORVAT

Ef fects of Operators When Eval uati ng Expressions

EFFECT ON EVALUATI ON

Add the 36-bit value on the left to the 36-bit
value on the right, wusing twd's conplenent
addi ti on.

Subtract the 36-bit value on the right fromthe
36-bit value on the left, using two's conpl enent
subtracti on.

Multiply the 36-bit value on the left by the
36-bi t val ue on the right, wusing PDP-10
full -word integer nmultiplication. DDT uses only
the | oworder 36 bits of the result.

Divide the 36-bit value on the left by the
36-bi t val ue on the right, wusing PDP-10
full -word integer division. DDT ignhores any
remai nder .

NOTE

Apost rophe is DDT' s di vi si on
operator. / (slash) is a DDT command
to exam ne nenory, and is never used
in DDT to indicate division

Add the previous expression (normally an opcode)
to the value so far, and add the |ow order 18
bits of the value at the right of the space to
the | ow order 18 bits of the value so far. DDT
ignores carries resulting fromthe addition, and
does not change the left half of the value so
far.



Table 3-2

OPERATOR

, (comma)

0

@

(two commas)

DDT COVIVAND FORVAT

Ef fects of Operators When Eval uati ng Expressions (Cont.)

EFFECT ON EVALUATI ON

If you are entering an |/O instruction, shift
the loworder 18 bits of the expression at the
left of the comm 26 bits to the left (to the
device field of the instruction), otherw se
shift the loworder 18 bits of the expression at
the left of the comma 23 bits to the left (to
the Afield of an instruction). Then |logically
OR the result into the value so far

NOTE

DDT does not check whether the val ue
at the left of the commm is a
legitimte device or AC address, and
may overwite other parts of the
i nstruction.

Swap the halves of the expression wthin the
parentheses and add the resulting expression to
the value so far. This nmkes it possible to

ent er an instruction that wuses an index
register.
NOTE
DDT does not check whether the val ue
Wit hin t he par ent heses is a
legitimate AC address, and may
overwite ot her parts of t he

i nstruction.

Assune the expression is an instruction and set
the indirect bit (bit 13) of the value so far.

Move the | ow order bits of the expression at the
left of the commas to bits 0-17 and build a new
18-bit expression in the right half.



DDT COVIVAND FORVAT

The nonarithnetic operators allow you to ent er expressi ons
instruction format as well as in data fornat.

To enter an instruction, format the instruction as you would
MACRO- 20 program  For exanpl e:

MOVE R4, @/ARL+OFFSET( R5)

Fol | ow
<TAB>.

NOTE

an opcode (such as MOVE) with a space, not a

in

in

a

To enter halfwords, enter the values (nunbers or synbols) separated by

two commas (,,).

The hal fwords can be synbolic or absol ute val ues.

exanpl e:
-1,, SYymw
NOTE
DDT is not designed to evaluate conplicated arithnetic
expressi ons. The nonarithnretic operators are

i mplenented to enable DDT to evaluate expressions you

enter
val ues

as MACRO- 20 instructions and hal fwords. Using
and operators for other purposes may not produce

the results you intend

3-10

For



CHAPTER 4

DI SPLAYI NG AND MODI FYI NG MEMORY

4.1 DI SPLAY MODES

A major function of DDT is displaying the contents of nenory words, both
data and instructions. You can choose whether to display the contents
of nmenory words as synbols or as nuneric values. You can also select
the radi x in which DDT di splays numeric val ues.

DDT di spl ays synbol s, |abels, and nost nessages in uppercase

4.1.1 Default Display Mdes

There is no sure way for DDT to distinguish between instruction and data
words, or between data words of different formats.

DDT di spl ays menmory words in synbolic node by default. Synbolic node is
described in Table 4-1. DDT tests for the condition on the left, and if
the condition is met, displays the word in the format described on the
right. DDT perforns the tests in descendi ng order

Table 4-1: Evaluation of Synbolic Display Mde

CONDI TI ON DDT DI SPLAYS EXAMPLE

Bits 0-18 are all set. A negative nunber -45

in the current

radi x.
The 36-bit value is defined The synbol . SYMBL1
in the user program synbol HALT
tabl e.
The opcode field is zero. Hal f wor ds. 345, , - 27



DI SPLAYI NG AND MCDI FYI NG MEMORY

Table 4-1: Evaluation of Synbolic Display Mde (Cont.)

CONDI Tl ON DDT DI SPLAYS EXAMPLE
The opcode and I, X, and Y The OPDEF. CORE 6,
fields, or the opcode and A
fields match an OPDEF in the
user program synbol table.
The opcode mat ches a The instruction. MOVE 3, SYMBL
definition in DDT's interna
hardware instruction table.

No mat ch. Hal f wor ds. 3445, , - 23

By default, DDT displays nuneric values in radix 8. Leading zeros are
al ways suppressed.

4.1.2 Selecting D splay Mdes
You can sel ect display nodes to control:

o the format in which DDT tries to interpret the contents of nenory
|l ocations; for exanple, as instructions, or as floating-point
nunmbers.

o0 whet her addresses are displayed as synbolic or nuneric val ues.

o the radix in which nuneric values are displ ayed

In addition, you can specify these nodes on a short-term (tenporary node)
or long-term (prevailing node) basis.

A prevailing display node remains in effect wuntil vyou select another
prevaili ng node, but nay be overridden by a tenporary node until you enter
a conmand that restores the prevailing display node. DDT conmands that

restore the prevailing display node are:

o {expr}<RET> (deposit expr and cl ose | ocation)
0 <ESCG (start program execution)
0 <ESCP (proceed from a breakpoint)

0 <ESCW <ESC>E, <ESC>N (perform a search)

0 <ESCz (zero nenory)



DI SPLAYI NG AND MCDI FYI NG MEMORY

0 instr<ESC>X (execute instr)
0 <ESCV (watch a | ocation)
The syntax of conmmands that set the prevailing node is:
<ESC><ESC>npde
where node is one of the display nodes shown in Table 4-2.
The syntax of commands that set a tenmporary node is:
<ESC>node
where node is one of the display nodes shown in Table 4-2.
The current display node is the nbde (prevailing or tenporary) in which

DDT wll display the next word (unless you enter a conmand to change the
di spl ay node).

DDT has two "masks" that control the action of two of the display nodes.

<ESC>3M is a command that addresses a DDIT location that contains the
output byte size nmask. Wien the current display node is O each bit that
is set in the nmask indicates the position of a low order bit of a byte in
the word being displayed. In this node, bit 35 is always assuned to be
set. For exanple, if the output byte size nmask contains:

510410100400 (octal)
the byte sizes specified are, fromleft toright, 1, 2, 3, 4, 5, 6, 7, and
8. Wen displaying a word in O nmode that contains 777777,,777777, and the
current radix is 8, DDT displays:

1,3,7,17,37,77,177, 377

The default value of the output byte size mask is =zero, specifying one
36-bit byte.

You can set the output byte size nmask with the command:
expr <ESC>3M
where expr evaluates to the bit pattern required

You can al so exam ne and change the output byte size mask with the exam ne
and deposit commands described later in this chapter.

4-3



DI SPLAYI NG AND MCDI FYI NG MEMORY

<ESC>2M is a command that addresses a DDT location that contains the
maxi mum synbolic offset. Wen DDT displays an address in R(elative) node,

it displays the address synbolically, that is, as a symbol, or as a synbol

+ the nuneric offset of the address from that synbol. The maxi num
synbolic offset (mnus 1) determ nes the maxi num of fset address that DDT
di splays synbolically, and defaults to 1000 (octal). DDT di spl ays
addresses beyond that offset in A(bsolute) node. For exanple, assune that

the nmaximum synbolic offset is 2, and that you are exam ning subroutine
ADDEM i n program X. MAC (Fig 2-1), using <LF> to display instructions in
sequence. DDT di spl ays:

ADDEM MOVE 0( 6)

ADDEM#1/ ADD 1(6)

addr/ MOVE 2( 6)
where addr is the absolute address (for exanple, 14414) of the | ocation.
You can set the maxi mum synbolic offset with the command:

expr <ESC>2M

where expr evaluates to the offset required.

You can al so exam ne and change the nmaxinum synbolic offset with the
exam ne and deposit comuands described later in this chapter.

DDT di spl ay nodes and the commands that select themare described in Table
4-2.

Tabl e 4-2: DDT Display Mdes

FORMAT MODES
MCODE EFFECT
C Di splay nmenory word as nunbers in the current radi x (see
Radi x Mbdes) .
F Di splay nenory word as a floating point decinmal nunber.
H Display nenmory word as two halfword addresses (see

Addr ess Modes) separated by two commas (,,).

(0] Di splay nenory word as nuneric bytes of sizes that are
speci fied by the <ESC>3M mask.

no Display nmenory word as n-bit nuneric bytes, (wth
trailing remai nder byte, as required).



Tabl e 4-2

1S

nT

nR

DI SPLAYI NG AND MCDI FYI NG MEMORY

DDT Di splay Modes (Cont.)

FORMAT MODES
EFFECT
Di splay nenory word in synbolic node (default).
Search DDT's internal hardware opcode table before
searching the wuser's synbol table, otherw se follow
rul es for synbolic node.
Di splay menory word as ASCI| text, using n-bit bytes.
n=1: Byte Pointer Fornmat
n=5: RADI X50
n=6: SIXBIT
n=7 through 36

Specifies the nunber of bits per byte. The
default is 7-bit ASClI.

n=0: ASClZ
(Stop ASCl Z typeout by typing any character.)

Di spl ay addresses as absolute values in the -current
radi x.

Di spl ay addresses as values relative to synbol s
(default). DDT displays the offsets in the current
radi x. The maximum offset is controlled by the value
stored in the <ESC2M nask, and defaults to 1000
(octal).

RADI X MODES

EFFECT

Di splay nuneric values in radix n (default=8), where n
is a decimal nunber greater than 1. If n=8, DDT
di splays the word as octal halfwords, otherwise DDT
di spl ays the word as one nunber.



DI SPLAYI NG AND MCDI FYI NG MEMORY

4.2 DI SPLAYI NG EXPRESSI ONS

DDT has three commands you can use to display expressions in different
nodes. They are

; (sem col on)

= (equal sign)

_ (underscore)
The syntax of these commands is:

{expr}c
where expr is the expression to display (expr defaults to the current
quantity), and c¢ is one of the above commands. These commands are
useful for redisplaying the current quantity wthout affecting the

current display node. Table 4-3 lists the comands to display
expressions and their effects.

Tabl e 4-3: Comands to Display Expressions

COVIVAND EFFECT
; Di splay the current quantity in the current display
node.
expr; Di splay expr in the current display node.

= Display the current quantity as a nunber in the
current radix.

expr = Di spl ay expr as a nunmber in the current radix.
- Di splay the current quantity in 1$ node.

expr _ Di spl ay expr in 1$ node.

4.3 DI SPLAYI NG BYTE PO NTERS

If you set the display node to 1T, DDT displays the contents of the
menory |ocation as a byte pointer. DDT can display one-word | ocal
one-word global, and two-word byte pointers. DDT displays the P and S
fields, and the address as determned by the |, X, and Y fields of the
byte pointer.

In section zero, DDT displays only one-word byte pointers (local and
gl obal ).

4-6



DI SPLAYI NG AND MCDI FYI NG MEMORY

For exanple, if the contents of the location at ADDR2 is 100702, , addr,
where addr is the value of synmbol LABL2, the following illustrates
one-word | ocal byte pointer display:

addr 2/ 100702, , addr <ESCSI T; 10 7 LABL2(2)

The following illustrates one-word gl obal byte pointer display, where
addr is the value of synbol LABL2

1,, addr 2/ 610002, , LABL2 <ESC>I T; 44&7 2, , LABL2

The following illustrates two-word gl obal byte pointer display, where
addr is the value of synbol LABL2 (DDT echoes <BKSP> as "H):

1,, addr2/ 440740, ,0 <LF>
1,, addr2+1/ 3, , addr <ESC>| TMH
1,, addr 2/ 44 7 3,, MAI N <2>

4.4 DI SPLAYI NG AND DEPGSI TI NG | N MEMORY

DDT all ows you to display the contents of nenory |ocations and deposit
a new value in the open location. |In perforning these functions, you
nmust understand the <concept of the open location, the current
| ocation, the l|ocation sequence stack, and the current quantity.

The open |l ocation is a nenory location (or AC) that is "open" for
nodi fication by the next conmand. There is never nore than one
| ocation open at a tine. DDT always closes the open |location before
openi ng anot her.

The | ocation counter contains the address of a word in nmenory that has
been referenced (inplicitly or explicitly) by the previous conmand,
and that is the default point of reference for the next command. That
word is known as the current |ocation. DDT uses the address of the
current |location as the default address in nost commands. The current
| ocation is often, but not always, the open |ocation.

Most DDT commands change the current location to a word specified by
an address given (explicitly or by default) in the conmand. Commands
that do not are so indicated

“." (period) is a command that returns (but does not display) the
address of the current |ocation.

When you first enter DDT, the current location is zero.



DI SPLAYI NG AND MCDI FYI NG MEMORY

The | ocation sequence stack is a "ring" of seventeen words, each
containing the address of a prior current location, or of a match
found during a search. The present value of the current location is
not placed in the ring.

Entries are nade to and retrieved fromthe | ocation sequence stack in
a last-in, first-out nanner. Mbst comands that change the | ocation
counter by values other than +1 and -1 cause DDT to place the address
of the current location (before the change) on the |ocation sequence
stack. Addresses of matching |ocations found during searches are al so
pl aced on the | ocation sequence stack. Wen DDT enters a new value in
the next word on the stack, the new value becomes the current |ocation
stack entry. This is simlar to PUSH ng entries on a stack. Wen the
current location stack entry is the last location on the |location
sequence stack, DDT enters a new value on the stack by "w apping
around" to the beginning of the stack and overwiting the value in the
first location on the stack. The first location on the stack then
contains the current |ocation stack entry.

Certain DDT commands change the address of the current |ocation to the
current location stack entry, and then change the current |ocation
stack entry to the previous entry. This is simlar to POPing entries
off a stack, and allows you to "return' to |locations that have
previously been the current |ocation. Wen the first location on the
| ocati on sequence stack contains the current |ocation stack entry and
DDT changes the address of the current location to the current
| ocation stack entry, DDT "waps around" to the end of the stack, and
the value contained in the |ast word of the stack becones the current
| ocation stack entry (whether or not the stack was previously "full").

The current quantity is a value that is the npbst recent of:

o the last 36-bit quantity that DDT di splayed (an expression or
the contents of a nmenory | ocation)

o0 the last expression that you entered as an argument to a
conmmand that deposits to nenory

This value is also known as the |ast value typed. <ESC>Q is a command
that returns (but does not display) the current quantity. DDT issues
an inplicit <ESCQto return this value for use as the default
argunent for some comands.

You can give the current quantity as an argunent to a conmand by
entering the conmmand <ESC>Q as the argunent.

The command <ESC><ESC>Q returns the current quantity with the right
and | eft hal ves swapped

Thi s manual uses the term$Qto refer to the value that is returned by

the comand <ESC>Q and the term$$Qto refer to the value that is
returned by the conmand <ESC><ESC>Q

4-8



DI SPLAYI NG AND MCDI FYI NG MEMORY

Sonme commands cal cul ate the address of the |ocation to be opened from
an expression given or defaulted in the comand. Qher conmmands use
the address of the <current location or entries on the location
sequence st ack.

The general syntax of these conmands is:
{expr}{<ESC}c
where expr is any |egal DDT expression, and c is the command.
NOTE
See Values in DDT Expressions in Chapter 3 for a
discussion of long text strings as values in DDT
expressi ons.
Table 4-4 summarizes the comands and their effects. Compl et e

descriptions of the commands follow the table.

Tabl e 4-4: DDT Conmands to Display Menory

COMVAND DI SPLAY MCDE OPEN CHANGE DEPCSI T
CONTENTS OF THE CURRENT EXPR
DI SPLAY LOCATI ON LOCATI ON
/ Yes Current Yes Yes(1) No
[ Yes Nuneri c Yes Yes(1) No
] Yes Synbol i c Yes Yes(1) No
! No Suppr ess Yes Yes(1) No
\ Yes(2) Current Yes No Yes(1)
<TAB> Yes(2) Current Yes Yes Yes(1)
<RET> No Rest ore No No Yes(1)
<LF> Yes(2) Current Yes Yes(. +1) Yes(1)
<BKS/|?> Yes(2) Current Yes Yes(.-1) Yes(1)
or

(1) If you enter expr.

(2) If not suppressed by !.



DI SPLAYI NG AND MCDI FYI NG MEMORY

4.4.1 Commands that Use the Current Location

The conmands <RET>, <LF>, and <BKSP> use the address of the current
| ocation to determ ne the next address of the current |ocation.

These conmands do not nake entries to the | ocation sequence stack
{expr}<RET> does the follow ng:

0 deposits expr (if given) in the open |ocation

0 closes the open |location

0 resets the current typeout nbde to the prevailing typeout
node

o0 does not change the address of the current |ocation
{expr}<LF> does the follow ng:

0 deposits expr (if given) in the open | ocation

0 closes the open |location

o increnments the |ocation counter

0 opens the current |ocation

o displays the open location (unless di spl ay has been

suppressed by !)

{expr}<BKSP> and {expr}” do the follow ng:

0 deposits expr (if given) in the open | ocation

0 closes the open |location

o decrenents the |ocation counter

0 opens the current |ocation

o displays the open location (unless di spl ay has been
suppressed by !)

4-10



DI SPLAYI NG AND MCDI FYI NG MEMORY

4.4.2 Commands that Use the Locati on Sequence Stack

The commands <ESC><RET>, <ESC><LF>, and <ESC><BKSP> use the current
location stack entry to determine the next address of the current
| ocati on.

Repetitions of these commands refer to successively earlier entries on
the stack, until you again address the nbst recent entry.

These conmands do not nake entries to the | ocation sequence stack
{expr}<ESC><RET> does the foll ow ng:

0 deposits expr (if given) in the open | ocation

0 closes the open |ocation

o changes the value contained in the location counter to the
current |ocation stack entry

0 opens the current |ocation

0 starts a new line and displays the address and contents of
the open location in the current display node

0 causes the previous entry on the |location sequence stack to
becone the current location stack entry

NOTE
If display is suppressed as a result of wusing the
command, the command {expr}<ESC><RET> restores the
current display node, which can be either a tenporary
or prevailing display node.
{expr}<ESC><LF> does the follow ng
0 deposits expr (if given) in the open |l ocation

0 closes the open |location

o changes the value contained in the location counter to the
current |ocation stack entry

o increnents the |ocation counter
0 opens the current |ocation

0 starts a newline and displays the address of the open
| ocation

4-11



DI SPLAYI NG AND MODI FYI NG MEMORY

o displays the contents of the open location (unless display
has been suppressed by !)

0 causes the previous entry on the |location sequence stack to
becone the current location stack entry

{expr} <ESC><BKSP> and {expr}<ESC>" do the foll ow ng:
o deposits expr (if given) in the open |ocation
o closes the open |ocation

o changes the value contained in the location counter to the
current |ocation stack entry

0o decrenents the location counter

o opens the current |ocation

o displays the address of the open |ocation

o displays the contents of the open location (unless display
has been suppressed by !)

0 causes the previous entry on the |ocation sequence stack to
becone the current location stack entry

4.4.3 Commands that Use an Address within the Command
The conmands:

(sl ash)
(left square bracket)
(right square bracket)
(excl amati on point)

\ (backsl ash)
<TAB>

——— ~

use an expression given in the command (either explicitly or by
default) to determne the addresses of the current |ocation and the
open | ocati on.

4-12



DI SPLAYI NG AND MCDI FYI NG MEMORY

The conpl ete syntax of these comuands is:
{expr}{<ESC>{<ESC>}}c

where expr may be an address, ".", a synbol, or any expression that is
legal in DDT, and ¢ is the conmand.

When you use the commands /, [, ], !, \, and <TAB>
o If you onmit expr
> DDT uses the current quantity as a default.
> <TAB> enters the address of the current location on the
| ocati on sequence stack and changes the current |ocation

to the address determned fromthe current quantity.

o |If you enter expr, DDT enters the address of the current
| ocation on the |ocation sequence stack (except \).

o DDT treats expr (whether given or defaulted) as if it were in
i nstruction f or mat and perforns the effective address
cal cul ation as foll ows:

> |f you omit <ESC>, DDT does not perform indexing or
i ndirection.

> |f you include one <ESC>, DDT treats expr as an |FIW
(instruction format indirect word), and uses the | and Y

fields of expr to performindexing and indirection when
appropri ate.

> |f you use <ESC><ESC>, DDT wutilizes EFIW (extended
format indirect words), as appropriate, when performng
ef fective address cal cul ati ons, and can thereby cal cul ate
30-bit addresses.

> |n section zero, when you include <ESC<ESC>, it is
treated as one <ESCs.

These conmands al ways do the follow ng:
o close the open |ocation
o open the location at the address indicated by expr

o change the current quantity to the value displayed (al
conmands except !)

4-13



DI SPLAYI NG AND MCDI FYI NG MEMORY

The following is a list that gives a conplete description of the
ef fects of each command.

COVIVAND

/

expr/

EFFECTS

cl oses the open |ocation

opens the location at the address cal culated fromthe current
quantity

di spl ays the contents of the open location in the current
di spl ay node

sets the current quantity to the val ue di spl ayed

cl oses the open | ocation
opens the location at the address cal cul ated from expr

enters the address of the current location on the |[|ocation
sequence stack

changes the current location to the location at the address
cal cul ated from expr

di spl ays the contents of the open location in the current
di spl ay node

sets the current quantity to the val ue di spl ayed

cl oses the open | ocation

opens the location at the address cal culated fromthe current
quantity

di spl ays the contents of the open location in nunmeric node in

the current radix

sets the current quantity to the val ue di spl ayed

4-14



expr [

expr]

DI SPLAYI NG AND MCDI FYI NG MEMORY

cl oses the open |ocation
opens the location at the address cal cul ated from expr

enters the address of the current location on the |[|ocation
sequence stack

changes the current location to the location at the address
cal cul ated from expr

di spl ays the contents of the open location in nunmeric node in
the current radix

sets the current display node to nunmeric node in the current
radi x

sets the current quantity to the val ue di spl ayed

cl oses the open | ocation

opens the location at the address cal cul ated fromthe current
quantity

di spl ays the contents of the open location in synbolic node
sets the current display node to symnbolic node

sets the current quantity to the val ue di spl ayed

cl oses the open | ocation
opens the location at the address cal cul ated from expr

enters the address of the current location on the |[|ocation
sequence stack

changes the current location to the location at the address
cal cul ated from expr

di spl ays the contents of the open location in synbolic node
sets the current display node to synbolic node

sets the current quantity to the val ue di spl ayed

4-15



expr!

DI SPLAYI NG AND MCDI FYI NG MEMORY

cl oses the open |ocation

opens the location at the address cal culated fromthe current
quantity

does not display the contents of the open |ocation
suppresses display of the open location by the \, <TAB>,
<LF>, and <BKSP> commands (any other display comand restores

the current display node)

does not change the current quantity

cl oses the open | ocation
opens the location at the address cal cul ated from expr

enters the address of the current location on the |[|ocation
sequence stack

changes the current location to the location at the address
cal cul ated from expr

does not display the contents of the open | ocation
suppresses display of the open location by the \, <TAB>,
<LF>, and <BKSP> commands (any other display comand restores

the current display node)

does not change the current quantity

cl oses the open | ocation

opens the location at the address cal culated fromthe current
quantity

di spl ays the contents of the open location in the current
di spl ay node (unl ess di splay has been suppressed by !)

sets the current quantity to the val ue di spl ayed

4-16



expr\

<TAB>

(0]

expr <TAB>

(0]

(0]

DI SPLAYI NG AND MCDI FYI NG MEMORY

deposits expr in the open |ocation

cl oses the open |ocation

opens the location at the address cal cul ated from expr

does not change the address of the current |ocation (and does
not enter the address of the current |location on the l[ocation

sequence st ack)

di spl ays the contents of the open location in the current
di spl ay node (unl ess di splay has been suppressed by !)

sets the current quantity to the val ue di spl ayed

cl oses the open | ocation

opens the location at the address cal culated fromthe current
quantity

enters the address of the current location on the |ocation
sequence stack

changes the current location to the location at the address
calculated fromthe current quantity

starts a newline and displays the address of the open
| ocation (which is also the current |ocation)

di spl ays the contents of the open location in the current
di spl ay node (unl ess di splay has been suppressed by !)

sets the current quantity to the val ue di spl ayed

deposits expr in the open | ocation
cl oses the open | ocation
opens the location at the address cal cul ated from expr

enters the address of the current location on the |[|ocation
sequence stack

changes the current location to the location at the address
cal cul ated from expr

4-17



DI SPLAYI NG AND MODI FYI NG MEMORY
0 starts a newline and displays the address of the open
| ocation (which is also the current |ocation)

o displays the contents of the open location in the current
di spl ay node (unl ess di splay has been suppressed by !)

0 sets the current quantity to the val ue di spl ayed
You can treat expr as an |FIW(instruction format indirect word), and
use any indexing and indirection specified by expr to conpute the
ef fective address of the location to be opened. Use the conmand form
{expr} <ESC>c
where cis /, [, ], !, \, or <TAB>.

For exanple, assune the following conditions as indicated by the
di spl ay commands:

COVWAND DI SPLAY EXPLANATI ON

LABL1/ SYML Di splay contents of LABLL.

LABL1+1/ SYm Di splay contents of LABL1+1.

SYmMe/ SYMB Di spl ay contents of SYM.

2/ 1 Di spl ay contents of AC 2.

@Q.ABL1(2)/ SYML DDT uses Y field only.

@.ABL1( 2) <ESC>/ SYM3 <ESC> causes indexing and indirection.

Not e that DDT does not start a new line unless you enter <TAB> <RET>,
<LF> or <BKSP>, or until the display waps around the end of the line.
DDT al so di splays three spaces (or a tab, depending on the TTY control
mask) before and after its output. Thus, an actual DDT term nal
di splay might be the following (user input is |owercase; <LF> and
<TAB> do not appear on the screen, but are shown to indicate where you
pressed the correspondi ng keys):

2/ 1 | abl 1/ SYmML <LF>

LABL1+1/ SYme <TAB>

SYme/ SYMB synd/ MOVE 1, @ ABL1(2) <ESC><TAB>
SYM/ SYMB

You can treat expr as an EFIW (extended format indirect word) and use
any indexing and indirection specified by expr to conpute the (gl obal)
ef fective address of the location to be opened. Use the conmand form

{expr} <ESC><ESC>c

where cis /, [, ], !, \, or <TAB>.

4-18



DI SPLAYI NG AND MCDI FYI NG MEMORY

4.5 DI SPLAYI NG ASCI Z STRI NGS
You can display nmenory as an ASCIZ string. The conmmand
addr <ESC>0T

where addr defaults to the open location (if there is one, otherw se
addr defaults to the current location), displays nenory, beginning
with addr, as an ASCl Z string. The display stops when DDT finds a
zero byte, or when you type in any character, which DDT displays, but
ot herwi se ignores. The current |ocation renmai ns unchanged.

4.6 ZERO NG MEMORY

To deposit the same value in each of a string of menory words (usefu
for initializing nenory to zero), enter:

addr 1<addr 2>{ expr } <ESC>Z

where expr is any |egal DDT expression, addrl is the first word to
receive expr, and addr2 is the last. Follow addrl1 with a left angle
bracket (<) and addr2 with a right angle bracket (>). Both addrl and
addr2 are required. |If you omt expr, it defaults to zero. Prior to
execution, DDT enters the address of the <current location on the
| ocati on sequence stack and closes the open location. Wen DDT has
conpl eted execution of the command, the current location is the word
at addr2 + 1. There is no open location. This conmmand restores the
prevailing di splay node.

If you enter:
?

while DDT is executing the <ESC>Z conmand, DDT di spl ays
Depositing: addr/ val ue

where addr is the |location where DDT will make the next deposit, and
value is the contents of addr before the deposit.

If you enter any other <character, DDT stops executing the <ESCZ
command, and waits for your next conmand. The character that you
enter to terminate the <ESC>Z command i s ot herwi se ignored

4-19



DI SPLAYI NG AND MCDI FYI NG MEMORY

4.7 AUTOVATI C WRI TE- ENABLE

If you attenpt to deposit a value in a | ocation t hat is
wite-protected, DDT returns the nmessage

?NOT WRI TABLE
This is the TOPS-20 default condition.
To allow DDT to nodify wite-protected nenory, type in
<ESC>{ 0} W
If you now attenpt to deposit a value in a location that is
wite-protected, DDIT renpoves the protection, deposits the value, and
then reinvokes the protection.
Not e that you cannot use this command to enabl e patching in FILDDT.
To prevent DDT fromnodifying wite-protected nenory, type in
<ESC><ESC>{ 0} W
The zero in the above comands is optional and has no effect on the

operation of the commands. DDT allows the zero for conpatibility with
prior versions of DDT.

4-20



DI SPLAYI NG AND MCDI FYI NG MEMORY

4.8 AUTOVATI C PAGE CREATI ON

If you attenpt to deposit a value in a location within a nonexistent
page, DDT creates the page and deposits the value. |f you attenpt to
deposit a value within a nonexistent section, DDT creates the section
as well as the page. This is the default condition.

To prevent DDT fromcreating a page when you attenpt to deposit a
val ue within a nonexistent page, type in

<ESC><ESC>1W

If you now attenpt to deposit a value in a location wthin a
nonexi stent page, DDT returns the error nessage

CAN T CREATE PACE

To allow DDT to create the page (and the section, as required) when
you attenpt to deposit a value within a nonexi stent page, type in

<ESC>1W

4-21



DI SPLAYI NG AND MCDI FYI NG MEMORY

4.9 DI SPLAYI NG PACGE ACCESSI BI LI TY | NFORVATI ON

You can get information about the access requirenents of the pages and
sections in the program you are debugging, using the $L and $$L
commands. The conplete format for this conmand is:

{{argl<}arg2}{<ESC>} <ESC>L
where argl and arg2 are section nunbers. Using one <ESC> causes DDT

to display access information about the section and about individual
pages. Using <ESC> twi ce causes DDT to display access information

only about the section(s). If you include both argl and arg2, DDT
di splays the information for all sections that your program and DDT
are using, in the range argl to arg2, inclusive. |f you include only
arg2, DDT displays access information for that section only. If you

omit both argunments, DDT displays access information for all sections
that your program and DDT are using.

The page and section accessibility bits and their meanings are:

Read Page can be read.

Wite Page can be witten.

Copy-on-wite Page is copy-on-wite

Execut e page can be executed

Private page is private

Zero Page is allocated but zero.(FILDDT only)

For exanple, the comrmand <ESC>L m ght produce the follow ng display:

Section O Read, Wite, Execute, Private

000 Read, Wite, Execute, Private
770 Read, Execute
771 Read, Wite, Execute, Private

Section 37 Read, Wite, Execute, Private
700-701 Read, Copy-on-write, Execute
703-730 Read, Copy-on-write, Execute
735-736 Read, Wite, Execute, Private
740- 753 Read, Execute

And the command <ESC><ESC>L might produce a display like the
fol | owi ng:

Section O Read, Wite, Execute, Private
Section 37 Read, Wite, Execute, Private

4-22



DI SPLAYI NG AND MCDI FYI NG MEMORY

4.10 WATCH NG A MEMORY LOCATI ON

If you wish to have DDT nonitor or "watch" a nmenory l|ocation while
your program is running, and display the |ocation whenever its
contents change, enter

addr <ESC>V
where addr is the address of the location to be watched, and defaults
to the current location. Wen you enter the command, DDT starts a new
I ine and di spl ays:

addr/ val ue
where addr is the address of the location being watched, and value is

the contents of the |ocation. This commuand also restores the
prevailing di splay node.

DDT checks addr every "jiffy" (about 20 mlliseconds), and displays
the address and contents of addr whenever those contents change
(Executive nbde EDDT watches addr continuously.)

If you enter a question mark (?) while DDT is watching, DDT displays:
Wat chi ng: addr/ val ue

where addr is the address of the location being watched, and value is
the contents of addr.

To termnate the watch, enter any other character. DDT stops
nonitoring the word, starts a new display |line, echoes the character
you enter, starts another 1line, and waits for nore input. The

character that you enter to termnate the watch is otherw se ignored

Because any input character term nates the watch, you cannot continue
execution and watch your own wuser program The <ESC>V command is
useful to watch activity in a separate process (such as the running
nonitor or other job, for which you nust be using EDDT or FILDDT).
The page that contains the word you wi sh to watch nust be mapped into
your own process (the one that contains DDT and your program

4.11 TTY CONTROL MASK

You can control certain aspects of DDT's display by setting DDT's TTY
control mask. The command <ESC>1Mreturns a value that is the address
of the DDT location that contains this mask. Table 4-5 sunmari zes the
features controlled by the bits in the TTY control nask

4-23



DI SPLAYI NG AND MCDI FYI NG MEMORY

Tabl e 4-5: TTY Control Mask

BIT VALUE EXPLANATI ON

15 0 Di splay the commands (and results) fromthe file
executed by the <ESC>Y command (default).

1 Do not display the commands (or results) fromthe
file executed by the <ESC>Y command.

16 0 When interrupting program execution at a
breakpoint, display the address and contents of
t he breakpoint (default).

1 When interrupting program execution at a
breakpoint, display only the address of the
br eakpoi nt .
17 0 Di spl ay 3 spaces when spaci ng DDT output (1).
1 Di splay DDT output fields at tab stops (1).
34 0 The term nal does not have a tab mechanism (2).
1 The terminal has a tab mechanism (2).
35 0 Echo del eted characters (3).
1 Backspace over deleted characters (3).

(1) If bit 17 is reset (default), DDT displays 3 spaces between
output fields (such as between the address of a location and the
contents of the location), and at the end of display |lines. | f
bit 17 is set, DDI lines up the output fields in colums
begi nning at tab stops (see bit 34). Figure 4-1 illustrates the
two different nodes.

(2) If bit 34 is set, DDT displays a tab character (<CTRL/I>)
between fields. |If bit 34 is reset, DDT displays enough spaces
to start the field at the next tab stop. Wen starting up, DDT
checks whet her your terminal can handle TAB characters
(<CTRL/1>), and sets this bit accordingly.

(3) Wien starting up, DDT checks whether your termnal can
backspace to delete characters, and sets this bit accordingly.

4-24



DI SPLAYI NG AND MCDI FYI NG MEMORY

To change the settings of the TTY control nmask, use the command:
expr <ESC>1M
where expr evaluates to the required bit pattern.
You can al so open the |ocation addressed by <ESCC1IMwith one of the
DDT display commands, and deposit an expression that contains the new

bit settings.

Figure 4-1 is an illustration of the effects of bit 17 in the TTY

control nmask. The code being exanmined is the first few lines of
X.MAC, listed in Figure 2-1. The exanple is not a conplete debugging
session; only enough is shown to illustrate the effects of bit 17 of

the TTY control mask. The nunbers at the left of the DDT display
lines are to assist you in following the comentary that follows the
display. User input is in |owercase.

Figure 4-1: DDT Session Show ng Col umar OQut put

SCREEN DI SPLAY

1. DDT
2. start/ MOVE P, PACRD  x$: .$b  $g
3. $1B>>START/ MOVE P, PAORD  $x
4. P/ -10,, STACK PWORD/ -10,, STACK
5. START+1/ MOVEI | DX, TABLE1 $x
6. | DX/ TABLE1 TABLE1 $1m 2 1,,2
7. start $g
8. $1B>>START/ MOVE P, PWORD $x
9. P/ -10,, STACK PWORD/ -10,, STACK
10. START+1/ MOVEI | DX, TABLE1 $x
11. | DX/ TABLE1 TABLEl
COMMVENTARY
Li ne 1:

o DDT is | oaded and waiting for a conmand.

Li ne 2:

0 Enter start/ to examine |location start.

0 Enter Xx<ESC>: to open the synbol table for nodule X
0 Enter .<ESC>b to set breakpoint at |ocation START.

0 Enter <ESC>g to begin execution.

4-25



DI SPLAYI NG AND MCDI FYI NG MEMORY

Li ne 3:

o DDT displays breakpoint informtion

0 Enter <ESC>x to execute the next instruction.

Li ne 4:

o DDT displays results of executing the instruction.

Li ne 5:

o DDT displays the next instruction.

0 Enter <ESC>x to execute the instruction

Li ne 6:

o DDT displays the results of executing the instruction.
0 Enter <ESC>1m to display and open the TTY control nask.
o DDT displays the nmask. Bit 34 is set.

0o Enter 1,,2<RET> to set bits 17 and 34.

Line 7:

0 Enter start<ESC>g to restart the program

Li ne 8:

o DDT displays the breakpoint information.

0 Enter <ESC>x to execute the instruction

Li ne 9:

o DDT displays the results of executing the instruction.
Li ne 10:

o DDT displays the next instruction.

0 Enter <ESC>x to execute the next instruction.

Li ne 11:

o DDT displays the results of executing the instruction.

4-26



CHAPTER 5

CONTROLLI NG PROGRAM EXECUTI ON

5.1 BEG NNI NG EXECUTI ON

To begi n execution of your program enter:

<ESCG
Your programwi |l run, beginning at its start address. If you have
not set any breakpoints, your programruns to conmpletion, or until it

nmakes a fatal error. At TOPS-20 command | evel, you can then wuse the
DDT comand to reenter DDT and exami ne your program

You can start or continue program execution at any address wth the
comand:

addr <ESCG

5.2 USI NG BREAKPO NTS

A breakpoint is a programlocation that has been altered such that if
your program PC reaches the address of the breakpoint, your program
transfers control to DDT.

When you set a breakpoint with DDT, DDT stores the address of the
breakpoint in an internal table. Wen you command DDT to begin or
conti nue program execution, DDI stores the instructions from all
breakpoints in the table, and replaces themwith JSRs into a DDT entry
tabl e.

Whi | e program execution is suspended at a breakpoint, you can exam ne
and nodi fy menory, renmpve breakpoints, insert new breakpoints, execute
i ndi vi dual instructions, and continue program executi on.



CONTROLLI NG PROGRAM EXECUTI ON

During this tinme, the conmand "<ESC>." returns the value that is the

addr ess of the next instruction to be executed. The command
"<ESC><ESC>." returns a value that is the previous value returned by
"<ESC>. . When you first receive control at the breakpoint, "<ESC."

returns the address of the breakpoint and "<ESC><ESC>." returns zero.
Before you start execution with <ESCG "<ESC>." and "<ESC><ESC>." are
illegal commands (if you try to execute them DDT sounds the ternina
buzzer or bell and displays a question nark).

NOTE

This manual uses the term"$." to represent the value
returned by the command "<ESC>.", and the term"$$."
to represent the value returned by the comand
" <ESC><ESC>. ".

You can set up to 12 breakpoints at a tine (this is a DDI assenbly
paranmeter) in your program These breakpoints are nunbered 1 through
12. There is also one breakpoint (the wunsolicited breakpoint,
nunbered zero) that can be used by your MACRO programto "call" DDT

Each breakpoi nt has several internal DDT | ocations associated with it,
which contain information to control DDT action with respect to the
breakpoint. You can exam ne and nodify these DDT |ocations with the
same DDT commands that you use to exanine and nodify |ocations in your
user program <ESC>nB is a comand that returns the value that is the
address of the first DDT word associated with breakpoint n. The
symbol $nB is used here to represent that address.

Table 5-1 contains a list of the breakpoint |ocations of interest to
the user, and their contents.

Tabl e 5-1: Breakpoint Locations of Interest

LOCATI ON CONTENTS
$nB Address of breakpoint n.
$nB+1 Instruction for conditional breakpoint n
$nB+2 Proceed count for conditional breakpoint n
$nB+3 Address of a location to be opened and di spl ayed when

the breakpoint is reached

$nB+4 Address of an ASClI Z DDT conmand string to be executed
when t he breakpoint is reached



CONTROLLI NG PROGRAM EXECUTI ON
When your user-program PC reaches a breakpoi nt, your program executes
the JSR into DDT. Wen this occurs, DDT does the follow ng:
0O saves your user-program cont ext

0 replaces the JSRinstructions at all breakpoints wth the
original programinstructions

o displays the breakpoint nunmber, breakpoint address, and the
contents of the breakpoint (depending on bit 16 of the TTY
control mask)

0 sets "$." to the breakpoint address

o sets "$$." to zero

0 enters the address of the current |location (set before you
started the program or proceeded froma breakpoint) on the
| ocation sequence stack

0o changes the current location to the breakpoint

0 waits for you to give a DDT command

When you conmmand DDT to restart or continue program execution, DDT
does the follow ng:

0 saves the programinstructions fromall breakpoints

o replaces the programinstructions at all breakpoints with JSR
instructions to DDT

o if you have not executed the instruction at the breakpoint
with <ESC>X, DDT sinulates execution of the instruction at
t he breakpoi nt

O restores your user-program context

o DDT perforns a JRSTF (if in section zero, otherw se XJRSTF)
to the next instruction to be executed

5.2.1 Setting Breakpoints
To set a breakpoint, enter:

addr <ESC>{n} B
where addr is the address where you want to suspend execution (addr
can be ".", the command that returns the address of the current
| ocation), and n is the nunber of the breakpoint (and defaults to the

| owest unused breakpoint number).

5-3



CONTROLLI NG PROGRAM EXECUTI ON

If you do not specify n, it defaults to the | owest available (unset)
br eakpoi nt. If you have already set twelve breakpoints, DDT displays
"?" and sounds the termninal buzzer or bell.
If you specify n, it must be greater than zero and | ess than 13. DDT
restores the woriginal contents of any (previously set) breakpoint
desi gnated as breakpoint n before setting new breakpoint n.
You cannot set nore than one breakpoint at the sane address. DDT
sinply sets the sane breakpoint again, even if you explicitly specify
a breakpoi nt nunber the second tine.
You cannot set a breakpoint at AC zero.
Assurre the follow ng conditions:

o location LABL1+3 contains the instruction MOVE 1, LABL2

0 breakpoint 2 is set at LABL1+3

I f your programreaches LABL1+3 it executes the JSRto DDI, and DDT
does the follow ng:

0 saves your user-program context

0 restores the original programinstructions to the breakpoints
o sets "$." to LABL1+3

o sets "$$." to zero

0o enters the address of the current location on the |ocation
sequence stack

o changes the current location to LABL1+3 (the breakpoint)
o opens |location LABL1+3
o displays: $2B>>LABL1+3/ MOVE 1, LABL2

To set a breakpoint and have DDT display an additi onal |ocation when
your programreaches the breakpoint, enter

addr 1<addr 2<ESC>{n} B

where addrl is the location to be displayed, and addr2 is the |ocation
of the breakpoint. Follow addrl with a |eft angle bracket (<).



CONTROLLI NG PROGRAM EXECUTI ON

Assurre the follow ng conditions:

[0}
[0}

(0]

I f your

| ocati on LABL1+3 contains the instruction MOVE 1, LABL2
| ocati on LABL3 contai ns val ue SYMBL1
breakpoi nt 2 was set by the command:

LABL3<LABL1+3<ESC>B

program reaches LABL1+3 it executes the JSRto DDI, and DDT

does the follow ng:

(0]

(0]

(0]

(0]

saves your user-program cont ext

restores the original programinstructions to the breakpoints
sets "$." to LABL1+3

sets "$$." to zero

enters the address of the current location on the |[|ocation
sequence stack

changes the current location to LABL1+3 (the breakpoint)

enters the address of the current location (the breakpoint)
on the | ocation sequence stack

changes the current location to LABL3
opens | ocation LABL3

di spl ays: $2B>>LABL1+3/ MOVE 1, LABL2 LABL3/ SYMBL1

Not e that, because DDT placed the breakpoint address on the |[|ocation

sequence

stack, you can enter <ESC><RET> to change the current

| ocation back to the breakpoint.



CONTROLLI NG PROGRAM EXECUTI ON

To display the address of any breakpoint, enter:

<ESC>nB/
where n is the address of the breakpoint. DDT displays the address of
breakpoi nt n, and you can use the exam ne comands to open and displ ay
the instruction at breakpoint n. |If breakpoint n is not set, DDT
di spl ays zero.

To remove breakpoint n, enter:

0<ESC>nB
To renove all breakpoints, enter

<ESC>B

5.2.2 Proceeding from Breakpoints

After your program has reached a breakpoint, you can continue
execution at "$." by entering:

<ESC>P

DDT saves the programinstructions fromall breakpoints, replaces the
program instructions with JSRs to DDI, restores your user-program
context, and if you have not executed any program instructions wth
the <ESC>X conmand, sinulates execution of the instruction at the
breakpoint. DDT then executes a JRSTF (in section zero, otherw se DDT
executes an XJRSTF) to the next instruction to be executed.

You can cause the programto start execution at a different |ocation
with the {addr}<ESC>G conmand, where addr defaults to the programs
start address.




CONTROLLI NG PROGRAM EXECUTI ON

Once your program has reached a breakpoint and DDT has interrupted
execution, you can cause DDT to continue execution but NOT stop at
that breakpoint until your program has reached that breakpoint a
speci fied nunber of tinmes. To do this, enter:

expr <ESC>P

where expr is the proceed count. DDT places expr at location $nB+2
where n is the nunmber of the breakpoint at which your program has
stopped. DDT resunes execution of your program Each time vyour
program reaches breakpoint n, DDT decrenents the proceed count stored
at $nB+2. Your program continues execution until:

o it reaches a different breakpoint

0O it termnates nornmally

o it comits a fatal error

o the proceed count reaches zero
Each breakpoi nt has an associated automatic proceed flag. If this
flag is set and the programreaches the breakpoint, DDT decrenents the
proceed count at $nB+2 (where n is the nunber of the breakpoint) and

di spl ays the breakpoint information if the proceed count is |ess than
one. DDT then automatically continues program executi on.

The <ESC>P comand resets (clears) the automatic proceed flag
associated with the breakpoint at which DDT has suspended program
execution.

To set a breakpoint and set the associated automatic proceed flag,
enter:

{addr 1<} addr 2<ESC><ESC>{ n} B

where addr2 is the address of the breakpoint and may be ".", addrl is
an (optional) additional location to be displayed, and n is optional
and defaults to the | owest unused breakpoint.

Each tine your program reaches breakpoint n, DDT decrenents the
associ ated proceed count, and if the result is less than one,
di spl ays:

$nB>>addr 2/ instr

where n is the breakpoint nunber, addr2 is the address of the
breakpoint, and instr is the contents of the word at addr2



CONTROLLI NG PROGRAM EXECUTI ON

If you entered addrl< when you gave the command, DDT di spl ays:
$nB>>addr 2/ i nstr addr 1/ contents

where n is the breakpoint nunber, addr2 is the address of the
breakpoint, instr is the contents of the word at addr2, addrl is the
additional l|ocation to be displayed, and contents is the contents of
the word at addrl
DDT then automatically continues program execution until:

0 your programreaches a different breakpoint

0 your programtermninates nornally

0 your programconmits a fatal error

0 you enter any character while your programis at breakpoint n
You can interrupt the automatic proceed function if you enter a
character while your programis at breakpoint n. DDT then resets the
automatic proceed flag and suspends program execution at t he
br eakpoi nt. DDT echoes the character that you entered, which is

ot herwi se ignored.

To proceed froma breakpoint and set the associ ated automatic proceed
flag, give the comand:

{expr} <ESC><ESC>P

where expr is the proceed count. DDT stores the proceed count at
$nB+2.



CONTROLLI NG PROGRAM EXECUTI ON

5.2.3 Conditional Breakpoints

To cause DDT to interrupt program execution at a breakpoint only if a
specific condition is satisfied, you nust store a single test
instruction or a call to a test routine in DDT's breakpoint table.
You can wuse a test routine in your program or one that you enter in
DDT's patching area. See Chapter 8 (lnserting Patches with DDT) for
nor e information about the patching area. To enter the test
instruction (or the call to the test routine), open the DDT |ocation
addressed by the command <ESC>nB+1 by entering:

<ESC>nB+1/
where n is the nunber of the breakpoint. You nust enter n, or DDT
interprets the conmmand as <ESC>B, and renpbves all breakpoints.
Deposit the test instruction or the call to the test subroutine. | f

your program reaches breakpoint n, DDT executes the instruction at
$nB+1. DDT then proceeds as foll ows:

o If the instruction does not cause a program counter skip, DDT
decrenments the proceed count at $nB+2. |If the result is zero
or less, DDT interrupts execution at breakpoint n.

o |If a programcounter skip of 1 does occur, DDT interrupts
execution at breakpoint n.

o If the conditional instruction is a call to a subroutine that
returns by skipping over two or nore instructions, DDT does
not interrupt program execution.

If DDT interrupts execution because the test instruction resulted in a
program counter skip, DDT displays only one angle bracket after the
breakpoint identification, as:

$3B>LABL1/ MOVE 1, LABL2



CONTROLLI NG PROGRAM EXECUTI ON

5.2.4 The "Unsolicited" Breakpoint

You can cause your MACRO program to "call" DDT by inserting the
following instruction in your program

JSR $0BPTH##

The two pound-signs (##) appended to $O0BPT in your MACRO program
decl are the synmbol as EXTERNAL.

NOTE

"$" represents the dollar sign character, which is
part of the synbol, and is not the DDT echo of the
ESCAPE key.

You nust | oad RDDT. REL with your programor you will get a LINK error
(?LNKUGS undefined gl obal synbol) when you |load your program Load
RDDT. REL with your programas follows (your input is in | owercase; the

last line indicates that DDT is |oaded and ready to accept your
commands) :

@i nk

*/ debug fil nanif go

DDT

where filnamis the nane of your MACRO 20 program You can start your

programrunning with the <eESC-G command. |f your program executes the

JSR instruction, DDT interrupts program execution and di spl ays:
$0B>>addr +1/ instr

where addr+1 is the first location after the JSR $0BPT instruction
and instr is the contents of that |ocation

5-10



CONTROLLI NG PROGRAM EXECUTI ON

5.3 EXECUTI NG EXPLI CI T | NSTRUCTI ONS

To execute a specific instruction, enter the instruction followed by
<ESC>X:

i nstr<ESC>X
For exanpl e:
MOVE 1, @Q.ABL1( 3) <ESC>X
After executing the instruction, DDT starts a new |line and displ ays:

0o <> if in-line execution of instr would result in
ski ppi ng no instructions.

0 <SKI P> if in-l1ine execution of instr would result in
ski pping 1 instruction.

0 <SKIP 2> if in-line execution of instr would result in
ski pping 2 instructions.

0 <SKIP 3> if in-l1ine execution of instr would result in
ski pping 3 instructions.

NOTE
"I'n-1ine execution" neans execution of the instruction
as part of normal program flow. The execution of
instructions with this command has no effect on your
user - program PC

This command restores the prevailing display node.

5.4 SI NGLE- STEPPI NG | NSTRUCTI ONS

After your program has transferred control to DDT from a breakpoint,
you can execute programinstructions one at atine. This is called
"singl e- st eppi ng. "

"<ESC>." is a command that returns the address of the next instruction
to be executed.

To execute the instruction whose address is returned by "<ESGC."
enter:

<ESC>X

5-11



For exanpl e,

CONTROLLI NG PROGRAM EXECUTI ON

reaches LABL1+3, contro

$3B>>LABL1+3/

Exami ni ng the environnent,

(0]

(0]

(0]

(0]

as shown by the foll owing termnal

AC 1 contains 1

AC 2 contains 3

breakpoint 3 is set at

LABL1+3. If your

passes to DDT, which displays:

ADD 1, LABL2(2)

you learn the follow ng:

LABL1+4 contai ns MOVEM 1, @Q.ABL2( 3)

LABL2+3 cont ai ns SYMB

or <ESC>):

$3B>>LABL1+3/
LABL1+4/

2/

3

ADD 1, LABL2(2)
MOVEM 1, @ABL2( 3)

<ESC>\ SYMB <LF>

1/ 1 <LF>

program PC

di spl ay (DDT does not display <LF>

If you now enter the command <ESC>X, DDT does the follow ng:

0]

0]

changes "$$." to LABL1+3

executes the instruction at LABL1+3

changes "$." to LABL1+4

changes the current

opens LABL1+4

di spl ays:

1/ SYM3+1

LABL1+4/

| ocation to LABL1+4

LABL2+3/  SYMB
MOVEM 1, @ABL2( 3)

If single-stepping an instruction results in a value of ($. mnus $$.)
to 1, DDT al so begins a new |line and displ ays:

not equal
o}

(0]

<SKI P> if (3.
<SKIP 2> if ($.
<SKIP 3> if ($.

<JUWP> if ($.

m nus

m nus

m nus

m nus

$$.)
$$.)
$$.)
$$.)

5-12

2

3

4

is greater than 4 or

less than 1



CONTROLLI NG PROGRAM EXECUTI ON

before displaying the address and contents of the next instruction to
be execut ed. For exanmple, the follow ng shows a typical termna
di spl ay where you enter <ESC>X to single-step the first instruction at

a breakpoint (DDT echoes <ESC> as $):

$4B>>LABL1+5/ AOSN 3 / 0
3/ 1

<SKI P>
LABL1+7/ MOVEM 1, LABL2

5.5 EXECUTI NG SUBROUTI NES AND RANGES COF | NSTRUCTI ONS

To execute a series of n instructions beginning with the instruction

whose address is returned by the command "<ESCs. "

n<ESC>X

where n is the nunber of instructions to execute

DDT then does the followi ng for each instruction:

o starts a new display line
0 executes the instruction

o displays the address of any
referenced by the execution
contents of those |ocations
i nstruction

0 changes the current location to the next

execut ed

o opens the current |ocation

o displays the address and contents of the

be execut ed

o changes "$." to the address of the

execut ed

enter:

or nenory |ocation
instruction, and the
execution of t he

instruction to be

next instruction to

instruction to be

o changes "$$." to the address of the instruction just executed

5-13



CONTROLLI NG PROGRAM EXECUTI ON
To suppress typeout of all but the last instruction executed, use the
conmmand:
N<ESC><ESC>X
where n is the nunber of instructions to execute

To continue program execution until the PC (programcounter) enters a
range of instructions, enter:

{addr 1<} { addr 2>} <ESC><ESC>X
where addrl is the | ower end of the range, and addr2 is the upper end.
Addr1l defaults to 1 + "$." and addr2 defaults to addrl + 3. Follow
addrl with a left angle bracket (<) and addr2 with a right angle
bracket (>).

Thi s command al so i ndi cates skips and junps.

This command is useful for executing a loop or a subroutine cal
qui ckly and without typeout.

For exanple, breakpoint 3 is at |ocation LABLI1.
$3B>>LABL1/ PUSH] 17, SUBRTN <ESC><ESC>X ; Enter <ESC><ESC>X
<SKI P> ; SUBRTN returns + 2
LABL1+2/ ADD 1, 2

If you enter a question mark (?) while DDT is executing an <ESC><ESC>X
comand, DDT di spl ays:

Executing: addr/ i nstr

where addr is the address of the next instruction to be executed, and
instr is the instruction.

To termi nate the execution of the series of instructions, enter any
character other than ? (question mark). DDT does the follow ng:

o echoes the character

o displays <SKIP> <SKIP 2>  <SKIP 3>, or <JUWP>, as
appropriate

0 starts a new display line

o changes the current location to the address of the next
instruction to be executed

o displays the address and contents of the current | ocation

5-14



CONTROLLI NG PROGRAM EXECUTI ON

0 opens the current |ocation

0 waits for your next conmand

5.5.1 Single-Stepping "Dangerous" Instructions

DDT classifies the foll owing as "dangerous" instructions:
0 instructions that can nodify nenory
0 instructions that can cause an arithnetic trap
0 instructions that can cause a stack overfl ow
0o a nonitor call or I/Oinstruction

Before single-stepping one of these instructions, DDI saves and
replaces the original instructions at the breakpoints with JSRs to
DDT, and restores the full user-programcontext (including interrupt
system and termnal characteristics) before executing the instruction.
After executing the instruction, DDT replaces the JSRs at the
breakpoints with the original programinstructions, and saves the full
user - pr ogr am cont ext .

DDT does not check whether the instruction actually results in one of
these conditions, only whether the opcode is in the class of
instructions that can cause these effects. This can nmke executing
subroutines and ranges of instructions under DDT control extrenely
ti me-consum ng

To execute a subroutine or series of instructions w thout checking for
dangerous instructions, use the command:

{addr 1<} { addr 2>} <ESC><ESC>1X

where addrl is the |l ower end of the range, and addr2 is the upper end.
Addrl defaults to 1 + "$." and addr2 defaults to 3 + addrl. Follow
addrl with a left angle bracket (<), and addr2 with a right angle
bracket (>).

CAUTI ON

Thi s command executes nuch faster than <ESC<ESCSX,
but if the execution of an instruction causes a
software interrupt, the error and trap handl i ng
nmechanism may not function correctly. In addition,
programinstructions that change or rely on termnal
or job characteristics that are al so used by DDT can
cause unpredictable results

5-15



CONTROLLI NG PROGRAM EXECUTI ON

5.6 USER- PROGRAM CONTEXT

When DDT interrupts your programis execution at a breakpoint, and
after it has executed a dangerous instruction during an <ESC>X or
<ESC><ESC>X command, it saves the user-program context. The command
<ESC>nl, where 0<=n<=8 (decinal), returns the address of the word that
contains the information for "function" n. You can use this address
to display and nodify these values. Mdst of these values are usefu
only in executive node. DDT displays the address of the word
containing the information for function n as:

$l +n
where 1<=n<=10 (octal). If n = 0, DDT displays only $I

Table 5-2 lists the functions.

Tabl e 5-2: User-Program Cont ext Val ues

FUNCTI ON VALUE
0 Executive node CONl PI
1 Executive node Pl channels turned off.
2 Executive node CONl APR
3 User PC fl ags.
4 User PC address.
5 EPT page address.
6 UPT page address.
7 CST base virtual address.
10 SPT base virtual address.

DDT restores the user-programcontext whenever you execute <ESCG
<ESC>P, and when you execute <ESC>X, or <ESC><ESC>X of dangerous
i nstructions.

5-16



CONTROLLI NG PROGRAM EXECUTI ON

Functions 5 through 10 (octal) affect DDI's interpretation of your
programis virtual address space. You can alter DDT's interpretation
of your progranmi s virtual address space with the physical and virtual
addressing (<ESC>nU) commands described in Chapter 11 (Physical and
Virtual Addressing Commands). However, any alterations that you nake
do not become part of your user-program context, and do not affect
TOPS-20's interpretation of your program s virtual address space.

DDT al so saves and restores the wuser-program ACs as part of the
user - program context. DDT stores the contents of the ACs in an
internal "register" block. Any references you make to addresses 0-17
refer to the relative locations in DDT's internal register block.
These actions are totally transparent to you.

5-17



5-18



CHAPTER 6

SEARCHI NG FOR DATA PATTERNS | N DDT

Wth DDT you can search for nenory locations that contain a specific
val ue, and conversely, for words that do not contain a specific val ue.
You can also set a mask to indicate to DDT that only specified bits
are to be considered when perform ng the search. |In addition, you can
search for words that reference a specific address. You can specify a
range within which to performthe search, or default the range to all
of your program s address space. In either case, DDT conpares the
contents of each location within the range with the specified val ue.

To search for words that match a specific value, enter:

{addr 1<} { addr 2>} expr <ESCW

where expr is the value for which DDT is to search, and addrl and
addr2 delimit the range in which the search is to be conducted.
Follow addrl with a left angle bracket (<) and addr2 with a right
angle bracket (>). Addr1 defaults to zero and addr2 defaults to
777777 in the current section. Expr can be any |egal DDT expression.

DDT does the foll ow ng:
0 conpares each location (after ANDing it with the search nask)
within the search range with the 36-bit value resulting from

eval uating expr

o starts the search by conparing the contents of addrl wth
expr

0 stops the search after conparing the contents of addr2 with
expr

o displays (on a new line) the address and contents of each
| ocation that natches expr

0 enters the address of each nmatching location on the |ocation
sequence stack



SEARCHI NG FOR DATA PATTERNS | N DDT

0 sets the current location to addr2
o0 displays a blank line to indicate the search is over
0 restores the prevailing display node
NOTE
If DDT finds nore matching | ocations than there are

words on the location sequence stack, the earlier
entries are overwitten.

To search for words that do NOT match a specified value, enter:

{addr 1<} { addr 2>} expr <ESC>N

where expr is the value which is not to be mtched, and addrl and
addr2 delimt the range within which DDT is to search. Follow addrl
with a left angle bracket (<) and addr2 with a right angle bracket
(>). Addr1 defaults to zero and addr2 defaults to 777777 in the
current section. Expr is any |egal DDT expression

NOTE
When you use the DDT search functions while running

FI LDDT, addr2 defaults to 777777 (in the current
section) unless:

o the target is the running nonitor job and you are
usi ng physi cal addressing

o the target is an .EXE file and you are using
normal virtual addressing

o the target is a disk structure or data file
In these cases, addr2 defaults to the last word of the
target. See Chapter 9 (FILDDT), and Chapter 11

(Physical and Virtual Addressi ng Conmands), for nore
i nf ormati on.

6- 2



SEARCHI NG FOR DATA PATTERNS | N DDT

DDT functions as for the <ESC-W conmand, except:

o DDT searches for and di splays the address and contents of any
word wthin the address range that does NOT match the 36-bit
val ue resulting from eval uati ng expr

o DDT enters the locations of non-matching words on the
| ocati on sequence stack

To search for references to an address, enter:

{addr 1<} { addr 2>} expr <ESC>E

where addrl and addr2 delimt the range of the search, and expr

contains the address for which DDT is to search. Follow addrl with a
| eft angle bracket (<) and addr2 with a right angle bracket (>).

Addr1l defaults to zero and addr2 defaults to 777777 in the current

section. Expr is any |egal DDT expression. DDT perforns an I|FIW
ef fective address cal cul ati on on the expression contained in each word

within the range, and uses the 18-bit result to determ ne whether

there is a match.

Thus, if bits 14-17 (the X field of an instruction) or bit 13 (the
field of an instruction) are nonzero, indexing or indirection may
result in DDT finding different search results at different tines.

DDT does not check whether the expression is actually an instruction
before performng the effective address cal cul ati on.

If you enter a question mark (?) while DDT is performing any of the
above searches, DDT displ ays:

Sear chi ng: addr/ val ue

where addr is the address of the location that will next conpare, and
value is the contents of addr.

To abort the search, enter any character other than question mark (?).
DDT stops searching, and waits for nore input. The character that you
enter to termnate the search is otherw se ignored

Each of the above search commands restores the prevailing display
node.

6-3



SEARCHI NG FOR DATA PATTERNS | N DDT

<ESC>M i s a command that addresses a DDT location that contains a
search nmmsk used to prevent specified bits in the nmenory word from
bei ng considered during the search. This mask is used only by <ESCW
and <ESC>N, not by <ESC>E. DDT logically ANDs the search mask with
the menory word before nmaking the conparison, but does not change the
menory word. |If DDT finds a match, it displays the entire word.

DDT sets the search mask to 777777,,777777 (conpare all 36 bits) by
defaul t.

To set the search mask, enter:
expr <ESC>M
where expr evaluates to the required bit pattern.

For exanple, to search for all of the RADI X50 references to MAIN.
(user input is in |owercase):

<ESC><ESC>5t ; Set typeout node to RADI X50.

37777, , 7T77777<ESC>m ;lgnore the left 4 bits.

mai n. <ESC>5" <ESC>w ; Enter RADI X50 synbol, start search.
4112/ 4 MAI N ; DDT di spl ays match found.

4775/ 0 MAIN. ; DDT di spl ays match found.

; Search over, DDT displays blank line.
You can al so exam ne and nodify the search mask with the exanine and

deposit commands described in Chapter 4 (Displaying and Mdifying
Menory) .

6-4



CHAPTER 7

MANI PULATI NG SYMBCOLS | N DDT

7.1 OPENI NG AND CLOSI NG SYMBOL TABLES

Each separate program nodule has its own synbol table. When
displaying a value synmbolically, if nore than one synbol is defined
with that value, DDT displays the first global synbol found. When
searching for a synbol, DDT searches the "open" synmbol table first.
For display purposes, DDT treats local synbols found in the open
synbol table as gl obal synbols. DDT appends a pound-sign (#) to |oca
synbol nanes that it finds in a synbol table that is not open. For
exanpl e:

SYMBL1#

where SYMBL1 is a local synbol that DDT found in a synbol table that
i s not open.

If you enter an expression that contains a synbol that is defined in
nore than one of your program nodul es, DDT uses the value of the
synbol that is contained in the open synbol table. |If the synbol is
not defined in the open synbol table, or if there is no open nodul e
and there is not a global definition of the synbol, DDT displays:

M

To open the synbol table of a program nodule, enter:

name<ESC>:

where nane is the name of the program nodul e as specified by the TITLE
pseudo-op in your MACRO 10 program (or the equival ent nechanismin a
hi gher -1 evel |anguage progran). DDT closes any currently open synbo
tabl e and opens the synbol table associated with nodul e nane.




MANI PULATI NG SYMBCOLS | N DDT

To find the name of the nodul e associated with the open synmbol table,
enter:

<ESC>1:

If there is an open synbol table, DDT displays the nane of the nodule
associated with the open synbol table. For exanple, if the synbol
table for nodule X is open, the screen display is as follows (DDT
echoes <ESC> as $, and does not display any spaces between the command
and t he nodul e nane):

$1: /X

If there is no open synbol table, DDT displays three spaces (or a tab
depending on the TTY control mask), and waits for your next command.

To cl ose the open synbol table, enter:

<ESC>

7.2 DEFI NI NG SYMBOLS

To redefine a synbol or to create a new synbol in the current synbo
table, enter:

expr <synbol :
where expr is any | egal DDT expression, and synbol is the synbol nane.

To define synbol as the address of the open location, enter the
comand:

synbol :
If there is no open location, DDT uses the address of the |ast
location that was open. DDT defines synbol as a global symbol. |If
you previously used synbol as an undefined synbol, DDT inserts the
correct value in all the places you referenced synbol, and renoves

synbol fromthe undefined symbol table.

7-2



MANI PULATI NG SYMBCOLS | N DDT

7.3 SUPPRESSI NG SYMBOL TYPEOUT
To prevent a synbol from being displayed, enter:
synbol <ESC>K

where synbol is the synbol to be suppressed. DDT still accepts synbo
as input, but no l|onger displays synbol as output.

To suppress the | ast synbol that DDT displayed (in an address, in the
contents of a nmenory word, or in the evaluation of an expression),
enter:

<ESC>D

DDT suppresses the |ast synbol displayed, and then redisplays the
current quantity. DDT does not display its usual three spaces between
the command and the di spl ayed val ue.

In the foll owing exanple, assunme that synbol SIZE is defined as 3.
User typein is Ilowercase (<LF> does not appear on the ternina
screen).

start/ JFCL O <LF>

LOOP/ ACS 1 <LF>

LOOP+1/ MOVE 2,1 <ESC>dMOVE 2, 1 <LF>
START+3/ MJULI 2, SI ZE <ESC>dMULI 2, 3

To reactivate a synbol for typeout, redefine the symbol. For exanple,
to reactivate the display of synbol SIZE, above, enter:

si ze<si ze

Note that SIZE is now defined as a global synbol, even if it was
previously a |l ocal synbol.

7.4 KILLING SYMBOLS
To renove a synbol fromthe synbol table, enter
synbol <ESC><ESC>K

DDT renmoves synbol fromthe synbol table, and no |onger displays
synbol or accepts synbol as input.

7-3



MANI PULATI NG SYMBCOLS | N DDT

7.5 CREATI NG UNDEFI NED SYMBOLS

It is sonetines convenient to use synbols that have not yet been
defined. To create an undefined synbol, enter:

synbol #

where synbol is the undefined synbol nane. DDT enters synbol in the
undefined synbol table. Wen you |ater define the synbol, DDT enters
it into the defined synbol table, renpves it fromthe undefined synbo
table, and enters the <correct value in all |[|ocations where you
referenced the synbol.

You can use undefined synmbols only as parts of expressions that vyou
are depositing to nenory. Undefined symbols can be either fullword or

ri ght-hal fword val ues; they cannot be used as the A or X fields of an
instruction, or as the left-hal fword of an expression.

7.6 FINDI NG WHERE A SYMBOL | S DEFI NED
To determine the nodules in which a synbol is defined, enter:

synbol ?
where synbol is the nane of the synmbol. DDT displays the name of each
program nodule in which synbol is defined. |If the synmbol is a gl obal
synbol , DDT displays a "G', as

synf?
MAIN. G

DDT does not display Gfollowing a local synbol found in the open

synbol table. VWhen DDT has searched the entire synbol table, it
di spl ays a blank line

7-4



MANI PULATI NG SYMBCOLS | N DDT

7.7 SEARCH NG FOR SYMBOLS

To search for all the synmbols that begin with a specific character
pattern, use the command

SYynkESC>?

where symis the character pattern for which you are searching, and
may be one to six characters long. DDT searches your synbol tables
and displays all synbols that begin with that pattern. DDT al so
displays all nodules in which the synbol is found, whether the synbo
is global, and the value of the synbol. 1In addition, if the synbo
represents a value in which only one bit is set, DDT displays the
nunber of the bit. For exanple, the comand

f db<ESC>?
nm ght cause the follow ng display:

FDBIN INOUT G 3
FDBOUT INOUT G 2 (1B34)

FDB MoD1 7

7.8 LI STI NG UNDEFI NED SYMBOLS
To get a list of all currently undefined synbols, enter
?

DDT displays a list containing each undefined synbol.

7.9 LI STING SYMBOLS

To get a list of all synbols starting with a certain character or set
of characters, enter:

{val 1<{val 2>} }{syn} <ESC>{ n}?

where vall and val 2 restrict the values of synbols which DDT displays.
If only vall is present, only synbols having that value are displ ayed
If both vall and val2 are present, synbols wth (signed) values
between vall and val?2 inclusive are displayed. The n argument is an
octal nmask of flags.

If bit 35 is on, only synbols defined in the open nodule are
di spl ayed. If any of bits 33-30 are on, the corresponding bit from
0-3 must be present in the synbol's definition. Any other bits are in
error.

7-5



MANI PULATI NG SYMBCOLS | N DDT

For exanple, entering "<ESC>4?" displays all gl obal symbols, "<ESC>1?"
displays all synbols defined in the open nodul e, and "5<100>T<ESC>5?"
di spl ays all gl obal synbols defined in the open nodule, starting wth
"T", whose values are in the range of 5-100.

7.10 LOCATI NG SYMBCOL TABLES W TH PROGRAM DATA VECTORS

DDT Version 44 can access synbol tables pointed to by JOBDAT, by PDVs
(program data vectors) and by val ues you store in DDT.

The conmand <ESC>5M returns the address of a DDT |location that
contains information to direct DDT to the current synbol table. The
synbol $5Mrefers to the menory location at the address returned by
t he <ESC>5M comand.

If the value contained in $5M is negative (bit 0 is set), the
right-halfword contains the nunber of the section that contains the
JOBDAT ar ea.

If the value contained in $5Mis positive (bit zero is clear, and the
value in $5Mis nonzero), $5M contains the 30-bit address of the PDV
currently in use by DDT.

I f $5M contai ns zero, DDT uses values (which can be stored by the
user) pointed to by locations 770001 and 770002 of UDDT, to determ ne
whi ch synbol table(s) to use. The algorithm that DDT uses is
descri bed bel ow.

To set $5Mto a PDV address, type in
addr <ESC>5M

where addr is the the PDV address. |If you know the PDV nane, you can
type in

<ESC><ESC>: [ nane/

where nane is the name of the PDV, and the slashes (/) represent any
characters that do not appear in nane. |If nane is a null string, DDT
searches for a PDV with no nane or a null nane. DDT ignores any
characters in nane beyond a | ength of 39.

DDT searches for a PDV naned nane, and places its address in $5M | f
DDT does not find the PDV, it displays ? and sounds the terninal
buzzer or bell.

7-6



MANI PULATI NG SYMBCOLS | N DDT

You can | earn the nanes of the PDVs associated with your program by
usi ng the follow ng sequence of TOPS-20 commands:

@=ET program nane
@ NFORMATI ON VERSI ON

To display the nane of the PDV addressed by $5M type in
<ESC><ESC>1:

I f $5M contains the address of a PDV, DDT displays the name of the
PDV; otherw se, it does not hing.

Whenever DDT is entered fromits start address or from a breakpoint,
if $5Mis zero, DDT initializes $5M according to the follow ng rul es:

o |If XDDT was started by the UDDT stub, AND the |ocation
addressed by |ocation 770001 in the stub has bit zero set:

> DDT uses the location addressed by location 770001 (in
the stub) as an |1OAD pointer to a synbol table in the
section that contains the stub.

> DDT uses the location addressed by location 770002 (in
the stub) as as | OAD pointer to the undefined synbol
table in the section that contains the stub.

o |f XDDT was not started by the UDDT stub, OR the |ocation
addressed by |ocation 770001 in the stub has bit zero clear:

> |f no PDVs exist, DDT sets $56Mto -1,,n, where n is:

* the section that contains the UDDT stub (if the stub
exists) OR

* the section that contains the entry vector (if an
entry vector exists) OR

* section zero.

> |f there is one (only) PDV, DDT sets $6Mto the address
of the PDV.

7-7



MANI PULATI NG SYMBCOLS | N DDT

> |f there is nore than one PDV, DDT exam nes word .PVSYM
of each PDV in ascending nenory order (DDT first |ooks at
the PDV closest to 0,,0). DDT then sets $5Mto

*

the address of the first (lowest in nenory) PDV that
contains a .PVSYMword that contains a gl obal address
(if there is one).

the address of the first (lowest in nenory) PDV that
exists in or above the section containing the entry
vector (if there is one).

the address of the first (lowest in nmenory) PDV.

NOTE

DDT ignores its own PDV when setting
$5M

7-8



CHAPTER 8

| NSERTI NG PATCHES W TH DDT

To replace the instruction at the open location with a series of
instructions and test the new instructions wthout reassenbling your
program you can use the DDT patch function. DDT deposits (in a
pat chi ng ar ea) t he repl aced instruction, the new series of
instructions, and one or nore JUWMPA instructions back to the main |ine
of your program DDT al so deposits (in the |location that contains the
repl aced instruction) a JUMPA instruction to the first word of the
pat ch.

To insert a patch that will be executed before the instruction at the
open | ocation, enter:

{expr} <ESC><

where expr is the start of the patching |location, and defaults first
to PAT.., then to PATCH KDDT and MDDT default to FFF (an area
created during the nmonitor build), PAT.., and PATCH, in that order.
If you do not enter expr, and DDT finds none of the default synbols,
DDT uses the val ue contained in JOBDAT |ocation .JBFF as the address
to begin the patch. If expr is a synbol (or the default), DDT updates
the synbol table when you terminate the patch, so that the synbo

identifies the first word after the patch that you just term nated.

If there is no open |location when you initiate the patch, DDT displays
"?" and sounds the termninal buzzer or bell.

NOTE
If expr is an AC address, or resolves to a value |ess

than 0,,140, DDT displays "?" and sounds the terninal
buzzer or bell.



| NSERTI NG PATCHES W TH DDT

When you issue a command to start a patch, DDT saves the address of
the open location, <closes the open |l|ocation, changes the current
location to the first word in the patching area, and opens that word.
DDT also displays the address and contents of the first word of the
patching area. For exanple:

<ESC><
PAT. ./ 0

You can now enter the patch, using deposit instructions (the expr<LF>
format is probably nost wuseful). DDT updates the current and open
| ocations according to the rules for the conmand that you use.

To ternminate the patch, enter:

{expr}<ESC>{n}>

where expr is the last word of the patch you are entering, and n is
the nunber of returns possible from execution of the patch. The
default for nis 2, allowing for a returnto 1 + the address of the
instruction being replaced, and for a "skip return" to 2 + the address

of the instruction being replaced.

When you terninate the patch, DDT deposits the instruction being
replaced into the first location following the current |ocation
unl ess:

o display is not suppressed by ! AND
0 the current location is zero AND
o the current location is closed OR you onmtted expr

i n which case DDT deposits the instruction being replaced into the
current location. This prevents the patch from containi ng unintended
nul | words.

DDT deposits n JUMPA instructions in the locations inmediately
foll owi ng the one in which it deposited the original program
instruction. The first JUVPA instruction has 1 inits A field, and
junps to 1 + the address of the replaced instruction, the second JUWPA
instruction has 2 inits Afield and junps to 2 + the address of the
replaced instruction, and so on. The AC nunbers are wused for
identification purposes only. Any JUMPA instruction beyond the
sixteenth contains 17 in its A field.

DDT then changes the current location to the |location that was open
when you initiated the patch, deposits in the current |ocation a JUWA
instruction to the first word of the patch that you entered, and
displays the address, original contents, and new contents of the
current location. The current location is "open", and can be nodified
by your next comand.



| NSERTI NG PATCHES W TH DDT

If you default expr, or enter a synmbol in the {expr}<ESC>< comand,
when you term nate the patch, DDT redefines the synbol that identifies
the start of the patch. |f DDT used the value contained in JOBDAT
location .JBFF as the address of the patching area, DDT changes the
val ues contained in .JBFF and the left half of JOBDAT |ocation .JBSA
In all <cases, the new value is the address of the nenory | ocation
after the last word of the patch.

By default, there are 100 (octal) words in the patching area. DDT
does not check whether your patch overflows the patching area. You
can control the size of the patching area with the /PATCHSIZE swtch
in LINK

NOTE

DDT all ows you to use other DDT commands whil e you are
in the process of entering a patch. DDT does not
check whether the current and open locations are in
the patching area, or whether you are entering patch
instructions in sequence. Wen you terminate the
patch, DDT deposits the instruction being replaced in
the current |ocation regardl ess of whether the current
location is in the patching area

To insert a patch that will be executed after the instruction at the
open | ocation, enter:

{expr} <ESC><ESC><
where expr is the address of the patching Ilocation (PAT.. is the
default). The results are the sane as inserting the patch before the

i nstruction as above, except:

o0 \When you open the patch DDT deposits the replaced instruction
inthe first word of the patch

0 When you termnate the patch, DDT deposits the first JUWPA
instruction (rather than the instruction being replaced) in
the first location followi ng the current |ocation unless

> display is not suppressed by ! AND

> the current location is zero AND

> the current location is closed OR you onmitted expr

in which case DDT deposits the first JUMPA instruction in the

current | ocati on. This is to prevent the patch from
cont ai ni ng uni ntended null words.

8-3



| NSERTI NG PATCHES W TH DDT

NOTE

If expr is an AC address, or resolves to a value |ess
than 0,,140, DDT displays "?" and sounds the terninal
buzzer or bell.

Figure 8-1 illustrates the patching function. The program being
patched is X MAC (see Figure 2-1). The patch inserts a SKIPN
instruction that is to be executed after the instruction at START+4.

Figure 8-1: Annotated Patching Session

DDT QUTPUT USER | NPUT EXPLANATI ON

START+4/ MOVE 2( | DX) As a result of your | ast
conmmand, DDT di spl ays the
contents of START+4.

<ESC><ESC>< Ent er <ESC><ESC>< to start
t he patch.

PAT. ./ 0 MOVE 2( | DX) DDT di spl ays the address
and contents of the first
word of the patch area, and
deposits the instruction from
START+4 in the first word of
t he patch.

PAT. . +1/ 0 DDT di spl ays the address
and contents of the next word
of the patch area.

pat..= Check the address of PAT..'
(the first word of the patch
ar ea)

14432 DDT di spl ays the current
address of "PAT..".

ski pn 1, 0<ESC>2> Enter the new instruction
and term nate the patch with
a normal return and one skip
return by entering <ESC>2>

PAT. . +2/ 0 JUWPA 1, START+5 DDT di spl ays the next word
of the patch area, then
deposits a JUWPA instruction
to 1 + the address of the
repl aced instruction.



| NSERTI NG PATCHES W TH DDT

Figure 8-1: Annotated Patching Session (Cont.)

DDT QUTPUT USER | NPUT EXPLANATI ON

PAT. . +3/ 0 JUWPA 2, START+6 DDT di spl ays the address
and contents of the next word
of the patch area, then
deposits a JUWPA instruction
to 2 + the address of the
repl aced instruction.

START+4/  MOVE 2(1DX)  JUMPA STACK+10

DDT di spl ays the address

and original contents of the
repl aced instruction, then
deposits and displays a
JUMPA instruction to the
first word of the patch.
START+4 is the current

| ocation, and is "open".

pat..= Check the address of the
patch area

14436 DDT updated "PAT..".

Figure 8-2 shows the terminal display as it actually appears when you
insert the patch described above. Your input is in |owercase.

Figure 8-2: Terminal Display of Patching After an Instruction

START+4/ MOVE 2( | DX) $$<

PAT../ 0 MOVE 2(1DX)

PAT. . +1/ 0 pat..=14432 skipn 1, 0$2>

PAT. . +2/ 0 JUMPA 1, START+5

PAT. . +3/ 0 JUMPA 2, START+6

START+4/  MOVE 2(1DX)  JUMPA STACK+10  pat..=14436

Figure 8-3 shows the terminal display when inserting the sanme patch
before the instruction at START+4. You enter the instruction in the
formexpr<LF> (user input is |lowercase). Note the use of the patch
term nati on command w t hout expr and wi thout n.



| NSERTI NG PATCHES W TH DDT

Figure 8-3: Terninal Display of Patching Before an Instruction

START+4/  MOVE 2(1DX)  $<

PAT. ./ 0 . =14432 skipn 1,0
PAT. . +1/ O

PAT. . +1/ 0 MOWE 2(1DX)

PAT. . +2/ 0 JUWMPA 1, START+5
PAT. . +3/ 0 JUWMPA 2, START+6

START+4/ MOVE 2( | DX) JUMPA STACK+10 pat..=14436

To abort the patch you are entering, enter:

<ESC>0<

DDT di splays 3 spaces (or a tab, depending on the TTY control mask)
and changes the «current location to the |ocation that was open when
you initiated the patch. The synbol that denotes the start of the
patching area is unchanged. Any deposits that you made as part of the
patch remain in the patching area. This allows you to restart the
sane patch, or to wite over the patch with a new one



CHAPTER 9

FI LDDT

9.1 | NTRODUCTI ON

FILDDT is a utility used to exanm ne and change disk files and physica

disk blocks. You can also use FILDDT to examnine nonitor crash dunps,
and to examine the running monitor. Wth FILDDT, you can | ook at .EXE
files as if they had been | oaded with the nonitor CGET conmand, or as
if they were binary data files

In selecting a disk file, a disk, or the nobnitor with FILDDT, you are
really establishing the virtual address space that FILDDT accesses.
When di scussing the contents of that virtual address space, where the
contents can be any of the above objects, this chapter uses the term

target.

Once you have accessed a target, you can examine and nodify it wth
the DDT exanmine and nodify comands (you cannot nodify the running
nonitor with FILDDT), and then save it with your nodifications. You
can use all of DDT's commands for exam ning and nodifying nenory, but
you cannot use any conmmands that cause the execution of program
instructions, such as <ESCX, <ESC>G and so on. |If you attenpt to
execute a programinstruction, FILDDT sounds the terninal buzzer or
bel | .

9.2 USI NG FI LDDT

There are two conmand | evels in FILDDT. This docunent refers to these
two | evel s as FI LDDT command | evel and DDT command | evel .

FI LDDT command |evel accepts FILDDT commands to control session
paraneters and to select the target. FILDDT command | evel enploys
TOPS- 20 command recognition and help. Wen at FILDDT command | evel
FI LDDT di spl ays the pronpt:

FI LDDT>



FI LDDT

Once you access a target, FILDDT enters DDT conmand |evel. At DDT
command | evel, use DDT commands to exami ne and nodify the target.
The syntax of a FILDDT conmand-1|evel command is:

command {file-spec{/switch...}}
where conmand is a FILDDT comand-|level comand, file-spec is a
TOPS-20 file specification, and switch invokes a specific function or
paraneter about the function that you can perform (enable patching,
for exanple). You can use FILDDT commands to i nvoke functions and
paraneters that are invoked by anal ogous FILDDT switches.
Wth a FILDDT comand you can:

0 request HELP on FILDDT

o specify the target to be exam ned

o invoke FILDDT functions

0 establish certain paraneters about the functions that you can
per form

o enter DDT command | evel
o exit FILDDT
A FI LDDT conmmand can have nore than one of the above effects.

The conmands and swi tches are described in detail in the rest of this
chapt er.

To start FILDDT, enter the TOPS-20 conmand:
FI LDDT

FI LDDT enters FILDDT comand | evel and pronpts:
FI LDDT>

You can now use the FILDDT commands described on the foll owi ng pages.



FI LDDT

9.2.1 FILDDT Conmands

There are two cl asses of FILDDT-1evel commands; those that select the
target that FILDDT is to access and those that establish what function
FILDDT is to performfor the target (enable patching, extract synbols,
and treat an .EXE file as data). The following are the targets
(virtual address spaces) that FILDDT can access, and the comrmands that
sel ect them

TARGET COVVANDS
Disk files GET
Di sk structures DRI VE, STRUCTURE
The runni ng nonitor PEEK

To exam ne and patch di sk structures, you nmust have WHEEL, OPERATCR,
or MAINTENANCE privileges enabled. To exanine the running nonitor,
you rmust have WHEEL or OPERATOR privil eges enabl ed.

Foll owi ng are the paranmeters you can invoke for the target and the
commands and switches that select them

FUNCTI ON COVWAND SW TCH
Treat file as pure binary data ENABLE DATA- FI LE / DATA
Enabl e pat chi ng ENABLE PATCHI NG / PATCH
Enabl e t hawed access ENABLE THAWED / THAVED
Load synbol table only fromfile LOAD / SYMBOL

To get HELP, enter:
HELP

FI LDDT di splays a very brief description of the FILDDT commands and
redi spl ays the FILDDT> pronpt.

To return to TOPS-20 conmand | evel from FI LDDT command | evel , enter:

EXIT

9-3



FI LDDT

9.2.2 Synbols

To enhance performance, FILDDT uses a synbol table that it builds in
its own address space, rather than one which exists in the target
address space

FI LDDT automatically extracts synbols to build its internal synbo

table fromthe first .EXE file it loads during a session. Once FILDDT
has an internal synbol table, it ignores any synbols in subsequently
| oaded .EXE files unless you use the LOAD command or the GET conmand
with the SYMBOL switch.

9.2.3 Conmmands to Establish Formats and Paraneters
ENABLE DATA- FI LE

I f you specify an .EXE file, DDT (by default) loads the file in
virtual nmenory as if it were to be executed. You can use the
ENABLE DATA-FILE command to | ook at an .EXE file as if it were a
data file. FILDDT then |loads the entire file (including the . EXE
directory block) as a binary file, starting at virtual [|ocation
zero. You can acconplish the sane thing by appending the /DATA
switch to the file-spec when you use the GET command.

ENABLE PATCHI NG

The ENABLE PATCHI NG | ets you nmodify the target. You can also
enabl e patching by appending the /PATCH switch to the file-spec
when you use the GET command. |f you do not enabl e patching, you
can only examine the target. |If you attenpt to nodify the target
but have not enabl ed patching, FILDDT displays:

? Patching is not enabled

Not e that you cannot enable patching in FILDDT with the <ESCW
commrand.

ENABLE THAWED
The ENABLE THAWED conmand | ets you exanine and nmodify (if you
enable patching) files that require thawed access. You can also

use the /THAWED switch when Iloading the file with the GET
commrand.

9-4



FI LDDT

LOAD

The LOAD command tells FILDDT to copy the synbol table from
the file nanmed by file-spec. Once FILDDT has built its
i nternal synmbol table, FILDDT displays:

[Extracting synbols fromfile file-spec]
[n synbols | oaded fromfile]

where n is the nunber of synbols that FILDDT extracted from
the file. FILDDT then again pronpts you with FILDDT>.

You can al so |oad synbols fromthe file you specify in the
GET comand by appending the /SYMBOL switch to the
file-spec.

If the file you specify is not an .EXE file, FILDDT
di spl ays:

% Not in .EXE format -- Data file assuned.
[Extracting synbols fromfile file-spec]
? Synbol s cannot be extracted froma data file

FI LDDT t hen redisplays its pronpt.

9.2.4 Commands to Access the Target and Enter DDT

DRI VE
The DRI VE comand al |l ows you to access a physical structure
directly. This may be wuseful if the honme bl ock has been
damaged. To access disk structures with FILDDT, you nust
have WHEEL, OPERATOR, or MAI NTENANCE privil eges enabl ed.
If you wish to be able to patch the disk structure, you nust
give the ENABLE PATCHI NG command before using the DRI VE
comand.
To access the disk structure, enter

DRIVE ¢ k u

where ¢ is the channel, k is the controller, and u is the
unit, in decimal.

9-5



GET

FI LDDT

If the unit is part of a nmounted structure, FILDDT displays:
[Unit is part of structure nane]

where nane is the | ogical nane of the disk structure.

| f FILDDT successfully access the unit, FILDDT enters DDT
command | evel and di spl ays:

[Looking at unit u on controller k on channel c]

where c is the channel, k is the controller, and u is the
unit, in decinal

The GET command tells FILDDT to load the file you nane,

i nvoke any paranmeters for which you specify sw tches, and
enter DDT command | evel. Legal switches are /DATA, /PATCH

/ SYMBOL, and / THAVED, and correspond to the ENABLE
DATA- FI LE, ENABLE PATCH NG,  LQOAD, and ENABLE  THAWED
comands, respectively.

If FILDDT extracts synbols and builds an internal synbo
table, it displays:

[Extracting synbols fromfile file-spec]
[n synmbol s | oaded fromfile]

where n is the nunber of synbols | oaded.
When FI LDDT has | oaded the file, it displays:
[Looking at file file-spec]

where file-spec is the TOPS-20 file specification of the
file.

I f FILDDT does not find the file, it displays
? Invalid file specification, nessage

where nessage is a TOPS-20 error string



PEEK

FI LDDT

Use the PEEK command to examine the running nonitor. To use
FILDDT to examine the running nonitor, you nust have WHEEL

or OPERATOR privil eges enabl ed.

Once you have invoked FILDDT, if you wish to be able to
nonitor synmbols when [|ooking at the running nonitor
must use the LOAD command first, as

LOAD SYSTEM MONI TR. EXE

You cannot patch the running nmonitor with FILDDT.
To exani ne the running nonitor, enter

PEEK

FI LDDT di spl ays:

[ Looki ng at running nonitor]

and enters DDT command | evel .

NOTE

You cannot use FILDDT to PEEK
at the running nonitor unless
you are using normal virtua

addr essi ng. | f you are
PEEKi ng the nonitor and change
menory mapping to a node ot her
than normal virtual addressing
with the n<ESC>0U, n<ESC>1U

n<ESC>2U, or $$U  commands,

FI LDDT does not give an error.

However, every page in the
nonitor then appears to DDT to
be non-existent. In this
case, nost attenpts to
reference nenory causes DDT to
display ?, sound the ternina

buzzer or bell, and set the
error string to "CAN T PEEK
PHYSI CAL". Searches do not
cause errors, but never
di scover matches.

use
you



FI LDDT

STRUCTURE
The STRUCTURE command al l ows you to access a disk structure
by its logical nanme. To access disk structures with FILDDT
you rmust have WHEEL, OPERATOR, or MAINTENANCE privil eges
enabl ed.
If you wish to be able to patch the disk structure, you nust
give the ENABLE PATCHI NG command before using the STRUCTURE
comand.
To exami ne a disk structure, enter:
STRUCTURE nane
where nane is the logical name of the structure. If the
structure contains nore than one physical disk, you can
access the entire logical structure

I f FILDDT successfully accesses the structure, it enters DDT
command | evel and di spl ays:

[Looking at file structure nane]

where nane is the | ogical nane of the structure.

9.2.5 Exiting FILDDT

When you are through exam ning and nodi fying the target, save the
nodi fied file by entering

<CTRL/ E>

FI LDDT closes the file, saving any changes that you have nade,
and returns to FILDDT command | evel .

Any synbol table that you have | oaded (explicitly or by default)
remai ns | oaded until you specify another with the LOAD command or
the /SYMBOL switch.

If you have nodified synbols, FILDDT also nodifies the synbo
table of the disk file, if one of the follow ng occurred:

o FILDDT automatically | oaded the synbol table.

0 you |l oaded the synbol table and entered DDT command | evel by
entering:

GET fil e-spec/ SYMBOL



FI LDDT

FI LDDT sonetinmes runs out of menory when you use the <CTRL/E>
command to save files without exiting FILDDT. |If FILDDT runs out
of menory while loading a file, it displays the nessage:

? Not enough nenory for file pages

I f FILDDT runs out of space while building a synbol table, it
di spl ays the message:

? Not enough nenory for synbols

To reclaimall of your available nenory, exit FILDDT with the
<CTRL/Z> conmmand, and then restart FILDDT wth the TOPS-20
comand FI LDDT. Note that this technique restores standard
virtual addressing conditions, as if vyou had used the <ESCU
comand. See Chapter 11 (Physical and Virtual Addr essi ng
Commands) for nor e i nformation about virtual addressing
condi ti ons.

To close the file, save all nodifications (as wth <CTRL/E>,
above) and exit from FILDDT, enter:

<CTRL/ Z>

If you exit FILDDT by entering <CTRL/C>, changes that you nake to
a disk file can still be in FILDDT's output buffer; if so, they
wi Il NOT be saved.

When you exit FILDDT, you can save FILDDT with its interna
synbol table. This saves tinme if you often use FILDDT to debug a
specific file (such as the nonitor) that has a very large synbo
tabl e. Start FILDDT, |oad the synmbol table, then exit. Use the
TOPS-20 SAVE comand to create a copy of FILDDT to be used wth
that specific file.

For exanple (your input is in |owercase):

@il ddt

FI LDDT>l oad system nonitr. exe

[ 34472 synbol s | oaded fromfil e]
FI LDDT>exi t

@ ave
FI LDDT. EXE. 1 Saved



10-1



CHAPTER 10

PRI VI LEGED MODES OF DDT

NOTE

This chapter nakes no attenpt to explain
i nternal noni t or mechani sis. Thi s
chapter assunmes that you are aware of
vari ous noni t or cont ext s. Certain
nonitor contexts may interfere wth or
be interfered with by DDT context

switching. It is up to you to be aware
of t hese. Note also that interna
monitor locations that are used in

exanples in this chapter are subject to
change i n subsequent nonitor rel eases.

10-1



PRI VI LEGED MODES OF DDT

10.1 WMDDT

MODT is wused to debug and patch the running noni t or during
timesharing, and is an integral part of the swappable nonitor. To run
MDDT, you must have WHEEL or OPERATOR privil eges enabl ed.

To i nvoke MDDT, start DDT and then execute the NMDDI% JSYS. For
exanpl e (user input is |owercase):

@nabl e
$ddt

DDT

nddt %<ESC>x
NVDDT

You can al so i nvoke MDDT by running a MACRO 20 program that executes
t he MDDT% JSYS.

MDDT runs in the executive virtual address space of the process that
executed the MDDT% JSYS. Wiile in MDDT, you are still running in user
context, you are running under timesharing, and your process is
subj ect to being swapped out, as is any other user process.

If for some reason you cannot access systemfiles, you can enter MDDT
through the MEXEC, as follows:

@nabl e

$<CTRL/ BE>QUI T

MX>/
where the / (slash) conmand to MEXEC enters NDDT.
To exit MDDT, enter:

nT et n<ESC>g

or enter:

<CTRL/ Z>.

10-2



PRI VI LEGED MODES OF DDT

10.2 KDDT

You can run KDDT in executive node or in user node. KDDT in executive
node is wused to debug parts of the nmonitor which can not be debugged
interactively such as those nodul es that deal with physical nenory or
paging. KDDT in user node is used to debug and patch the nonitor .EXE
file, which you can then save for BOOTing at a later tine.

KDDT is part of the resident nonitor. Wen running KDDT in executive
node, you can exercise any normal DDT functions, such as changing
menory and setting breakpoints. Wen you stop at a breakpoint and
control passes to KDDT, tinmesharing (if in effect) ceases.

To run KDDT in executive node use the /E commmand when BOOTing the
nonitor. For exanple (user input is in | owercase):

BOOT>/ e ; Type in /e
[ BOOT: LOADING [ ]
EDDT ; EDDT is | oaded and waiting for your command

Your debuggi ng may be easier if you lock the swappable nonitor in
core. You can do this by executing the instruction that calls nonitor
routi ne SWPMLK. For exanpl e:

CALL SWPMLK<ESC>X
To run KDDT in user nbde:

@et system nonitr.exe
@tart 140
DDT

You can use KDDT in user node to patch the monitor (.EXE file) which
will be booted the next tine the systemis BOOTed up

After you have started KDDT as above, use the DDT patchi ng conmmands to
insert your patch. When vyour patch is conplete, exit KDDT with
<CTRL/ Z> and use the TOPS-20 SAVE command to save the patched version
of the monitor. For exanple:

<ESC>< ; ESCAPE key followed by a left angle
; bracket.

; Type in the patch.

<ESC>> ; ESCAPE key foll owed by right angle
; bracket.
<CTRL/ Z> ; Exit KDDT

@ave systemnonitr.exe ;Save the new version.

10-3



PRI VI LEGED MODES OF DDT

10.3 EDDT

You can use EDDT to debug user prograns that run in executive node.
You nmust | oad EDDT. REL with your program as foll ows:

@l NK
SYS: EDDT. REL, PROG GO
@AVE PROG

where PROG is the nanme of your MACRO 20 program

10-4



10-5



11-1



CHAPTER 11

PHYSI CAL AND VI RTUAL ADDRESSI NG COMIVANDS

Al TOPS-20 DDTs (including FILDDT) can do their own page napping.
The comuands described in this chapter allow you to set paraneters to
govern the interpretation of the address space which you are
exani ni ng. You can control the mapping of the address space you are
exani ning by choosing to use or bypass the user process table (UPT) or
the executive process table (EPT). You can choose which special pages
table (SPT) to use, and which hardware regi ster block to use. O her
comands allow you to emulate either Kl-paging or KL-paging, contro
address relocation, and set nmenory protection linmts. In each of the
foll owi ng conmands, the argument (page, addr, n) defaults to zero

NOTE
The DDT commands <ESC>G <ESC>P, and <ESC>X have side
effects that affect your control over physical and
virtual addressing. In addition to their nornal
functions, these conmands al so do the foll ow ng:

o restore normal virtual addressing as if <ESC>U had
been given (<ESC>X does NOT do this)

0 set the FAKEAC flag (as if <ESC>U had been given)

o clear the relocation factor (as if O0<ESC>8U had
been gi ven)

0 reset the address-protection address to infinity
(377777, ,777777)

0 restore the active hardware register block to the
one in use before any <ESC>4U comrand was given

11-1



PHYSI CAL AND VI RTUAL ADDRESSI NG COMVANDS

COVIVAND EXPLANATI ON
<ESC>U

This command enabl es nenory nmappi ng by standard TOPS-20 virtua
addressing. Wien you give this comand, DDT restores the virtua
addressing conditions t hat wer e in ef f ect bef ore any
{<ESC>} <ESC>nU (where 0<=n<=2) conmmands were given, and sets
DDT's FAKEAC flag, thereby forcing DDT to interpret nmenory
addresses 0-17 as DDT's own internal "registers", in which the
user's registers were saved.

<ESC><ESC>U

Thi s command enabl es DDT to use actual physical addresses when
accessing nenory, and clears DDT's FAKEAC flag, causing DDT to
interpret nenory addresses 0-17 as the hardware registers 0-17.
This conmmand is rmeaningful only when using KDDT in executive
node, or when using FILDDT to look at the running nonitor.
Al though DDT accepts <ESC><ESC>U at other tines, this conmand
then produces the sane effect as <ESCU

The general syntax of the follow ng virtual addressing commands is:
ar g<ESC>nU

where n is the function nunber of the conmand, and arg is dependent on
the function (see the function descriptions bel ow).

Functions 0, 1, and 2 enable you to control nenory nmapping by
sel ecting the executive process table (EPT), user process table (UPT),
or the section map through whi ch mappi ng occurs. Setting a nmapping
condition with any one of these functions (0, 1, and 2) also has the
effect of clearing the effects of any prior use of one of these
functions (0, 1, and 2).

You can al so specify the offset into the special pages table (SPT)
with functions 0, 1, and 2 by using the foll owi ng comand:

ar g<ESC><ESC>nU

where arg is the SPT offset, and O<=n<=2. This formis legal only if
KL-paging is in effect.

NOTE
Al fornms of <ESC>B and <ESC>X are illegal if you have

used the page mapping functions (0, 1, or 2) and have
not restored standard mapping with the <ESC>U comand.

11-2



PHYSI CAL AND VI RTUAL ADDRESSI NG COMVANDS

COVMAND EXPLANATI ON
page<ESC>0U

This comand causes nenory nmapping to occur through the executive
process table (EPT) that is |ocated at physical page page.

of f set <ESC><ESC>0U

This comand produces the sane effect as page<eESC0U (above),
except that offset is an offset (in words) into the SPT

pagel<page2<ESC>0U

This command is an exception to the general syntax, and is |ega
only under KI-paging. You can sel ect both the user page table
(UPT) and the executive page table (EPT) with this command, where
pagel is the page number of the UPT, and page2 is the page nunber
of the EPT. Follow pagel with a left angle bracket (<).

page<ESC>1U
This command causes nenory mapping to occur through the user
process table (UPT) that is |located at physical page page. Wth
this command, you can bypass the EPT.

of f set <ESC><ESC>1U

This comand produces the sane effect as page<eESC>1U (above),
except that offset is an offset (in words) into the SPT

page<ESC>2U
This comand causes napping to occur through the section nmap at

physi cal page page. This command is legal only if KL-paging is
in effect.

of f set <ESC><ESC>2U
This comand produces the sane effect as page<eESC2U (above),

except that offset is an offset (in words) into the SPT. This
command is legal only if KL-paging is in effect.

11-3



PHYSI CAL AND VI RTUAL ADDRESSI NG COMVANDS

COMVAND EXPLANATI ON

n<ESC>3U

This command deternmines whether DDT interprets references to
nmenory |locations 0-17 as references to hardware regi sters, or to
DDT's own internal "registers" (which normally contain the
user-program ACs), by setting or resetting DDT's FAKEAC fl ag

If n=0, reset FAKEAC flag (use the hardware registers 0-17).

If nis nonzero, set FAKEAC flag (use DDT's internal registers
0-17).

If you enter a nonzero value for n, DDT stores the value -1.

n<ESC>4U

This comand tells DDT to copy hardware register block n
(0<=n<=7) to its own internal register block, set the FAKEAC
flag, and use hardware register block n as its own registers. |If
the FAKEAC flag is set when you give this command, DDT first
restores the contents of its internal register block to the
hardware register block from which they were copied. This
command is |legal in executive node EDDT and KDDT only. Note that
the microcode uses register block 7, and any attenpt to use this
bl ock produces an al nost i medi ate system crash.

addr <ESC>5U

Thi s command copies the 20 (octal) word block | ocated at addr to
DDT's internal "registers" and sets the FAKEAC fl ag.

addr <ESC>6U

This command sets the special pages table (SPT) to addr.
addr <ESC>7U

This comand sets the core status table address (CST) to addr.
addr <ESC>8U

This command sets the address relocation factor to addr. DDT
adds addr to all user addresses that you enter.

addr <ESC>9U

This command read-and-wite-protects all addresses above addr
(before adding relocation factor).

11-4



PHYSI CAL AND VI RTUAL ADDRESSI NG COMVANDS

COVMAND EXPLANATI ON
n<ESC>10U
This comand controls whether Kl paging is enabl ed or cleared.

If nis nonzero, Kl paging is enabl ed.
If n=0, KI paging is cleared

If you enter a nonzero value for n, DDT stores the value -1.
This command is illegal in executive node EDDT.

n<ESC>11U
This comand controls whet her KL paging is enabl ed or cleared.

If nis nonzero, KL paging is enabl ed.

If n=0, KL paging is cleared

If you enter a nonzero value for n, DDT stores the value -1.
This command is illegal in executive node EDDT.

22<ESC>U
23<ESCU

These commands specify the type of CPU on which the program is
bei ng debugged. 22<ESC>U refers to a KL processor. 23<ESCU
refers to a KS processor.

For DDT, this command is neaningless, because DDI uses the
current CPU type. However, these commands nay be useful for
FI LDDT.

You can interrogate DDT to deternmine the last virtual addressing
comand that was given for a specific function. The comand

<ESC>nhU

where 0<=n<=11, returns the address of a DDT |ocation that contains
the argunent that was given if the command for that function was used,
and returns the default value if that function was not used. If you
entered a nonzero argunent to a conmmand that requires zero or nonzero
values (or if the default is nonzero), this location contains -1. You
can use DDT commands to exam ne this |ocation.

11-5



PHYSI CAL AND VI RTUAL ADDRESSI NG COMVANDS

The conmand:
<ESC><ESC>nU

where 0<=n<=2, returns the address of a DDT |ocation that contains
information that indicates which function you used, and whet her you
set a page address or an offset. You can use DDT conmands to exam ne
this 1location. This command is illegal for all functions where n>2
If you did not enter any conmands affecting functions 0-2 since the
| ast <ESC>U command, the right half of this DDT | ocation word contains
zero. Oherwise, the right half contains n+l, where nis the nunber
of the command function you used. |If you set a page address (with
arg<esC>nU), bit 1 of this word is reset. |If you set an offset (with
ar g<ESC><ESC>nU), bit 1 of the word is set.

11-6



CHAPTER 12

EXTENDED ADDRESSI NG

12.1 LOADI NG DDT | NTO AN EXTENDED SECTI ON

If your programis |loaded in a nonzero section, nerge DDT wth your
programwi th the TOPS-20 command:

@>DT

DDT is | oaded into the highest-nunbered free (nonexistent) section.
If your programhas a TOPS-10-style entry vector in section zero, the
EXEC nerges the UDDT stub into the section that contains the entry
vector, and places that section's JOBDAT synbol table pointers (.JBSYM
and .JBUSY) into the DDT | ocations pointed to by UDDT | ocations 770001
and 770002. UDDT then I|oads XDDT into the highest-nunbered free
section. You can load DDT into a specific section with the EXECSs
/ USE- SECTI ON swi tch, as:

@DT/ USE- SECTI ON: n

where n is the (octal) section nunber of a section that does not
al ready exi st.

You can |oad DDT into an existing section with the /USE-SECTION and
/ OVERLAY swi t ches. You nust be careful, however, that your program
does not use any pages that DDT uses. See the TOPS-20 COMWANDS
REFERENCE MANUAL for nore information about the use of these switches.

12-1



EXTENDED ADDRESSI NG

12.2 EXAM NI NG AND CHANG NG MEMORY

The commands /, [ (left square bracket), ] (right square bracket), !,
\ and <TAB> (see Section 4.4.3) open a nenory |ocation at an address
cal cul ated froman expression typed in or defaulted in the conmand.
The syntax of the conmand is

{expr}{<ESC>{<ESC>}}c

where ¢ is the conmand, and expr is any |egal DDT expression (expr
defaults to $Q the current quantity).

In nonzero sections, you can cause DDT to utilize all indirection and
i ndexing indicated by EFIW (extended format indirect words) to
cal cul ate 30-bit gl obal addresses by using the fornmat

{expr} <ESC><ESC>c

This format al so recogni zes and utilizes instruction format indirect
words (IFIW. These commands are thoroughly described in Chapter 4
(Di spl aying and Modi fyi ng Menory).

12.3 BREAKPO NTS

If DDT is running in a nonzero section, breakpoints can be set in any
section.

12.3.1 The Breakpoi nt Bl ock

To set breakpoints in a section external to the one containing DDT
DDT requires an area of contiguous storage in the section containing
the breakpoint. This area is known as the "breakpoint block". The
extra storage is required for saving gl obal addresses for transfer of
control between your program and DDT, and also for the execution of
singl e-stepped instructions that reference nenory locations that are
not in their section.

Each section within your program space that contains a breakpoint nust
have one breakpoint bl ock. Breakpoint blocks are |ocated at the same
relative local address within each section (the default 1is 777700),
and are 100 (octal) words in size.

Each breakpoint block is always contiguous wthin one section

Breakpoint bl ocks never extend across section boundaries and never
"wap around" the end of a section to the beginning of the section.

12-2



EXTENDED ADDRESSI NG
DDT creates a breakpoint block in each section as required, if
i nter-section breakpoints are enabl ed (see bel ow).

You (or your program can reference nmenory within a breakpoint block
but any information stored there can be overwitten by DDT.

12.3.2 Enabling and Disabling Inter-section Breakpoints

The section-relative (18-bit) address of the breakpoint block(s) is
stored in an internal DDT |ocation. The conmand <ESC>4M returns the
address of that DDT | ocation. The synmbol $4M refers to the DDT

| ocation at t he addr ess returned by <ESC4M I nter-section
breakpoints are enabled as |long as $4Mcontains the address of the
br eakpoi nt bl ock. At startup, DDT enables inter-section breakpoints
by default.

To change the address of the breakpoint block, enter:
n<ESC>4M

where n is the address of the breakpoint block, and can be any |ega
DDT expression (20<=n<=777700). DDT uses only the right half of n
and changes only the right half of the DDT |ocation at $4M

By default, the section-relative breakpoint block address is 777700,
placing the breakpoint block at the top of the section. To display
the address of the breakpoint block, enter:

<ESC>4M
I nter-section breakpoints are di sabl ed when $4M contai ns zero
NOTE

In MDDT, $4M defaults to MDDBLK. In
KDDT, $4M defaults to EDDBLK. Each
synbol denotes the start of a 100-word
(octal) block contained in page zero of
the nonitor. Page zero of the nonitor
is mapped into every section that
contai ns nonitor code

To disable inter-section breakpoints, enter:

0<ESC>4M

12-3



EXTENDED ADDRESSI NG

Wiile inter-section breakpoints are disabled, you cannot set a
breakpoint in a section external to DDT, and any breakpoints already
set in such a section are | ost when you begin program execution wth
<ESC>G or continue program execution wth <ESCP. For each
br eakpoi nt | ost, DDT displays:

% CAN T | NSERT $nB - | N NON-DDT SECTI ON
where n is the breakpoint number.

Whil e inter-section breakpoints are disabl ed, DDT cannot execute the
<ESC>X command when

0 you try to execute the instr<ESC>X command, and the default
section is not the section that contains DDT.

0O you try to single-step a dangerous instruction and the
user-program PC is not in the section that contains DDT

In these cases, when you try to use <ESC>X, DDT rings the termna
bell or buzzer and sets its error message text to:

I ntersection reference and no $4M gl obal breakpoi nt/execute bl ock

12.4 DI SPLAYI NG SYMBOLS | N NONZERO SECTI ONS
DDT nornally uses right-hal fword val ues when searching synbol tables
for synmbols to display. However, code linked in a nonzero section has
synbol s defined with the section nunber in the |eft-halfword. DDT
uses a 30-bit value when searching for a synmbol in the follow ng
ci rcumst ances:

0o when displaying the address of a | ocation

o0 when displaying the contents of a |ocation as an address

0o when displaying the Y field of an instruction
When di spl ayi ng an address, DDT searches for a synbol defined with the
30-bit value of the address. If such a synbol is not found, DDT
di spl ays the address in hal fword format.

When displaying the Y field of an instruction, DDT searches for a
synbol defined with a 30-bit val ue consisting of:

o the section nunber of the address of the word being displayed

o the section-relative address contained in the Y field of the
i nstruction

12-4



EXTENDED ADDRESSI NG

| f DDT does not find a synbol defined with that 30-bit value, it |ooks
for a synbol defined with the 18-bit value contained in the Y field of
the instruction.
Assune a programwith the follow ng conditions:
Synbol LABL1 is defined as O,, 300
Synbol LABL2 is defined as 3,, 300
Location 1,,300 contains 3,, 300
Location 1,,301 contains 2,, 300
Location 3,,400 contains 200040, , 300
(MOVE contents of location 300 to AC 1)
When di spl aying the contents of |ocation 1,,300, DDT displays:
1,,LABL1/ LABL2
When di spl aying the contents of |ocation 1,,301, DDT displays:
1,, LABL1+1/ 2,,LABL1
When di spl aying the contents of |ocation 3,,400, DDT displays:

LABL2+100/ MOVE 1, LABL2

12.5 DEFAULT SECTI ON NUMBERS
To reduce the need to type in the section nunmber as part of the
address when you specify a |location, DDT uses a default section number
when you do not specify one. DDT has two section defaulting options:

o permanent default section

o floating default section
The command <ESC>6M returns the address of an internal DDT |I|ocation
that contains section default information. The synbol $6Mrefers to
the DDT | ocation at the address returned by the comand <ESC>6M
When DDT is in section zero, the default section nunber is always
zero, regardless of the contents of $6M

NOTE
When you use KDDT in user-node, $6M

defaults to 0,,0. 1In all other cases,
$6M defaults to 1,,0

12-5



EXTENDED ADDRESSI NG

12.5.1 Permanent Default Section

If the value contained in $6Mis non-negative (bit zero is reset), the
permanent default section option is in effect. DDT then takes the
left half of $6M as the section nunmber of any address that you type in
wi t hout a section nunber.

Set the pernanent default section by entering:
n, , 0<ESC>6M

where n is the section nunber, and can be any | egal DDT expression.

12.5.2 Floating Default Section

If the value contained in $6Mis negative (bit =zero is set), the
floating default section option is in effect. This is the default
option (at start-up, DDT initializes $6M to -1). DDT selects the
floating default section as foll ows:

o If you enter DDT fromits nornal start address, DDT sets the
default section to:

> the section that contains the program entry vector (if
there is one) OR

> section zero.

o If you enter DDT froma breakpoint, DDT sets the default
section to the section that contains the breakpoint.

o |If you open a |ocal address between 20 and 777777, DDT sets
the default section to the section that contains the open
addr ess.

o If you type in an address that contains a section nunber
(including a synbol that is defined with a section nunber),
DDT sets the default section to the one in the address you
entered.

If you exit DDT with <CTRL/C> or <CTRL/Z>, and then reenter DDIT, the
current location does not change. |If you give a conmand that takes
the current location as its default address argunent, DDIT sets the
floating default section to the section of the current |ocation.

In the foll owing exanple, the DDT screen display is on the left, and
expl anatory coments are on the right. The entry vector is in
section 1. Synbol START is not defined with a section nunber. User
input is in |owercase

12-6



SCREEN DI SPLAY

LABL1

3, , PLACE+1/

DDT

3, , START+2/

JFCL O

1,, START+1/

EXTENDED ADDRESSI NG

3,,place/

<LF>

LABL1+2

<CTRL/ &

@ldt

<LF>

LABL1+4

start/

<LF>

MOVE 1, LABL1

12-7

USER | NPUT

EXPLANATI ON
Exami ne | ocation 3,, PLACE
DDT di splays the contents

Type in <LF> to exam ne
the next | ocation.

DDT di spl ays the next
| ocation. The floating
default section = 3.

Exit with <CTRL/ C.
The current location is
3, , PLACE+1.

TOPS- 20 pronpts you
Reent er DDT.

DDT is | oaded and ready

for your command. The
floating default section is
1, because the entry vector
is in section 1

Type in <LF> to exam ne
the next | ocation.

DDT di spl ays the address

and contents of the next

| ocati on. DDT doesn't use
the floating default section,
because your <LF> comand
defaults addr to the current
| ocation, and uses its
section nunber (3).

Exami ne | ocati on START

DDT uses the floating default
secti on nunber because synbol
START is defined with no
secti on nunber.

DDT di spl ays the contents

Type in <LF> to exam ne
the next | ocation.

DDT di spl ays the address
and contents of the |ocation.



EXTENDED ADDRESSI NG

12. 6 EXECUTI NG SI NGLE | NSTRUCTI ONS
Instructions that are executed by neans of the command
i nstr<ESC>X

where instr is the instruction for DDT to execute, are executed within
the current default section. If that section is not the one that
contai ns DDT, DDT uses the breakpoint block in that section to execute
instr. If the floating default section option is in effect and you
are unsure of the current default section, use the addr/ comand to
open a location in the section in which you wish DDT to execute instr.
This sets the default section to the section specified by addr.

If DDT is to execute the instruction in a section other than the one
that contains DDT, inter-section breakpoints nust be enabl ed.

If you try to execute instr outside DDT's section while intersection
breakpoints are disabled, DDT sounds the terninal buzzer or bell
di splays "?" and sets its error string to:

I ntersection reference and no $4M gl obal breakpoi nt/execute bl ock

12.7 ENTERI NG PATCHES | N EXTENDED SECTI ONS

You cannot enter a patch if a patching area does not exist in the
section that <contains the word to be replaced. To ensure that there
is a patching area for each section that contains user-program code,
do one of the follow ng:

o reserve the same part of each section for patches, and define
the patch synmbol as 0,,addr, where addr is the |ocal address
of the patching area

0 use only one patching area and map it into all the sections
that contain wuser-programcode. Define the patch symbol as
0,,addr, where addr is the local address of the patching
ar ea.

o define a different synbol for each section's patching area,
and use the synmbol appropriate to the section being patched

If the left half of expr is zero, DDT defaults the section to the
section that contains the open location. |If the left half of expr is
a value that is not the section that contains the open |location, DDT
di spl ays:

?CAN T PATCH ACROSS SECTI ONS

12-8



APPENDI X A

ERROR MESSAGES

DDT and FI LDDT di splay error nessages to indicate the results of your
conmands. DDT sonetimes (and FILDDT usual ly) displays these nessages
on the screen, and at other tines displays only a question mark. \Wen
only a question mark is displayed, a location internal to DDT usually
points to a text string that is the error nessage. To display the
error nessage, enter the conmmand:

<ESC>?

Following is a |list of DDT nmessages together with explanations of what
the nmessages i ndicate.

? ABOVE PROTECTION REG STER LIMT

The address of the location you tried to display or nodify is
above the protection register limt, which is set by n<ESC>9U

? ACTUAL REFERENCE FAI LED

A menory reference failed unexpectedly (the page exists and is
readabl e, but the reference failed anyway).

? ADDRESS GREATER THAN 777777

An address to be mapped through a section table has a nonzero
section nunber. This can occur only if you specified a section
table with the n<ESC>{<ESC>}2U conmand.



ERROR MESSAGES

? ADDRESS BEYOND END OF PHYSI CAL MEM

You attenpted to exanine a physical menory |ocation beyond the
end of physical nenmory. This error occurs only if you have used
the <ESC><ESC>U command to enabl e physical addressing.

Bad format for .EXE file
You specified a file that appears to have an .EXE directory, but
the directory is badly formatted or DDT cannot read it because of
sone ot her reason

BAD $4M VALUE

You used t he n<ESC>4M command where 777700<n<20.

BAD PO NTER ENCOUNTERED
DDT does not recogni ze the type code contained in a page nmap
poi nt er. This can occur only if you are trying to do your own
virtual address mapping, and used the expr<ESC>{<ESC>}nU command,
where 0<=n<=2

CAN T BE WRI TE ENABLED
Even though you have automatic wite-enable turned on, DDT is
unable to wite-enable a page that exists and is wite-protected.

CAN T CREATE PAGE
DDT attenpted to create a page and failed, or el se cannot attenpt
to create the page (see the <ESC>1W conmand) .

CAN T DEPCSI T | NTO SYMBCL TABLE BECAUSE ... ..
You tried to define or kill a synbol, but DDT was wunable to
nodify the synmbol table. Look up the second part of the error
nmessage in this appendi x.

CAN T DEPCSI T | NTO SYMBOL TABLE BECAUSE DEPCSI T FAI LED

You tried to define or kill a synbol, but DDT was unable to
nodi fy the symbol table, and cannot identify the specific reason



ERROR MESSAGES

% CAN T | NSERT $nB BECAUSE .. ...

DDT is not able to access the location where you inserted vyour
breakpoint. Look up the second part of the error nessage in this
appendi x. This situation occurs before DDT tries to execute
<ESC>G <ESC>P, <ESC>X, or <ESC><ESC>X

% CAN T | NSERT $nB BECAUSE BREAKPO NT |S I N DI FFERENT SECTI ON

DDT is not able to access the location where you inserted vyour
breakpoi nt because inter-section breakpoints are not enabled
(<ESC>4M contai ns zero). This error occurs before DDT tries to
execute <ESC>G <ESC>P, <ESC>X, or <ESC<ESCX To enable
inter-section breakpoints, deposit the breakpoint block address
in the |ocation addressed by the comand <ESC>4M

% CAN T | NSERT $nB BECAUSE MEM REF FAI LED

DDT is not able to access the location where you inserted vyour
breakpoint. DDT is not able to identify the reason. This occurs
before DDT tries to execute <ESCG <ESC>P, <ESC>X, or
<ESC><ESC>X. A typical occurrence is when you have a breakpoi nt
set in the swappable nmonitor (set in KDDT in executive node), but
the swappabl e monitor is not |ocked in menory.

? CAN T PATCH ACRCSS SECTI ONS
You tried to insert a patch in a section other than the one that
contai ns the patching area

? CAN T PEEK PHYSI CAL
You attenpted to PEEK at the nmonitor but have specified other
than normal virtual addressing (FILDDT only).

% CAN' T REMOVE $nB BECAUSE .. ...
DDT is not able to access the location where you inserted vyour
breakpoi nt. Look up the second part of the error nmessage in this

appendi x. This error occurs when your programenters DDT from a
br eakpoi nt .



ERROR MESSAGES

% CAN T REMOVE $nB BECAUSE BREAKPO NT |S I N DI FFERENT SECTI ON

DDT is not able to access the location where you inserted vyour

br eakpoi nt. because inter-section breakpoints are not enabl ed
(<ESC>4M contains zero). This error occurs when your program
enters DDT from a br eakpoi nt. To enable inter-section

breakpoi nts, deposit the breakpoint block address in the | ocation
addressed by the command <ESC>4M

% CAN' T REMOVE $nB BECAUSE MEM REF FAI LED
DDT is not able to access the |location where you inserted vyour
br eakpoi nt. DDT is not able to identify the reason. This error
occurs when your programenters DDT froma breakpoint. A typica
occurrence is when you have a breakpoint set in the swappabl e
nonitor (set in KDDT in executive nbpde), but the swappable
nonitor is not |ocked in nenory.

% CAN' T SET BREAKPO NT, $4M NOT SET
You attenpted to set a breakpoint in a section other than the one
contai ning DDT while inter-section breakpoints were not enabl ed

? FAILURE ON SW TCHI NG ADDRESS SPACE
EDDT (Executive node EDDT only) encountered an error while trying
to access the virtual address space where nonitor synbols are
kept .

? Garbage at end-of - cormand
FI LDDT encountered extra text at a place in the command where
there shoul d have been only <RET>.

I ntersection reference and no $4M gl obal breakpoi nt/execute bl ock

Inter-section breakpoints are not enabled, and one of the
following is true:

0 you tried to execute the comand instr<ESC>X but the default
section is not the section that contains DDT.

0 you tried to single-step a dangerous instruction but the
user-program PC is not in the section that contains DDT



-~

-~

-~

ERROR MESSAGES

I/O error

Sonme kind of I/O error occurred when FILDDT attenpted to read or
wite to the unit specified in a DRI VE or STRUCTURE command.

Il egal channel nunber

You entered a DRIVE command that contained an illegal channe

number .
Illegal controller number
You entered a DRI VE command that contained an illega

nunber .

Illegal unit nunber

controller

You entered a DRIVE comand that contained an illegal wunit

nunber .

I ncorrect synbol table pointer
FILDDT is unable to read the synbol table specified by
table pointer in the file.

| nput device nust be a disk

The device you specified is not a disk.

Insufficient menory to read EXE file directory

FI LDDT does not have enough free nenory to read in the
section of the .EXE file that you specified

t he synbol

directory



ERROR MESSAGES

? Insufficient nmenory to read PDV |i st

FI LDDT does not have enough free nenory to read in
PDVs in the .EXE file that you specifi ed.

NOTE

FI LDDT sonetinmes runs out of nenory
when vyou use the <CTRL/E> conmand
to save files wi t hout exiting
FI LDDT. If this is the case, exit
with the <CTRL/Z> command, and then
restart FILDDT with the TOPS-20
FI LDDT command.

? INVALI D DDT | NTERNAL ADDRESS

You addressed an internal location that is not def
nost likely to occur after you use a command t hat

(such as <ESC>M to exami ne a DDT |ocation and then use
<BKSP> to | ook at nearby nenory.

? Invalid file specification, nessage

where nessage is a TOPS-20 error string

a filespec given to a LOAD or GET command.

? Invalid guide phrase input

wher e i nput

does not match FILDDT' s gui de phrase

You entered a synbol that is defined in nore tha
select the correct synbol by opening the symbol table

You can

associ ated with that nodul e,

? MDDT BREAKPO NT BLOCK ALREADY | N USE

Only one fork nmay have breakpoints set

attenpt ed

to

t he

i ned.

list of

This is

returns a val ue

is a guide (or noise) phrase that you typed

n one

<LF> or

FI LDDT coul d not parse

in, and

nmodul e.

usi ng the command nodul e<ESCs:

in MDDT at one time. You

set a breakpoint in MDDT while another fork had
al ready set an NMDDT breakpoint.



ERROR MESSAGES

? Mssing or extra units in structure
The nunber of units with the name supplied in a STRUCTURE comand
does not agree wth the nunber of units in the first structure
with that nane returned by MSTR%

? No keyword input
where input is a word that you typed in. You entered ENABLE
wi t hout the DATA, PATCHI NG or THAWED qualifier

? NO READ ACCESS
You tried to display a word in a page to which you do not have
read access.

? No such command as i nput
where input is a word that you typed in. You entered a comand
that FILDDT does not recognize

? No such file structure
COWND% and DEVST% t hi nk you supplied a disk nanme in a STRUCTURE
command, but no unit with that nanme was returned by MSTR%

? Not enough nenory for file pages

FI LDDT does not have enough free nmenory for its file page
buf fers.

NOTE

FI LDDT sonetinmes runs out of nmenory when you use
t he <CTRL/E> command to save files without
exiting FILDDT. |If this is the case, exit wth
the <CTRL/Z> command, and then restart FILDDT
with the TOPS-20 FI LDDT conmmand.

? Not enough nenory for synbols

FI LDDT does not have enough free menory to read in the synbo
table fromthe specified .EXE file. See the note above



ERROR MESSAGES

? NOT I N CORE

You tried to nap through a page map pointer (in a UPT, SPT, or
section table) that addresses a page that is swapped out. This
can occur only if you are trying to do your own virtual address
mappi ng, and used the expr <ESC>{ <ESC>} nU conmand, where 0<=n<=2.

% Not in .EXE format -- Data file assuned.
A GET command without a /DATA switch or a previous ENABLE
DATA-FI LE command specified a file which is not in .EXE file
format. FILDDT assunes it is a data file.

? NOT WRI TABLE

You tried to nodify a word in a wite-protected page. To enable
witing on protected pages, use the <ESC>0W comand.

-~

Nul I filenane ill egal

You did not enter a file specification to a command that requires
one.

? PAGE DCES NOT EXI ST

You tried to display a word in a nonexistent page.

-~

Pat ching is not enabled
You attenpted to nmodify (with FILDDT) a file, a disk, or the
nonitor, but did not use the /PATCH switch or the ENABLE PATCH NG
comand.

% Pat ching the running nonitor is illegal

You entered an ENABLE PATCHING command and then gave a PEEK

comand.

? PEEK FAI LED

You tried to PEEK at the mpnitor, but do not have WHEEL or
OPERATOR pri vil eges enabl ed.



ERROR MESSAGES

% Synbol s cannot be extracted froma data file

You used the command GET fil nani SYMBOL. Ei t her the file
specified by filnamis not an .EXE file, or you previously used
the command ENABLE DATA-FI LE.

? Synbol s cannot be extracted froma data file

You used the command LOAD filnam and the file specified by
filnamis not an .EXE file.

You entered a synbol that DDT cannot |ocate in any synbol table.
Cure this by entering the correct synbol, or by defining the
synbol with the command {expr<}synbol:.

? UNEXPECTED MOVEM FAI LURE

DDT coul d not deposit to nenory even though the page exists
exists and is wite-enabl ed.

NOTE

In the foll owi ng nessages, unit is one of the
fol | owi ng:

o "Unit" (if you used the DRI VE conmand)
0 "Unit u on controller k on channel c" (if you

used the STRUCTURE command, where u, k, and c
are the argunments you entered)

% Unit has a bad BAT bl ock
The unit that you specified in a DRIVE or STRUCTURE conmand has a
bad BAT bl ock.

% Unit has a bad HOVE bl ock

The unit that you specified in a DRIVE or STRUCTURE conmand has a
bad HOVE bl ock.



ERROR MESSAGES

? Unit is off line
The unit that you specified in a DRIVE or STRUCTURE conmmand is
of f line.

%Unit is wite | ocked
You used an ENABLE PATCHING conmmand and then specified a
wite-locked unit in a DRIVE or STRUCTURE conmand.

% Update of file's synbol table failed
FI LDDT was unable to wite the nodified synbol table back to the

file after you gave a <CTRL/Z> or <CTRL/E> command. This may
al so occur when you use the n<ESC>5M conmand.

A-10



GLOSSARY

bi t
Bit is a contraction of "binary digit". A bit is the snallest
unit of information in a binary systemof notation. It is the
choi ce between two possible states, usually designated as zero
and one. Bits of data are often used as flags to indicate
on/ of f or yes/no conditions.

br eakpoi nt

A breakpoint is a location in a program s executabl e code that
has been nodified so that if the programattenpts to execute
the instruction at that |ocation, control passes to DDT before
the instruction is executed.

current display node

The current display nmode is the nmode in which DDT displays the
next word (unless there is an intervening command that changes
the current display nmode). Also known as the current typeout
node.

current quantity

The current quantity is the nost recent of:
o the last 36-bit quantity that DDT displ ayed

o the 36-bit evaluation of the last expression that you
entered as an argunent to a conmmand that deposits to menory

This value is often used as the default argunent for the next
command. Al so known as the |ast val ue typed.

d oss-1



GLOSSARY

current | ocation
The current location is a nmenory word that has been referenced
by an earlier DDT command. The address of the current |ocation
is the default address for nost DDT conmands.

current location stack entry

The location that will becone the current |location as a result
of the next <ESC><RET> command.

current radiXx

The current radix is the radix in which DDT displays nuneric
val ues.

current typeout node
See current display node.
debuggi ng

Debugging is the process of finding and renoving progranm ng
errors from prograns.

EDDT
EDDT is the DDT variant that is used to debug executive-nopde
pr ogr ans.

FI LDDT
FILDDT is the DDT variant that is used to exanmine and nodify
disk files and disk structures. FILDDT is also used to exam ne
(but not nodify) the running nonitor.

jiffy
Ajiffy is aunit of time defined as one AC (alternating
current) cycle. |If your line power has a frequency of 60 Hz.,
ajiffy is one sixtieth of a second (about 16 mlliseconds).
If your line power has a frequency of 50 Hz., a jiffy is one
fiftieth of a second (20 mlliseconds).

KDDT

KDDT is the DDT variant used to debug the nmonitor. You can set
breakpoints, single-step instructions, and perform any other
DDT functi on.

d oss-2



GLOSSARY

| ast val ue typed
See current quantity.

| ocation
A location is a nunbered or naned place in storage or nmenory
where a unit of data or an instruction can be stored. This
manual al so uses the terms word and nenory word.

| ocati on counter

The location counter is a nenory word that contains the address
of the current |ocation.

| ocati on sequence stack
The | ocation sequence stack is a stack in which DDT stores the
addresses of locations used earlier. DDT uses the stack to
access these locations again wthout having you explicitly
enter the address of each of the |locations. DDT references
t hese addresses in a last-in, first-out manner.

VDDT

MDDT is the DDT node used to examine and patch the running
nmoni t or .

open | ocation

The open location is a nenmory word that you can nodify wth
your next DDT command.

prevailing di splay node

The prevailing display node is a user-defined default display

node. DDT di spl ays menmory words in the prevailing node unl ess
you specify a temporary display node. You can restore the
prevailing node with the <RET> conmmand. See Chapter 4

(Di splaying and Mdifying Menory) for a list of other commands
that restore the prevailing display node.

reset
Reset refers to the zero condition of a bit or flag. A bit
that is zero is saidto be reset. To reset is the verb that

refers to the act of turning the bit off, "clearing" the bit,
or making it zero.

d oss-3



GLOSSARY

set
Set refers to the nonzero condition of a bit or flag. A bit

that is nonzero is said to be set. To set is the verb that
refers to the act of turning the bit on, or nmaking it nonzero.

si ngl e- st eppi ng
Si ngl e- st eppi ng is the process of executing program
instructions one at atine using DDT, to verify the result of
each instruction.

t ar get
Target refers to the contents of the virtual address space that
FILDDT is accessing. The virtual address space nmay contain a
di sk structure, a disk file, or the running nmonitor.

tenporary di splay node
The tenporary display nmode is a short-term user-selected
display node which overrides the prevailing display node.
Tenporary display node renmains in effect until you enter <RET>
or <TAB>. Also known as the tenporary typeout node.

tenporary typeout node

See tenporary display node.

d oss-4



I NDEX

$, 2-2
$$., 5-2, 5-3
$., 5-2, 5-83

ASCl Z strings, 4-19
Aut omati ¢ page-creation,
Aut ormati ¢ proceed

term nating, 5-8
Aut omati c proceed fl ag,
Aut omatic wite-enable,

4-21

5-7
4-20

BACKSPACE key,
<BKSP>, 2-3
$0BPT, 5-10
Br eakpoi nt bl ock, 12-2
Br eakpoints, 2-5, 5-1
condi tional, 5-9
DDT action at, 5-3
di spl ay additional
5-4
di spl ay address of, 5-6
executing command strings at,
5-5

2-3

| ocation at,

executing instructions at, 5-11
executing subroutines at, 5-13
inter-section, 12-3
proceeding from 5-3, 5-6
renoving, 5-6
setting, 5-3
singl e-stepping at, 5-11
unsolicited, 5-10
Byte pointers, 4-6
Commands
DDT
, 4-6
I, 4-9, 4-12, 4-13, 4-16,
4-17, 4-18, 12-2
", 3-5
"ttt > 3.6
., 4-7
/[, 4-9, 4-12, 4-13, 4-14,
12-2
7, 4-6
= 4-6
?, 4-19, 4-23, 5-14, 6-3, 7-5
[, 4-9, 4-12, 4-13, 4-14,
12-2
\, 4-9, 4-12, 4-13, 4-16
12-2

| ndex-1

], 4-9, 4-12, 4-13, 4-15,
12-2
N, 4-9
Backsl ash, 4-9, 4-12, 4-13,
4-16, 12-2
<BKSP>, 2-3, 4-9
<CTRL/ U>, 2-3
<CTRL/ Z>, 2-3
deleting, 2-3
Equal sign, 4-6
<ESC>, 2-3, 4-12
<ESC>", 3-6
<ESC>"5, 3-7
<ESC>" c<ESC>, 3-7
<ESC>., 5-2
<ESC>0<, 8-
<ESC>0T,
<ESC>1:
<ESC>1M
<ESC>1S,
<ESC>1W
<ESC>2M
<ESC>3M
<ESC>4M
<ESC>5M
<ESC>5T,
<ESC>6M
<ESC>6T,
<ESC>7T, 4-
<ESC>:, 7-1, 7-2
<ESC><, 8-1
<ESC><BKSP>,
<ESC><ESC>., 5-2
<ESC><ESC>1:, 7-7
<ESC><ESC>1W 4-21
<ESC><ESC>1X, 5-15
<ESC><ESC>:, 7-6
<ESC><ESC><, 8-3
<ESC><ESC>K, 7-3
<ESC><ESC>nU, 11-2
<ESC><ESC>P, 5-8
<ESC><ESC>Q 4-8
<ESC><ESC>U, 11-2
<ESC><ESC>W 4-20
<ESC><ESC>X, 5-14, 5-16
<ESC><LF>, 4-11
<ESC><RET>, 4-11
<ESC>>,
<ESC>?,
<ESC>B,
<ESC>C,

3, 4-25

=

1
WWNOINN OO

N PN
1 U'I m 1
al w

AR BNEAMABADNDR®
oo

4-11, 4-12

, 11-2

H O N
GO wN*~



<ESC>D,
<ESC>E,
<ESC>F,
<ESC>G,
<ESC>H,
<ESC>I ,
<ESC>K,
<ESC>M
<ESC>N,
0<ESC>nB
<ESC>nB, 3-4
<ESC>nl, 3-4
<ESC>nM 3-4

4-5

3-4

U‘II\)AO-);U‘II—‘U‘IOJOJ

<ESCenT,
<ESC>nU
<ESC>0, 4-5
<ESC>P, 5-6
<ESC>Q 4-8
<ESC>S, 4-5
<ESC>U, 5-1
<ESC>V, 4-23

<ESC>W (search), 6-1
<ESC>W (write-protect),

11-1, 11-2
<ESC>Z, 4-19

DDT variants, 1-2
Default section
floating, 12-6

11-1 permanent, 12-6

Di spl ay node
C, 4-5
current, 4-3
F, 4-5
H 4-5
O 4-5
prevailing, 4-2
1S, 4-5
S, 4-5
synbolic, 4-1
0T, 4-5
5T, 4-5

11-1 6T, 4-5

tenporary, 4-2

EFIW 4-13, 4-18
<ESC>, 2-2, 2-3
ESCAPE key, 2-2, 2-3

4-20 Expressi on operators, 3-7
<ESC>X, 5-11, 5-13, 5-16,

Expressi ons, 3-2
Ext ended format indirect word,
4-13

Excl amation point, 4-9, 4-12,

4-13, 4-16, 4-17, 4-18,

12-2

Left square bracket, 4-9
4-12, 4-13, 4-14, 12-2

<LF>, 2-3, 4-9
Period, 4-7
<RET>, 2-3, 4-9, 4-10

Reverse slash, 4-9, 4-12

4-13, 4-16, 12-2

Ri ght square bracket, 4-9,
4-12, 4-13, 4-15, 12-2

Seni col on, 4-6

IFIW 4-13, 4-18

Initializing menory, 4-19

| nput
ASCI | character, 3-6
ASClI I string, 3-5
deci mal integer, 3-3
floating point, 3-3
hal f words, 3-10
instructions, 3-10
long text string, 3-4
octal integer, 3-2
RADI X50 word, 3-7

Sl ash, 4-9, 4-12, 4-13, 4-14, SI XBI T character, 3-7
12-2 SIXBIT string, 3-6
<TAB>, 2-3, 4-9, 4-12, 4-13, text, 3-4
4-17, 12-2 val ue returned by a command,

Underscore, 4-6
<ESC>L (page access), 4-22
FI LDDT
<CTRL/ Z>, 9-9
CONTRCOL key, 2-3
CPU type for FILDDT, 11-5
Current display node, 4-3
Current |ocation, 2-4, 4-7

3-3
I nput to DDT, 3-2
Instruction format indirect word,
4-13

Last quantity typed, 4-8
<LF>, 2-3
LI NE FEED key, 2-3

Current location stack entry, 4-8 Location counter, 2-4, 4-7

Current quantity, 2-4, 4-8

Danger ous instructions, 5-15

Locati on sequence stack, 2-4, 4-8

$4M 12-3

| ndex- 2



$5M 7-6
$6M 12-5
Mask
out put byte size, 4-3
search, 6-4
TTY control, 4-23
Maxi mum synbol i c of fset, 4-4
Menory protection, 4-20
Menory watch, 4-23

$nB, 5-2

Open |l ocation, 2-4, 4-7
Operators

in expressions, 3-7
Qut put byte size mask, 4-3

Page accessibility, 4-22
Pat ch
abort, 8-6
before instruction, 8-1
follow ng instruction, 8-3
term nate, 8-2, 8-3
Prevailing display node, 4-2
Proceed count, 5-7

$3Q 4-8
$Q 4-8

<RET>, 2-3
RETURN key, 2-2, 2-3

Sear ch

for address, 6-3
for matching value, 6-1
for non-matchi ng val ue, 6-2
termnate, 6-3
Search mask, 6-4
Si ngl e- st eppi ng, 5-11
Synbol table
closing, 7-2
finding nane of, 7-2
openi ng, 7-1
Synbol i ¢ debuggi ng, 1-1
Synbol s
creating undefined, 7-4
defining new, 7-2
deleting, 7-3
listing specific, 7-5
l'isting undefined, 7-5
| ocating, 7-4
mul tiply-defined, 7-1
reactivating typeout of, 7-3
redefining old, 7-2
suppressing typeout of, 7-3
TAB key, 2-3
<TAB>, 2-3
Temporary di spl ay node, 4-2
TTY control nask, 4-23

Unsol i cited breakpoint, 5-10
User - program cont ext, 5-16

Wat chi ng nenory, 4-23

Zeroing menory, 4-19

| ndex- 3



